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Disclaimer

This project was funded by the United States Department of Energy, National Energy 
Technology Laboratory, in part, through a site support contract. Neither the United 
States Government nor any agency thereof, nor any of their employees, nor the support 
contractor, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness 
of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights.  Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does 
not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof.
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Infrastructure and Metocean Technology
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Why is this work important?

Limiting environmental and community impact 
and improving safety of offshore 
energy operations and legacy infrastructure 
depends on forecasting and avoiding hazards

Issue/R&D Need  
• Technology that integrates big data and science-

based analytics for offshore hazards does not exist
• Advanced analytics can offer near real-time 

assessment of risks, integrate different hazard 
types, and also forecast vulnerabilities

Projected significant 
wave height in the Gulf 
of Mexico (GOM) for a 

future climate.



Motivation for Artificial Intelligence/Machine Learning 
(AI/ML), Data-Driven Offshore Hazard Tools
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• Demand on offshore Exclusive 
Economic Zone (EEZ) in the U.S. and 
around the world is increasing, with 
offshore infrastructure expected to 
increase 50–70% by 2028

• Between 2004–2008, 181 structures 
and 1,673 wells in the Gulf of Mexico 
were destroyed by five hurricanes

• Climate change is projected to 
intensify extreme events, 
increasing the frequency of major 
tropical cyclones



Motivation for AI/ML, Data-Driven Offshore Hazard 
Tools
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• Hazards related to the metocean, 
seafloor, and subsurface 
environments include seabed 
instability, extreme 
wind/wave/current events, 
earthquakes, and hazardous 
material spills.

• Hazards are often interrelated. E.g., 
hurricanes and submarine landslides



Ocean & Geohazard Analysis Tool

• Assessing offshore hazards often requires massive amounts 
of data and length of time to assess the entire system

• Diverse offshore hazards require various approaches for 
analytics

• Packaging analytics in a flexible smart software tool 
improves accessibility and forecasting at multiple scales
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Submarine landslide 
susceptibility, Gulf of 

Mexico 

Enabling efficient research for offshore 
metocean and seafloor hazard assessments



Ocean and Geohazard Analysis Smart Tool Workflow
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Select data 
& analyses

AI/ML and 
Probabilistic

Choose 
offshore region 

of interest 

Select hazards 
for risk 

assessment

Advanced risk 
analytics and 

spatial visualization 

o Determine hazards 
and hazard triggers 
to be analyzed

o Default or custom 
comparisons

Selecting, training, testing AI/ML 
is key to an effective workflow
• Identify datasets for diverse 

hazard analyses

• Develop analytical framework 
for smart modeling

• Train and validate AI/ML 
models

• Integrate metocean statistical 
and probabilistic analyses

Example: Convolutional 
Neural Network landslide 
detection, Gulf of Mexico
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OGA Tool Hazard Components

Hazard and/or Process Analysis Approach(s)
Landslide susceptibility GIS (risk-based)

Machine learning

Landslide detection Convolutional neural network

Turbidity current susceptibility GIS interpolation
AI/ML spatial analysis

Wave height Synthetic storm events simulate future 
extreme events under climate change
Generalized extreme value

Wind speed Generalized extreme value

Current speed Generalized extreme value

Metocean Lagrangian Coherent Structures (CIIAM)

Loop current eddy shedding Self-organizing maps

• Analyses are 
selected for 
suitability of 
predicting a given 
hazard or 
condition

• Each analysis is 
developed, 
validated, and 
prepped for 
integration into 
OGA Tool
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Submarine Landslide Susceptibility Mapping

1 2Two approaches for 
analyzing seafloor 
landslide potential in the 
GOM

1. Risk-Based Approach

2. Machine Learning (ML) 
Approach
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Submarine Landslide Susceptibility Mapping

Two approaches for analyzing seafloor landslide 
susceptibility in the GOM

1. Risk-based GIS Approach (above)

2. Machine Learning (ML) Approach (at right)
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Submarine Landslide Susceptibility Mapping
GBC Model Output

• Utilizing the same input criteria 
along with robust ML models to 
predict landslide potential
• Gradient Boosting Classifier 

(GBC)
• Artificial Neural Network 

(ANN)

• Improved accuracy using tuning 
methods

• Hyperparameter random 
search

• Dimensionality reduction 
(SVD)

Accuracy evaluated against 
validation dataset

GBC: 70.0%
ANN: 65.3%
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Submitted to 
Natural 

Hazards for 
publication

Dyer, A.S., Mark-Moser, M., Duran, R., Bauer, 
J.R. (submitted) Submarine Landslide 
Susceptibility in the Northern Gulf of Mexico. 
Natural Hazards, Springer.



Nearshore Adaptation for Submarine Landslide 
Susceptibility Mapping
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• Landslides in the Mississippi River delta front 
have been recognized to threaten offshore 
infrastructure since the 1950s

• In 2004, Hurricane Ivan caused a landslide that resulted in the 
longest lasting spill in U.S. history, with heavy oil sheens still 
observed as late as 2019

• Our effort leverages big data and ML approaches to assess risk in 
the region after developing a ML model in deeper waters where 
the quality of data is favorable

• Nearshore submarine LSM considers shallow waters and effects of 
waves

Obelcz et al., 2020



Submarine Landslide Detection

The transfer of information forward in a residual network.
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Using high-resolution seafloor images, a data-
driven neural network model is used to identify 
the locations of submarine landslides

Model Design
• The Fully 

Convolutional 
ResNet model 
was used, a 
prebuilt network 
available with 
the PyTorch 
framework.

• The model 
performs 
semantic 
segmentation to 
create an output 
mask highlighting 
landslides given 
an input image.
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Landslide Detection Results
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Turbidity Current Hazard Modeling

“graded 
layers”

“turbidite”

“fining 
upward”

“foram 
turbidites”

“turbidity 
currents”

• Turbidity currents are significant and 
powerful offshore hazards that are similar 
but distinct from submarine landslides

• Core analysis is accelerated using 
automated text extraction and can assist in 
locating potential turbidity currents

• Locations can be used to inform ML for 
turbidity current susceptibility mapping and 
forecasting

Map showing likelihood of 
turbidity currents at core 
location 
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Wave Modeling Development

• API and industry have 
needed to revise 
platform design criteria 
due to unforeseen 
extreme waves

• We are creating wave 
data from synthetic 
physics-based tropical 
cyclones using Joule 
supercomputer

• Critical for risk projections 
in a changing climate

Significant wave height for the 100-years return period obtained from 
the general circulation model-derived events ensemble for the (a) present 
and (b) future wave climates. Blank areas denote regions where less than 
4 models show the same trend.
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Advanced Probability and Statistics

Generalized Extreme Value 
(GEV) distributions for wind 

velocity

Indicates likelihood of future 
extreme events
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Self-Organizing Maps – An Unsupervised Neural 
Network
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• Temporal patterns 
from self-organizing 
maps identifying 
predictable 
patterns in sea-
surface velocity

• These insights, in 
combination with 
advanced analyses 
of energy and 
information transfers 
in the ocean are 
expected to 
improve Loop 
Current 
predictability



Loop Current Eddy Shedding

• The Loop Current (LC) and 
associated eddies are 
among the most intense 
currents in the world and 
are a major concern for 
offshore infrastructure

• Predicting LC eddy 
shedding has been 
intractable so far

• Insights from self-organizing 
maps are leading to novel 
analyses of Loop Current 
eddy shedding events 
using oceanic energy 
transfers
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CIIAM Model Updates

Metocean
Pathways:
Red=attracting
White=isolated

CIIAM outputs for the 
ocean near 
southeastern 
Louisiana in (A) 
winter and (B) spring, 
showing transport 
barrier as open 
allowing particulate 
to reach coastline
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OGA Smart Tool Interface

Smart Tool allows users to 
interact with their data and 
select or integrate 
appropriate models 

Produces forecasts of 
areas more susceptible to 
metocean and seafloor 
hazards
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Collaboration and External Interest 
External CIIAM Users

Country Research Institute. Study region Status
Spain ICM Marine Science Institute Spain. Mediterranean Publication in progress

India National Institute of Oceanography India Gulf of Bengal Publication in progress

Mexico Engineering & Coastal Processes UNAM Mexico Caribbean & Loop Current Publication in progress

Brazil National Institute for Space Research Brazil Tropical Atlantic Gouveia et al (2021).
https://www.nature.com/articles/s41

598-020-79386-9

Mexico CICESE Ensenada Center for Scientific Research and Higher 
Education, Mexico Deep GOM

Maslo, A., et al. (2020). 
https://doi.org/10.1016/j.jmarsys.201

9.103267

Mexico CICESE Ensenada Center for Scientific Research and Higher 
Education, Mexico NW GOM

Gough, M. K., et al . (2019). 
https://doi.org/10.1175/JPO-D-17-

0207.1

United 
Kingdom

National Oceanography Centre
Marine Systems Modelling Group North Sea and Caribbean Preliminary results obtained

Saudi Arabia Red Sea Modeling and Prediction Group KAUST Red Sea Preliminary results obtained

Mexico Consortium for Sargassum forecasts (CICESE, UNAM, ECOSUR) Caribbean and GOM Preliminary results obtained

23

MOU for 
Collaboration 
OASIS:
BOEM and NETL 
MOU AGMT-
1082.AMD1

https://www.nature.com/articles/s41598-020-79386-9
https://doi.org/10.1016/j.jmarsys.2019.103267
https://doi.org/10.1175/JPO-D-17-0207.1


Next Steps for OGA Tool
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• Integrating analyses for turbidity currents, 
nearshore submarine landslide susceptibility, 
extreme waves and wind in a changing 
climate, Loop Current predictability

• Assembly of database containing metocean 
and seabed datasets that feed OGA analyses

• Strategize conversion of OGA Tool to online-
accessible web application

OGA Tool 
Version 2 
release 

March ‘23

Email: MacKenzie Mark-Moser
Mackenzie.mark-moser@netl.doe.gov

mailto:Mackenzie.mark-moser@netl.doe.gov


Key Takeaways

Values Delivered

Advancing the current state of 
knowledge, supporting offshore 
activities, forecasting hazards to 
maintain environmental integrity 
that may evolve with a changing 
climate

Improved characterization of 
metocean and seabed related 
hazards will help to prevent 
catastrophic incidents as human 
and engineered systems 
integrate with natural systems in 
the offshore environment

• Technology that integrates big data 
and science-based analytics for 
offshore hazards 

• Advanced analytics can offer near-
real time assessment of risks and also 
forecast vulnerabilities

• Smart Tool:
• adapts to data 

availability/quality
• adapts to different regions
• flexible to integrate NETL tools 

and user tools for advanced 
predictive and spatial analysis

• Next steps are to integrate additional 
hazard analyses, validate tool, and 
strategize conversion to online tool

More information at 
https://edx.netl.doe.gov/offshore/
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NETL
RESOURCES

VISIT US AT:  www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

@NETL_DOE

@NETL_DOE

Contacts
r.duran@theissresearch.org
MacKenzie.Mark-Moser@netl.doe.gov
Jennifer.bauer@netl.doe.gov

Offshore information available at 
https://edx.netl.doe.gov/offshore/

mailto:MacKenzie.Mark-Moser@netl.doe.gov
mailto:Kelly.Rose@netl.doe.gov


Advanced Offshore Research Task 6 Timeline

Average bottom current velocity (12 yr.)

Research Problem:
• Changes in the ocean environment (e.g., mudslides or burial from subsea currents, strong 

weather events or natural fluctuations) have been linked to billions of dollars of impacts.
Climate change is expected to intensify many of these problems.

• These events can have a significant effect on the success and longevity of offshore 
infrastructure, as well as affect safety and cost during exploration, production, and 
storage activities.

Research Approach:
• Determine current state of knowledge regarding hazardous metocean and bathymetric 

conditions, and data availability regarding these conditions and historic events.
• EY19-EY21: Evaluated if AI/ML models can be developed to better identify current 

hazardous metocean and bathymetric conditions. Developed, trained, and tested AI/ML 
models to identify conditions and forecast changes and vulnerabilities to offshore 
infrastructure. Refined Smart Tool to host AI/ML models and develop user interface. 
Developed forecasting and integrated selected hazard types into tool. Released desktop 
version at end of EY.

• EY22: Refine analytical logic and smart tool functionalities through user testing and 
development. Build metocean and seabed hazard database for release on EDX. Report 
research in technical report or publication.

• EY23+: Strategize conversion of OGA Tool to online platform. Submit integrated seabed 
hazard database for release to EDX. Continue to produce technical publication(s).

Benefit:
• Improved characterization of metocean and seabed related hazards in the offshore can 

help prevent catastrophic incidents that impact the environment, coastal communities, 
and their economies while supporting offshore energy and carbon storage efforts.
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Potential locations of turbidity currents 
throughout the Gulf of Mexico based on 

text extraction core analysis



EY19 EY20 EY21 EY22

Task 6: Infrastructure and Metocean Technology

Offshore Unconventional FWP
Key Team Members: PI – Jennifer Bauer - CO-PI – Mackenzie Mark-Moser, Rodrigo Duran 

Number Date Description

EY21.6.I 06/2021 List summarizing identified improvements and enhancements for analytical logic and smart tool. 

EY21.6.L 02/2022 Internal release of the Ocean & Geohazard Analysis tool, desktop version, to EDX. 
EY21.6.M 03/2022 Evaluate TRL for smart tool and determine if additional development or enhancements are needed to obtain target TRL. 
EY22.6.N 06/2022 List summarizing tool enhancements priorities identified by user testing on OGA Version 1. 

EY22.6.O 09/2022 Draft manuscript(s) of individual smart tool model(s) or algorithm(s) completed

EY22.6.P 12/2022 List optimizations made to the Ocean & Geohazard Analysis tool.

EY22.6.Q 01/2023 Assemble metocean and seafloor database to support smart tool analysis.
EY22.6.R 06/2023 Strategize conversion of Ocean & Geohazard Analysis tool to online platform.

EY22.6.S 10/2023 Update integrated metocean and seabed hazard database for management review and approvals to release on EDX. 

EY22.6.T 12/2023 Outline a technical report or additional publications. 

Go / No-Go 
Timeframe

Chart Key

# TRL Score Milestone
Project 
Completion

C EB D F G N

Milestones

A H I J

2 7

L M O P R
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ML Approach with Variable Grid Method

Landslide Susceptibility Results

• The Variable Grid Method (VGM) 
(Bauer & Rose, 2015) utilized to 
visualize spatial uncertainty.

• Smaller grid sizes indicate a higher 
certainty of model predictions for that 
region while larger grid sizes indicate 
lower certainty.
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Publications, Datasets & Presentations
Publications
• Dyer, A.S., Mark-Moser, M., Duran, R., Bauer, J.R. (submitted) Submarine Landslide Susceptibility in the Northern Gulf of Mexico. Natural Hazards, Springer.

• Alec Dyer, Scott Pantaleone, MacKenzie Mark-Moser, Andrew Bean, Paige Morkner, Samuel Walker, Jennifer Bauer, Historic Submarine Landslides in the Northern Gulf of Mexico, 8/8/2022, 
https://edx.netl.doe.gov/dataset/historic-submarine-landslides-in-the-northern-gulf-of-mexico, DOI: 10.18141/1879673

• Duran, R., T. Nordam, M. Serra and C. Barker (2021). Horizontal transport in oil-spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. https://arxiv.org/abs/2009.12954
• Nordam T., J. Skancke, R. Duran and C. Barker (2021). Vertical transport in oil spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. https://arxiv.org/abs/2010.11890
• Nordam, T. & R. Duran (2020). Numerical integrators for Lagrangian oceanography. Geoscientific Model Development. https://gmd.copernicus.org/preprints/gmd-2020-154/.
• Gouveia, M. B., R. Duran, J. A. Lorenzzetti, A. T. Assireu, R. Toste, L. P. de F. Assad and D. F. M. Gherardi (submitted, revision in progress, 2020). Persistent meanders and eddies lead to quasi-

steady Lagrangian transport patterns in a weak western boundary current. https://arxiv.org/abs/2008.07620
• Zhang, R., P. Wingo, R. Duran, K. Rose, J. Bauer, R. Ghanem (2020). Environmental Economics and Uncertainty: Review and a Machine Learning Outlook. Oxford Encyclopedia of 

Environmental Economics. https://doi.org/10.1093/acrefore/9780199389414.013.572.
• Gough M. K., F. J. Beron-Vera, M. J. Olascoaga, J. Sheinbaum, J. Jouenno, R. Duran (2019). Persistent Lagrangian transport patterns in the northwestern Gulf of Mexico. J. Phys. Oceanogr., 49, 

353–367, https://doi.org/10.1175/JPO-D-17-0207.1
• Duran, R., F. J. Beron-Vera, M. J. Olascoaga (2018). Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Scientific Reports, 

8(1), 5218. https://www.nature.com/articles/s41598-018-23121-y
• Appendini C. M., P. Ruiz-Salcines and R. Duran (in preparation). Tropical cyclone waves under climate change in the Gulf of Mexico
• Kurczyn, J. A., R. Duran, E. Beier, and A. J. Souza (2021). On the advection of upwelled water on the western Yucatan Shelf. Frontiers in Marine Science.
• https://doi.org/10.22541/au.162126717.71153804/v1

Presentations
• Mark-Moser, M., Wingo, P., Duran, R., Dyer, A., Zaengle, D., Suhag, A., Hoover, B., Pantaleone, S., Shay, J., Bauer, J., Rose, K. Submitted. AI/ML integration for accelerated analysis and forecast 

of offshore hazards. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: EP027 - Proven AI/ML applications in the Earth Sciences
• Zaengle, D., Dyer, A., Duran, R., Mark-Moser, M., Rose, K., Bauer, J., Wingo, P. Accepted. Seafloor Landslide Detection in the Gulf of Mexico Using Computer Vision. IMAGE 2021
• Dyer, A., Duran, R., Mark-Moser, M., Rose, K., Bauer, J., Zaengle. D., Wingo, P. 2021. Geohazard Analysis of Seafloor Landslide Potential for Infrastructure Protection. Esri User Conference. July 

12-16, 2021.
• Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. 

AGU Annual Meeting 2020, Session: NH010 - Geohazards in Marine and Lacustrine Environments
• Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Bauer, J., Rose, K. 2020. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. 

Session: NH007 - Data Science and Machine Learning for Natural Hazard Sciences II Posters.
• Mark-Moser, M., Rose, K., Baker, V. D. 2020. Developing a structured seafloor sediment database from disparate datasets using SmartSearch. AGU Annual Fall Meeting (Virtual), 2020. Session: 

IN042 – Utilizing unstructured data in earth science
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