Low cost, Rapid and Scalable Microwave Coal Melt-Casting For Modular Carbon-Based Buildings

First Year Progress FE0032085

PI: Dr. Rouzbeh Savary

Background & Motivations

Ordinary Portland Cement (OPC):

- ~4 bn/yr production of OPC in construction
- Mature industry with low cost (OPC sells for ~\$100/ton)
- Its manufacturing is energy intensive (4-6 GJ/ton)
- Its manufacturing emits 7-10% of total CO2 emissions (~1500°C)

Coal:

- Its usage declining but it has a significant potential for construction
- Carbon-magnesia bricks (1500°C) → refractory lining
- Coal+polymer derived ceramic → roofing tiles
- Coal/OPC mixed products

 but strength drops to 30% with addition of 65% coal.

Challenges: activators (cost), scalability, performance, industry acceptance

Objectives

- Produce coal-based building prototype that has >70% wt% carbon (of which 51% is coal-derived) with physical, chemical and thermal properties on par with cement-based concrete
- Optimize fabrication protocol followed by various technical and environmental testings for representative building components
- Conduct conceptual design of a carbon-based building prototype, technoeconomic analysis, life-cycles analysis and technology gap analysis to demonstrate commercial feasibility

Our Key Value Propositions

- 1) Direct Utilization of Coal (~70%)
- 2) High-Strength, Tough and Lightweight Properties
- 3) No external binder via melt-casting induced fusion
- 4) Curing in minutes/hours (vs. days in conventional curing)
- 5) Scalability and Ease of Implementation
- 6) Energy Efficient Processes (orders of magnitude lower)
- 7) Low Risk Technology
- 8) No concerns on heavy metals

Tasks Breakdown

Task 1.0: Project Management and Planning

Task 2— Fabrication and Optimization of Coal-Based Building Products

Task 3— Technical and Environmental Standard Testing of Carbon-Based Building Materials

Task 4 – Conceptual Design and Modeling of Carbon-based Buildings

Success Criteria

Success Criteria: Identify top 2 refined recipe for at least two coal type (with >70% carbon content) with a complete product data sheet with

- Compressive strength >4000 psi,
- Flexural strength >300 psi,
- Excellent chemical resistivity (on par with OPC)
- At least >600 °C thermal stability,
- Meeting environmental testing for leaching

Compressive Strength ~6000 psi

Sample #	Mass ratio	Sintered sample dimensions	Mass loss during sintering	Comp strength	Youngs Modulus	Toughness
1	70/30	D = 29 mm H = 35 mm	5%	6668 psi	9*10^6 psi	300 psi
2	74/26	D = 29 mm H = 33 mm	8%	7124 psi	1.1*10^7 psi	305 psi
3	73/27	D = 29 mm H = 33 mm	7%	5467 psi	1.0*10^7 psi	266 psi
4	77/23	D = 29 mm H = 35 mm	4%	7055 psi	8*10^6 psi	288 psi
5	76/24	D = 29 mm H = 34 mm	8%	5661 psi	9*10^6 psi	299 psi
6	77/23	D = 29 mm H = 36 mm	5%	6051 psi	1.3*10^7 psi	305 psi

>70% carbon from coal (bit, sub, anthracite, etc) in the product with ~6000 psi strength (OPC ~3500 psi)

Testing Lignite Coal

Sample #	Mass ratio	Sintered sample dimensions	Comp strength	Youngs Modulus	Toughness
1	78/22	D = 29 mm H = 38 mm	5855 psi	8.2*10^6 psi	282 psi

Our technology is independent of the coal type

Oxidization resistance up to 1300 ° C

Heated sintered sample to 1300C. Sample melted and became glassy and very hard. Couldn't grind it flat for compression test

Alkali Resistance (pH=13)

Sample #	Soak time (days)	Dimensions	Dimensions after soaking	%V change	% Mass change	Comp strength	Youngs Modulus	Toughness
1	3	D = 29.31 mm H = 24.25 mm	D = 29.30 mm H = 24.31 mm	+0.18%	+1.1%	5511 psi	9.2*10^6 psi	255 psi
2	3	D = 29.11 mm H = 23.98 mm	D = 29.13 mm H = 24.01 mm	+0.26%	+1.3%	4981 psi	1.0*10^7 psi	234 psi
3	7	D = 29.07 mm H = 22.97 mm	D = 29.10 mm H = 22.89 mm	-0.14%	+1.1%	5225 psi	8.2*10^6 psi	261 psi
4	7	D = 29.27 mm H = 24.12 mm	D = 29.24 mm H = 24.10 mm	-0.29%	+0.9%	5367 psi	1.1*10^7 psi	270 psi
5	28	D = 29.25 mm H = 23.42 mm	D = 29.26 mm H = 23.51 mm	+0.11%	+0.7%	5691 psi	9.0*10^6 psi	225 psi
6	28	D = 29.22 mm H = 23.36 mm	D = 29.20 mm H = 23.21 mm	-0.21%	+1.2%	5211 psi	9.9*10^6 psi	266 psi

Excellent resistance to Alkali solutions

Testing various molds

Conclusion

- Fabricated coal-based construction materials that have >70% wt% coal with physical,
 chemical and thermal properties on par with cement-based concrete
- Compressive strengths >6000 psi with oxidization resistance up to 1300 °C
- Excellent durability and resistance with respect to aggressive acid and basic solutions
- Direct utilization of coal (>70%)
- Champion use of coal as a sustainable material in construction

Acknowledgments

> NETL

(Michael Fasouletos, Jason Montgomery)

