
Characterization-Informed Recovery of Critical Minerals from Acid Mine Drainage Treatment Solids FWP-1022420

Mengling Stuckman, Ph.D.

National Energy Technology Laboratory (NETL), NETL Support Contractor

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Pls and Presenter*

Mengling Stuckman*1,2 and Christina Lopano¹

Project Participants

Ward Burgess^{1,2}, Benjamin Hedin³, Camille Sicker⁴, Colleen Hoffman^{1,2}, Chin-Ming Cheng^{1,2}, Alison Fritz¹, Bret Howard¹, Tom Tarka¹

¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA ²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

³Hedin Environmental, 195 Castle Shannon Boulevard, Pittsburgh, PA 15228

⁴University of Pittsburgh, 4107 O'Hara Street, Pittsburgh, PA 15260

Project Overview

Funding from NETL Critical Mineral Research Field Work Proposal: \$365k for EY2022, TBD for EY2023 and 2024; Overall Project Performance Dates: EY2022-2024

OBD OBD

K3] 3

BD

Goal: Utilize **advanced characterization** techniques on acid mine drainage treatment solids (AMD) to inform critical minerals (CM), including rare earth elements (REE), Co/Ni/Zn and Li, binding conditions in these materials, and to **innovate targeted extractions** for efficient and economical CM recovery.

Strategic Alignment: 1. Economic and Energy Security through the production of minerals critical to domestic industries and which underpin the energy technologies of the future.
2. Creating new market and valuable products from coal wastes.

3962

Chemically-Informed CM Recovery from AMD Solids

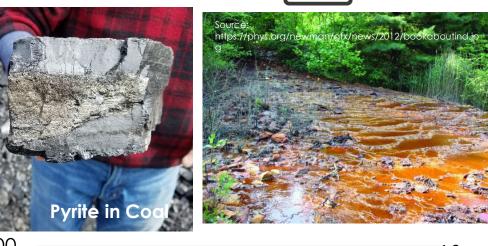
- Technical advances:
 - Expand CM focus: REE, Co/Ni/Zn, Mn, Al, Fe, Li, etc.
 - 80% reduction in reagents, reaction time
 - Reduction in process steps/complexity: sequential leach of different CMs
 - Reduction in process intensity: ambient temperature and pressure
 - Techno-economic analyses in progress to further explore process performance
- Fundamental and lower technical readiness level (TRL) for innovations:

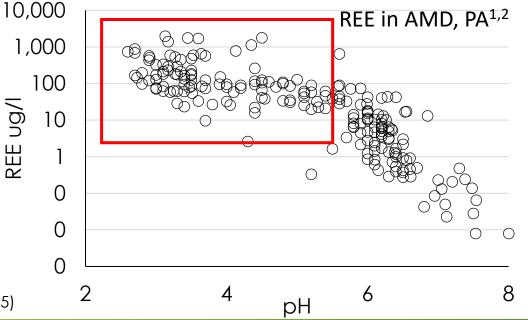
Work smarter, not harder

- Fine-tune extractions to target certain CM
- Novel reagents and extractions: Different acids, different agents, cocktails, waste streams
- Modeling to improve design of treatment
- Industry input/validation:
 - Regular communication with industry partners
 - Active discussions on technology licensing and industry needs

ATIONAL NOLOGY

Domestic Source of CM

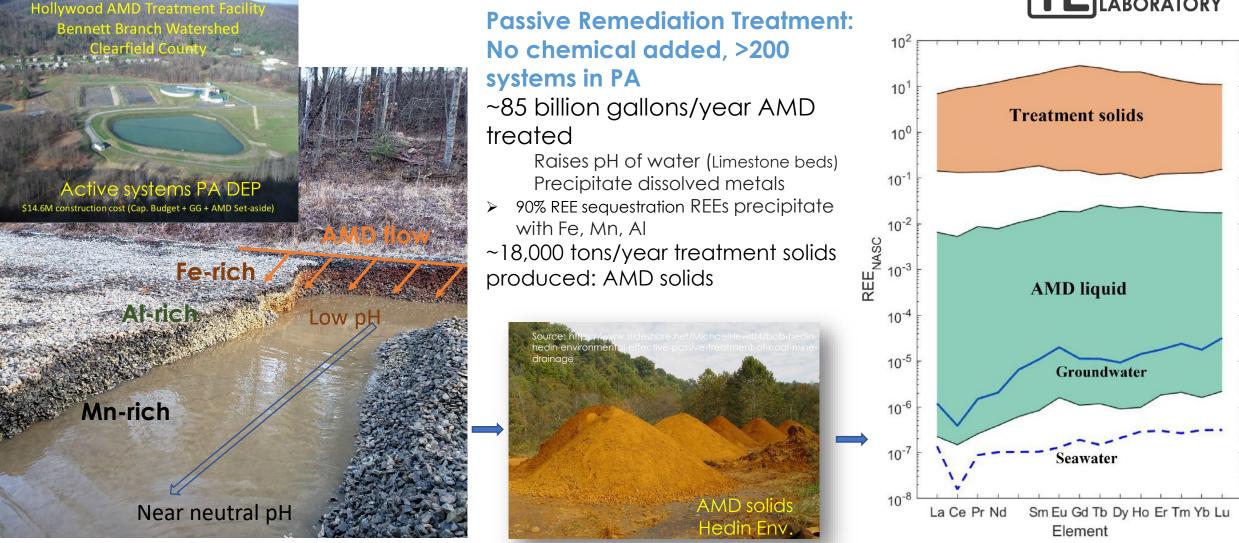

Pyrite (FeS₂) oxidation releases hydrogen ions


Decreases pH, mobilizes metals (e.g., Fe, Mn, Al) Need to treat toxic levels of metals that negatively effect the water, including REE, Co and Ni under acidic conditions

CMs from 140 discharges across Pennsylvania²

Element	Max conc. (ug/L)	Min conc. (ug/L)	Max loading (kg/year)	Min loading (kg/year)
Mg	210,000	3,600	3,541,140	40
Mn	74,000	19	215,522	4.5
Sr	3,600	27	83,321	0.23
Ni	3,200	2.6	10,428	0.3
REE	1,765	0.4	7,364	<0.01
Со	3,100	0.3	6,952	0.1
Cu	190	0.4	2,086	<0.1
Li	390	11.0	4,513	0.2

1: Hedin et al. (2019); Stewart et al. (2017); 2: Cravotta (2008); Cravotta and Brady (2015)

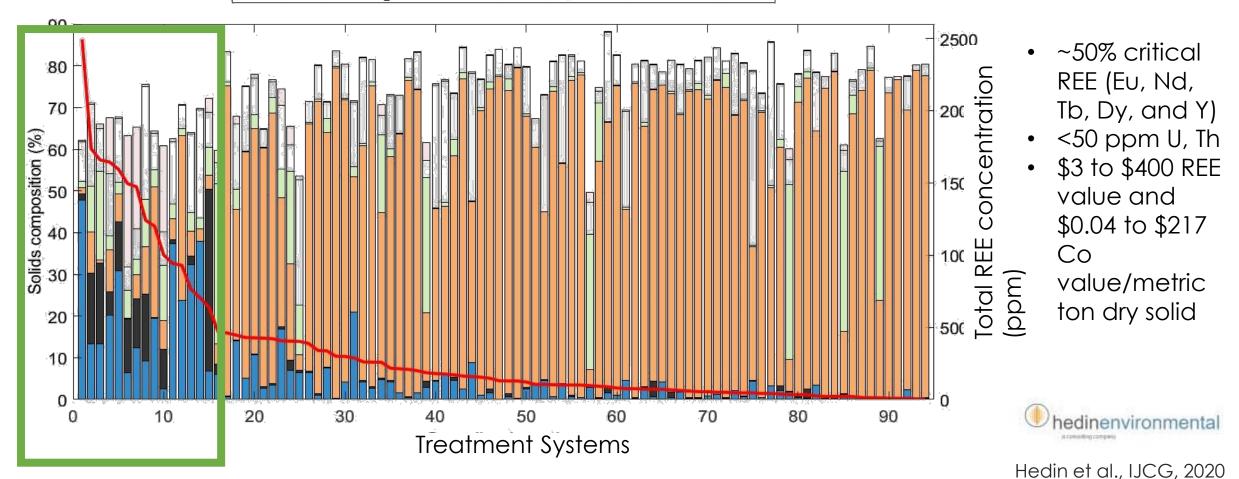


ng/l

REE

AMD Treatment Systems and REEs

Hedin et al. (2019 & 2020), IJCG



Approximately 100 AMD Solids from Passive Systems in PA

—Sum REE ____MgO ____SiO2 ___CaO ____Fe2O3 ____MnO ____Al2O3

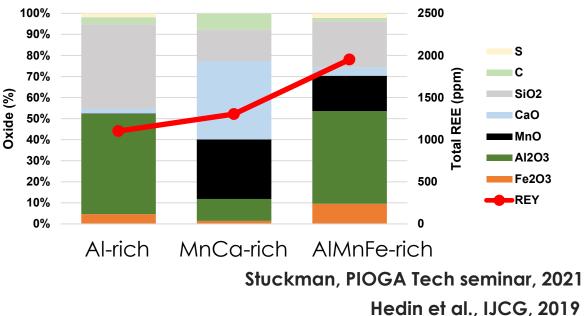
Challenge of the Project: Chemical Diversity

NATIONAL HNOLOGY

Unit: wt% for major elements and mg/kg for trace elements

	С	S	Al	Si	Fe	Mn	Mg	Ca k	<	Ti	REE	_i	Со	Ni	Cu	Zn
Al-rich solid	2	% 2	76 18.09	6 19.3%	2.1%	0.1%	0.2%	1.2%	0.7%	0.3%	1113	38	22	50	106	315
MnCa-rich solid	4	%ND	3.5%	6.1%	0.5%	18.1%	0.6%	16.8%	0.4%	0.1%	1590	108	6026	8889	89	13585
AlMnFe-rich solid	1	% 19	76 15.4%	6 9.7%	5.2%	8.5%	0.2%	2.8%	0.3%	0.1%	1900	440	2059	3002	518	5812
The transition r	netal	conter	ts are s	ometime	es highe	er than	REE; Lith	ium co	ntent is	s also re	easonabl	y high	MnCa-ı	rich solio	d has	

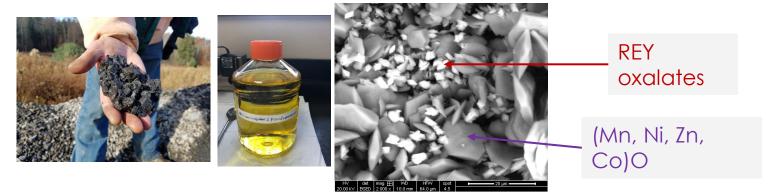
higher accumulation of Co, Ni and Zn


Al-rich solids

MnCa-rich solid

Al-, Mn-, Fe-rich solid

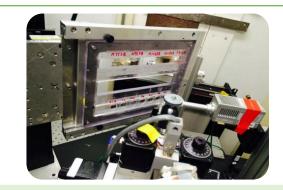
AMD Solid Composition (>1000 mg/kg REY)



Research Success Metric in Previous Years

Yearly Progression Demonstrated

- AMD waste solids
- Est. 1102 metric tons REO/yr
- 12% of U.S. annual demand


EY	Wt% REOs	TRL Level	%Recovery	Notes
2018	9%	1 - 2	60%	Mn and Fe impurities, with <u>10%Co, 26%Ni and 21%Zn</u>
2019	4%	2	80%	Fe and Ca impurities were further addressed, leachate underwent L:L separation for comparison
2019	13%	2 - 3	> 80%	Reduced impurities <u>with 48% Zn, 11%Ni, 2%Co</u> Additional AMD solid field sampling (early 2020)
2020	95% (mg scale)	2-3	>80%	ROIs in prep ; By-product recovery in development; Upscaling and optimization of lab scale processes
2022- 2024	Co, Ni, Zn	3 - 4	>80%	Collaboration with Hedin Environmental, Inc.; Explore biotechnologies to sequester, recover and purify REEs and critical elements in planning

Technical Approach/Project Scope

Characterization Informed Recovery

EY22 Characterization of CM Binding

- CM distribution:

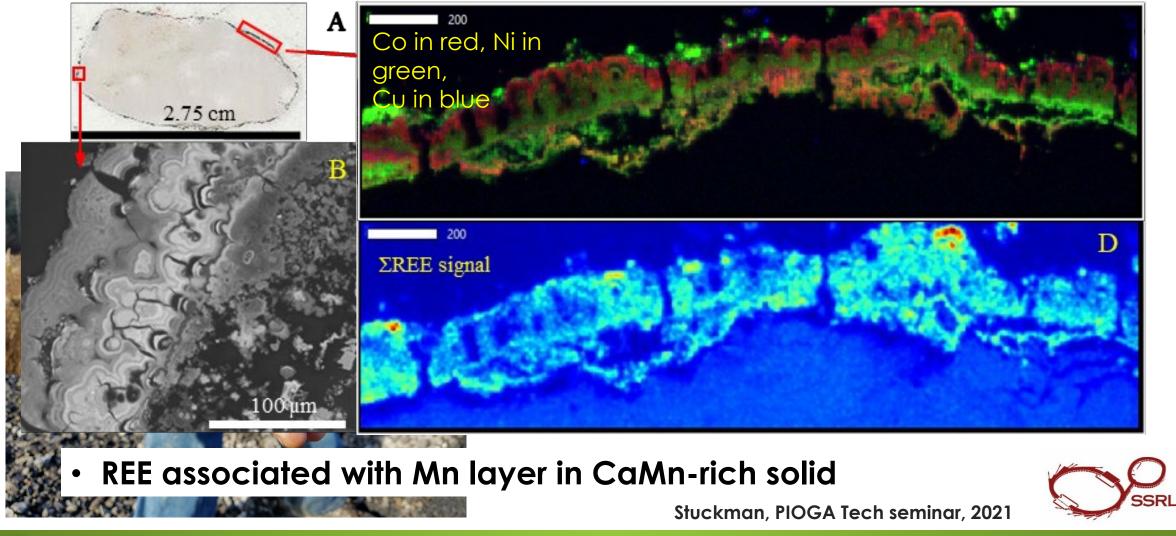
In-house SEM, XRD, Raman, synchrotron-based spectroscopy, seven-step sequential extraction

- <u>Geochemical modeling</u> (PHREEQ-N-AMDTreat from USGS)

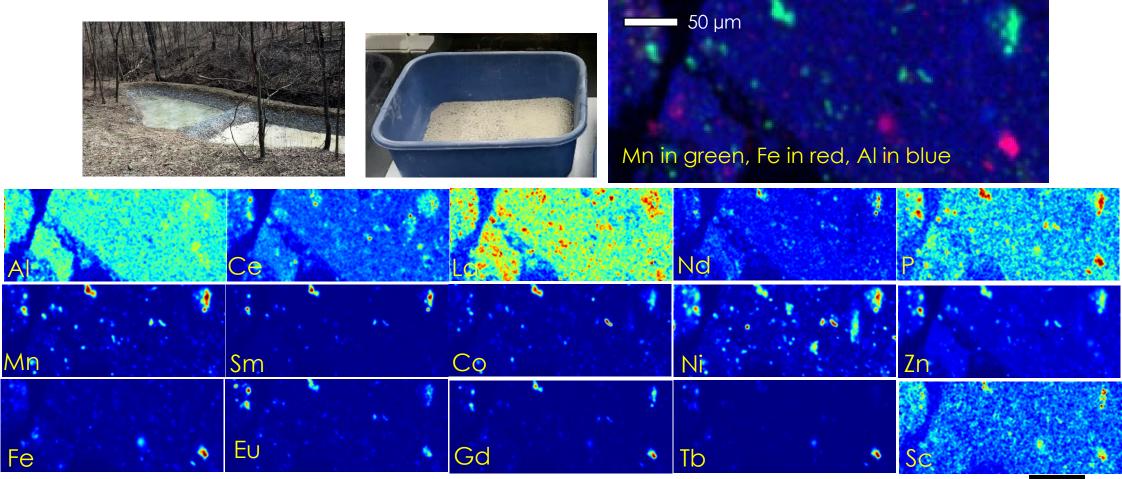
EY23 Optimized Targeted Extraction

- Sequential leach
- Innovative leaching strategies

EY24 Downstream Optimization and Operation Optimization


- Optimization of the extraction
- Explore to bypass costly traditional solvent purifications further downstream

Progress: The REE and CM Binding in MnCa Solid


Synchrotron µXRF

Progress: The REE and CM Binding in Al-Rich Solid

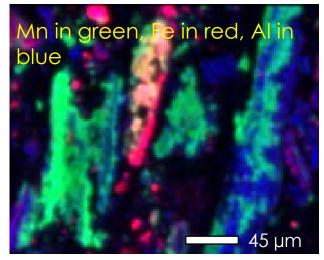
REEs Co-localized with AI and Mn, selected heavy REEs (Gd, Tb) co-localized with Fe

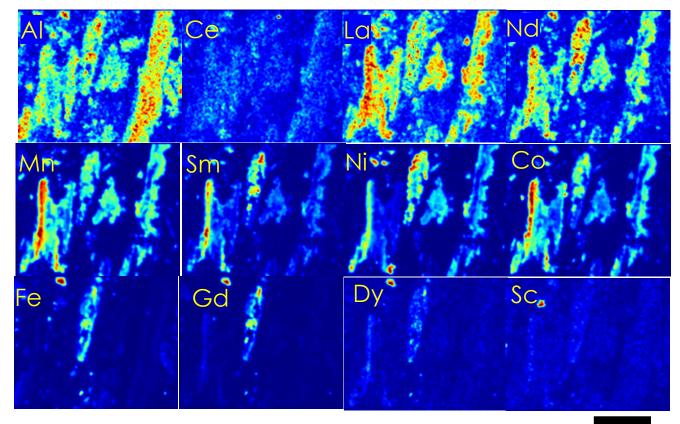
100 µm

13

• Co, Ni, Zn co-localized with Mn

U.S. DEPARTMENT OF

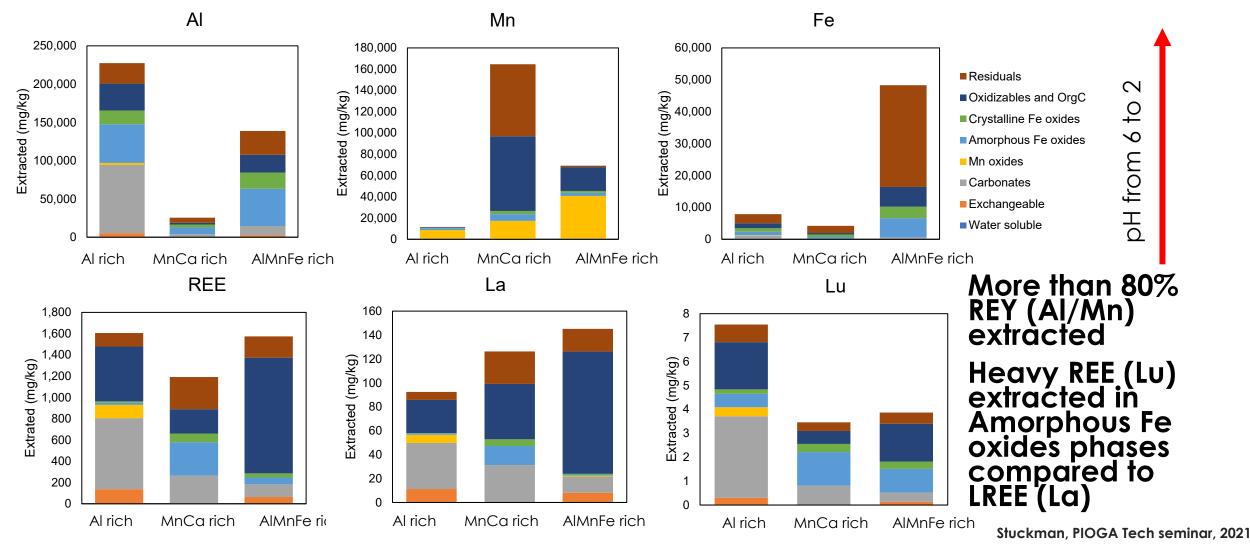

Stuckman, PIOGA Tech seminar, 2021


Progress: The REE and CM Binding in AlMnFe-Rich Solid

- REEs Co-localized with AI and Mn, selected heavy REEs (Gd,Dy) co-localized with Fe
- Co, Ni, Zn co-localized with Mn

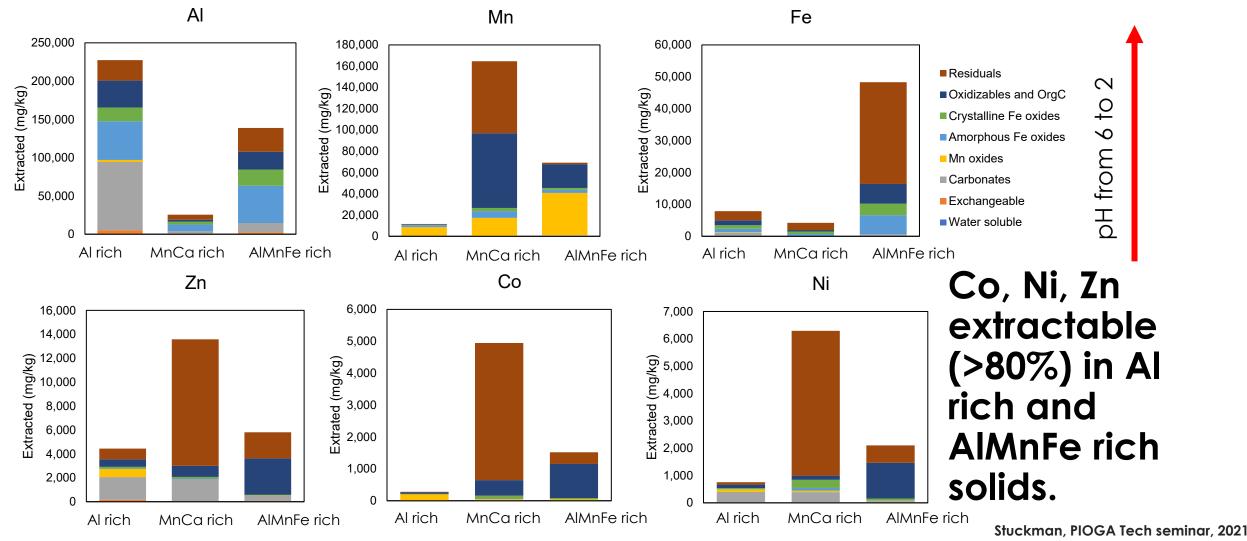
Al-, Mn-, Fe-rich solid

Stuckman, PIOGA Tech seminar, 2021


ATIONAL

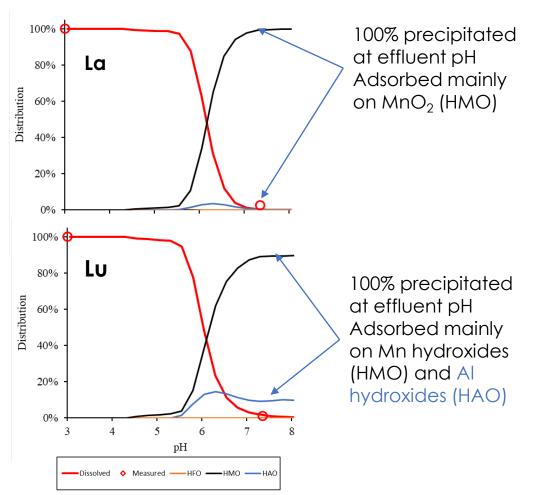
HNOLOGY

Progress: REE Sequential Extractions (Total Exacted vs. Residuals)



CM Sequential Extractions (Total Exacted vs. Residuals)

Progress: Geochemical Modeling


PHREEQ-N-AMDTreat developed by C. Cravotta (2022)

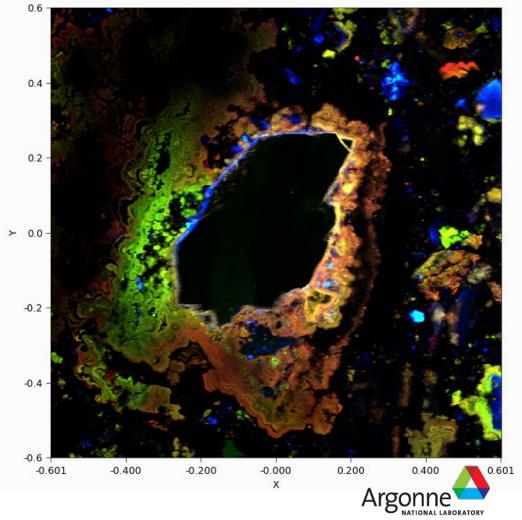
- Current focus on REE prediction for one type of treatment system
- Future efforts will incorporate other CMs in existing modeling

	Soln#A	Soln#B		Soln#A	Soln#B	HMeO.mg	Fe%	Mn%	Al%	SF	ECIFIED CONST	ANT SORBENT	(EXISTING)	
Design flow (gpm)	49.4	0	As (ug/L)	2.47	1E-08	0	14	43	43	HMeO (mg/L I	Fe+Mn+Al, not oxi	ides); existing, ad	Ided to fresh HN	leO ppt from soln
Mix fraction	1	0	Ba (ug/L)	8.9	1E-08		600	746	68	<surface area<="" td=""><td>.m2/g 64122.6</td><td>79047.7 530</td><td>14.4 Surface a</td><td>area, m2/mol, com</td></surface>	.m2/g 64122.6	79047.7 530	14.4 Surface a	area, m2/mol, com
Temp (C)	13.5	0.01	Cd (ug/L)	34.4	1E-08		1.925	1.91	4.6	<site density,<="" td=""><td>sites/nm2</td><td></td><td></td><td></td></site>	sites/nm2			
SC (uS/cm)	5550	0	Co (ug/L)	4770	1E-08		0.2	0.0903	0.0405	<site (<="" density="" td=""><td>weak or y), mol/m</td><td>nol, computed</td><td></td><td></td></site>	weak or y), mol/m	nol, computed		
DO (mg/L)	5.9	0.01	Cr (ug/L)	21.2	1E-08		0.005	0.1605		<site (<="" density="" td=""><td>(strong or x), mol/n</td><td>mol, computed</td><td></td><td></td></site>	(strong or x), mol/n	mol, computed		
рH	3	3	Cu (ug/L)	358	1E-08		HFO	HMO	HAO	FRESH	LY PRECIPITATE	ED SORBENT (DDITIONAL)	
Acidity (mg/L)	982	0	Ni (ug/L)	5110	1E-08		600	746	68	<-Surface area	, m2/g 64122.6	79047.7 530	14.4 Surface a	area, m2/mol, com,
Estimate NetAcidity	1080.3	0	Pb (ug/L)	9.8	1E-08		1.925	1.91	4.6	<site density,<="" td=""><td>sites/nm2</td><td></td><td></td><td></td></site>	sites/nm2			
Alk (mg/L)	0	0	Sc (ug/L)	149	1E-08		0.2	0.0903	0.0405	<-Site density ((weak or y), mol/m	nol, computed		
TIC (mg/L as C)	19.2	0	Se (ug/L)	19.3	1E-08		0.005	0.1605		<-Site density ((strong or x), mol/n	mol, computed		
Estimate TIC	1.2	0	Sr (ug/L)	520	1E-08		Spec	ified Satura	ation Index	Value at Which F	Precipitation Will C	Occur-ADDED T	O SORBENT	
Fe (mg/L)	40.7	1E-08	U (ug/L)	35.4	1E-08	SI Fei	(OH)3	0.0	~	SI AI(OH)3	0.0	SI_MnOC	0.0	~
Fe2 (mg/L)	29.6	0	Zn (ug/L)	18800	1E-08	SI_Schweitmannte 99 SI_Basaluminite 0.0 SI_Mn(OH)2 0.0 SI_Fe(OH)2 0.0 SI_CaCO3 2.5 SI_Fe(CO3,MnCO3) 99								
Estimate Fe2	0	0	La (ug/L)	201	1E-08									
Al (mg/L)	128	1E-08	Ce (ug/L)	350	1E-08	51_161	(011)2	0.0		51_08005	2.0	51_1600	5,MI1005	
Mn (mg/L)	129	1E-08	Pr (ug/L)	66.4	1E-08		Specified :	Saturation I	Index Value	at Which Precip	itation of REE Wil	I Occur-COMPE	TES WITH SOF	RPTION
SO4 (mg/L)	5000	1E-06	Nd (ug/L)	235	1E-08	SI_REE(OH)3	0.0	✓ SI_R	REE(CO3)1.	5 0.0 ~	SI_REE(PO4)	99 ~	SI_REE(C204)1.5 99
Cl (mg/L)	1.9	0	Sm (ug/L)	79.7	1E-08	Select titrant:								Maximum pH (<=1
Ca (mg/L)	422	1E-06	Eu (ug/L)	23.1	1E-08	O NaOH 6	~	wt% soln	⊖ Ca	a(OH)2 C) CaO	Na2CO3	◯ CaCO3	11
Mg (mg/L)	652	1E-06	Gd (ug/L)	99.3	1E-08				Select outp	put matrix to be sa	aved and graphs t	to display		
Na (mg/L)	17.8	0	Tb (ug/L)	21.3	1E-08	RUN M	IODEL		O Short (Output File	O Long Out	put File	Print PHREE	QC Output Report
K (mg/L)	3.46	0	Dy (ug/L)	122	1E-08	🕑 Plot	REYs_H	MeO	Plot F	REYs_ppt				
Si (mg/L)	30.8	0	Ho (ug/L)	24.3	1E-08	Plot Sc	Ple	ot Y	Plot La	Plot Ce	Plot Pr	Plot Nd	Plot Sm	Plot Eu
NO3N (mg/L)	0.25	0	Er (ug/L)	67.4	1E-08	🗹 Plot Go		ot Tb [Plot Dy	Plot Ho	Plot Er	Plot Tm	Plot Yb	Plot Lu
PO4P (mg/L)	0.01	1E-11	Tm (ug/L)	8.85	1E-08	Plot	Cations_H	HMeO	Plot A	nions_HMeO	Plot Alkalinity	y 🗌 Plot Al	Plot Fe	Plot Mn
F (mg/L)	0.5	0	Yb (ug/L)	54.4	1E-08	Plot Ca		ot Mg C	Plot Ba	Plot Sr	Plot Cd	Plot Co	Plot Cr	Plot Cu
DOC (mg/L as C)	2	0	Lu (ug/L)	7.82	1E-08	Plot Ni	D Ple	ot Pb	Plot Zn	Plot U	Plot As	Plot Se	Plot PO4	Plot SO4
Oxalate (mg/L as C)	0.1	1E-11	Y (ug/L)	600	1E-08	C	austic Titral		Va ava am	ated by C.A. Cra		Jonical Survey	Release version	1.0.0. June 2022

https://code.usgs.gov/water/phreeq-n-amdtreat

Different sorption for La and Lu

17



Characterization Summary

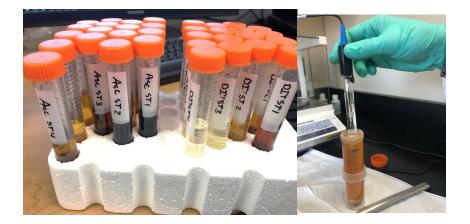
Mn in red, Ni in green, Co/Fe in blue

Image 1.2 mm x 1.2 mm, 2 mm spot (APS GSECARS, Sector 13)

S. DEPARTMENT OF

- AMD solids have diverse chemical composition, so extractions may need to be tailored toward different chemical compositions.
 - REEs mostly co-localized with Al and Mn, selected HREEs (Gd/Dy) co-localized with Fe
 - Regardless of composition, Co, Ni, Zn mainly colocalized with Mn (hydr)oxides in AMD solids
- **Disseminate results**: 4 peer review journals published, 3 in prep, report(s) of invention in progress
- Hedin, B., Stuckman, M., Lopano, C., Cravotta, C., and Capo, R. "Characterization and modeling of REE binding behaviors in passive acid mine drainage remediation solids" In preparation for submission to Applied Geochemistry
- Miller, J.D., Stuckman, M.Y., Means, N., Lopano, C.L., and Hakala, J.A. (2022) "Determination of transition metal ions in fossil fuel associated wastewaters using chelation ion chromatography" *Journal of Chromatography A*, 1668, 462924. <u>https://doi.org/10.1016/j.chroma.2022.462924</u>
- Stuckman, M., Lopano, C.L., and Tarka, T. (2022) "Step Leaching Process of Rare Earth Elements from Ash Materials Using Mild Inorganic Acids at Ambient Conditions", U.S. Patent: US 2022/0017992 A1. https://patents.google.com/patent/US20220017992A1/en
- Fritz, A. G., et al. (2021). "Technoeconomic Assessment of a Sequential Step-Leaching Process for Rare Earth Element Extraction from Acid Mine Drainage Precipitates." ACS Sustainable Chemistry & Engineering 9(28): 9308-9316.
- Hedin, B. C., et al. (2020). "Critical metal recovery potential of Appalachian acid mine drainage treatment solids." International Journal of Coal Geology 231: 103610.
- Hedin, B. C., et al. (2019). "The evaluation of critical rare earth element (REE) enriched treatment solids from coal mine drainage passive treatment systems." International Journal of Coal Geology 208: 54-64.

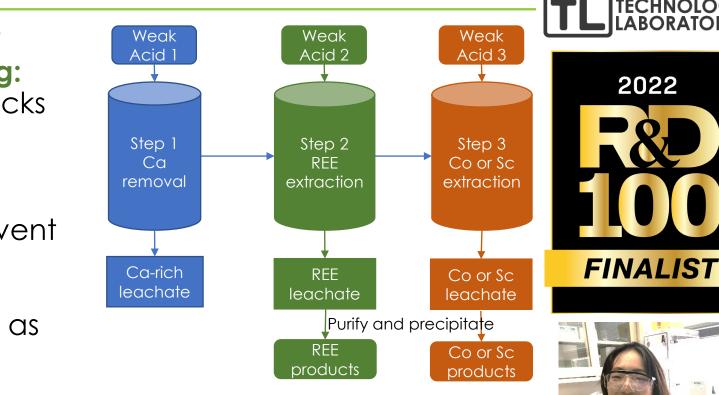
Progress: Optimized Targeted Extraction



Update: Innovative Extractions

- Optimized sequential leach
 - Targeted Rare Earth Extraction (TREE)*
 - 90% REE and up to 70% Co recovered in separate, targeted steps
- Extraction utilizing REDOX
 - Preliminary results showed up to 80% CM recovery in one extraction using neutral pH extractant, report of invention in preparation
 - Optimization of conditions needed

*Stuckman, M.Y., Lopano, C.L. and Tarka, T. (2021) U.S. Patent: US 2022/0017992 A1, https://patents.google.com/patent/US20220017992A1/en



Achievement: TREE

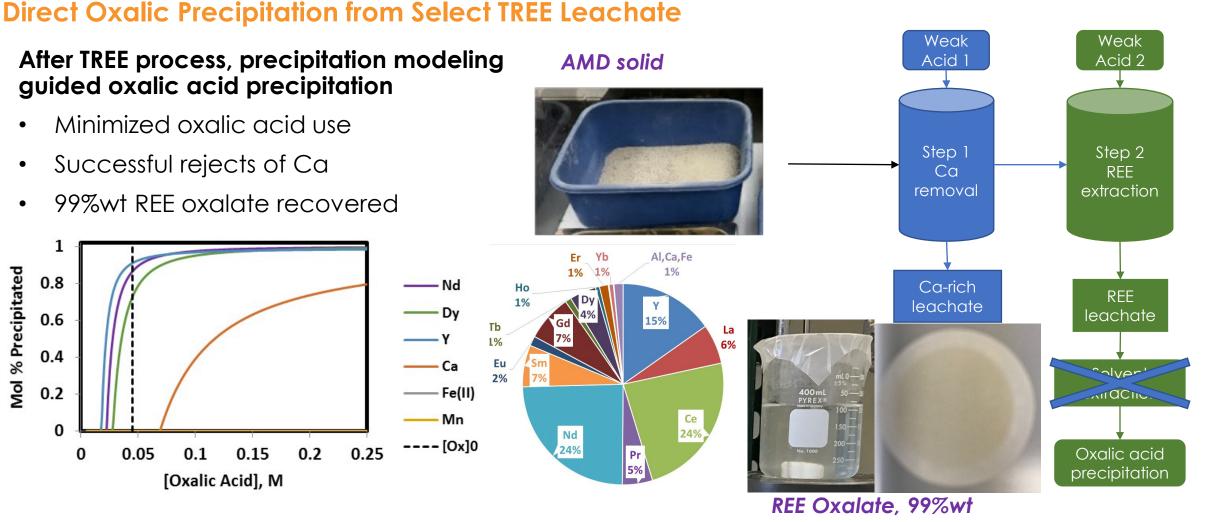
Reduce Extraction Steps and Conditions

TREE Advantages over REE mining:

- 1. Domestic/local waste feedstocks
- 2. No-pretreatment
- 3. Up to 90% acid reduction
- 4. No heating/no pressure
- 5. No solvent use or reduced solvent USe
- 6. Less waste management cost
- 7. Additional value streams such as cobalt, nickel or scandium

*Stuckman, M.Y., Lopano, C.L. and Tarka, T. (2021) U.S. Patent: US 2022/0017992 A1, https://netl.doe.gov/node/10318

IATIONAL


TECHNOLOGY

.ABORATOR

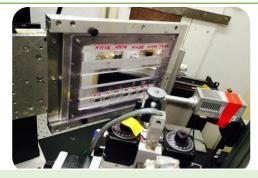
2022

Progress: Downstream Optimization-Bypass Solvent Extraction

U.S. DEPARTMENT OF ENERGY

Mol % Precipitated

Partners, Outreach and Workforce Development


- Outside Organizations/Funds Engaged in Research
- <u>Critical Minerals Task 4:</u> Biological Recovery of Critical Materials from Acid Mine Treatment Solids
- <u>Critical Mineral Task 16</u>: Sorbent for Li Recovery Derived from Acid Mine Drainage (AMD) Treatment Solids
- <u>Hedin Environmental</u>: Previous collaboration with Hedin Environmental will be leveraged to access AMD treatment solids to characterize CM recovery potential and develop deployable technology.
- <u>University of Pittsburgh:</u> Collaboration with the isotope geochemistry group at Pitt and their students to better understand AMD geochemistry.
- <u>Synchrotron sources</u>: University of Chicago & Argonne National Lab; Stanford University and Stanford Linear Accelerator Lab.
- **Outreach:** Pennsylvania Independent Oil and Gas Association (PIOGA) Tech seminar (2021 and 2022), Stony Brook University, University of Pittsburgh, Leidos headquarter, and Brazilian Coal Association
- Workforce Development: 3 ORISE and Mickey Leland summer interns, Ph.D. students or gradates from University Pittsburgh and Duke University

Summary

Characterization-Informed Recovery

EY22 Characterization of CM Binding (On track)

- REE complete
- Co, Ni, Zn in progress

EY23 Optimized Targeted Extraction (In progress)

- Demonstrate <u>sequential</u> <u>leach</u> of REE and Co/Ni from multiple AMD solids
- Demonstrate 80-100 % CM recovery via <u>different acids</u>, <u>and/or reducing agents</u>

EY24 Downstream optimization and operation optimization (In progress)

- <u>Direct oxalic acid</u> precipitation modeling established
- Optimized of the extraction, such as liquid: solid ratio, kinetics and temperature

- Dr. T. Burt Thomas RIC CM TPL (NETL)
- Dr. Charles Cravotta III (USGS)
- Josh Miller (Duke University, ORISE-NETL)
- Brianna O'Neal-Hankle (Geosyntec, MLEF-NETL)
- Pittsburgh Analytical LAB (NETL)
- Dr. Sam Webb, Dr. John Bargar, Dr. Adam Jew, Dr. Nick Edwards, Dr. Sharon Bone (SLAC)
- Dr. Matthew Newville, Dr. Antonio Lanzirotti (ANL)

NETL-RIC projects are funded through the U.S. DOE's Office of Fossil Energy and Carbon Management.

The synchrotron work was conducted on beamlines **2-3**, **4-1**, **10-2**, **11-1**, **7-2** at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the U.S. DOE's Office of Basic Energy Sciences, Office of Biological and Environmental Research, and the National Institutes of Health.

This work was performed in support of U.S. Department of Energy's Fossil Energy and Carbon Management's Critical Mineral Sustainability Research Programs and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center's Critical Minerals Research Portfolio FWP.

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

