Infrastructure and Metocean N ';':;‘;"(‘)‘L‘;GY
TeChn()logy: The Ocean and T L) Re0Ra10RY
GGthzqrd AanYSiS TOOI MacKenzie Mark-Moser

Rodrigo Duran
Submarine Landslide Detection Using YOLO Algorithm

o .‘At, ‘ ‘,_“' -‘\ : :-. = 1

o = . iy

Co-Pls, Offshore FWP Task 6
Ocean & Geohazard Analysis

NETL Resource
Sustainability

Meeting N |taronaL 50% — Confidence Level (%)
Oct. 27. 2022 LABORATORY |:|— Landslide Prediction
° V4

», U.S. DEPARTMENT OF




Disclaimer N=[NATIONAL
TL | RSoRatony

This project was funded by the United States Department of Energy, National Energy
Technology Laboratory, in part, through a site support contract. Neither the United
States Government nor any agency thereof, nor any of their employees, nor the support
contractor, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that ifs use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by frade name, trademark, manufacturer, or otherwise does
not necessarily constifute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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o) 7T . | 18 Why is this work important?

30 16

Limiting environmental and community impact

14 and improving safety of offshore
06 Q 112 energy operations and legacy infrastructure

o depends on forecasting and avoiding hazards

> -4 110
K228 ~ Issue/R&D Need

8
. 6 . Technology that integrates big data and science-
| S 4 based analytics for offshore hazards does not exist
2
0

« Advanced analytics can offer near real-time
assessment of risks, integrate different hazard
' ' - types, and also forecast vulnerabilities

-86 -82 (m)
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Motivation for Artificial Intelligence/Machine Learning NATIONAL

N
(Al/ML), Data-Driven Offshore Hazard Tools | e

« Demand on offshore Exclusive
Economic Zone (EEZ) in the U.S. and

around the world is increasing, with o
offshore infrastructure expected to s
increase 50-70% by 2028 . \1,, QH"

- Between 2004-2008, 181 structures SNy T
and 1,673 wells in the Gulf of Mexico SR SR
were destroyed by five hurricanes NS

« Climate change is projected to \ oo I! “”b:i’"';xg lm“‘”“ H”“c“"’g
intensify extreme events, il \ g"”;.%f;,;ﬁ.'; A g sl Wk

Jerry {1989) - & David (1878) 74-95 C_} Category 1

increasing the frequency of major S ‘“l'*‘w;?%* wolly e w0 @ Category2
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ro ICO C C Ones | “Claudette (2003) [ [ | ¥ ) Hazel (1853) Y “ King (1950)
LCelia (1870) /o Bob{1979) Irma (2017 —®, - T08 L0, 131-155 @ Category 4
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Motivation for Al/ML, Data-Driven Offshore Hazard N = [NATIONAL

Tools TL|(Rsorarory

H f . . - * .
Taylor Energy oil platform, » | | Risk of oil spills may rise as climate
destroyed in 2004 during Hurricane change creates more monster storms
|Va n, IS stl" Iea klng in GUIf Hurricanes can lead to a destructive domino effect.
garsk;‘c:\teowf:;:g, NOLA.com | The Times-Picayune JUL1, 2013 - 5:05 PM % gz:g:;::;gf)gogll B N v =

« Hazards related to the metocean,
seafloor, and subsurface s B
environments include seabed I ——————
instability, extreme

. World’s Largest:Offshore Converter
wind/wave/current events, Station In Plage
earthquakes, and hazardous Y
material spills. e et e e it

fna Dep [ dlife and AP

 Hazards are often interrelated. E.g.,
hurricanes and subbmarine landslides

.S. DEPARTMENT OF
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Ocean & Geohazard Analysis

« Assessing offshore hazards often requires massive amounts
of data and length of time to assess the entire system

« Diverse offshore hazards require various approaches for
analytics

Packaging analytics in a flexible smart software tool
improves accessibility and forecasting at multiple scales

. U.S. DEPARTMENT OF
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Ocean and Geohazard Analysis Smart Tool Workflow N=|NATIONAL
TL TECHNOLOGY

P T LABORATORY
g )
Choose Select hazards Select data Advanced risk
offshore reqion  jmmp for risk | & analyses — analytics and
of interest assessment Proabist spatial visualization

® rg
2GA e
r—-—=—~—==="======- 1

Ocean & Geohazard Analysis o Determine hazards Selecting, training, testing Al/ML
is key to an effective workflow

* |ldentify datasets for diverse
hazard analyses

I I
; and hazard triggers |
: to be analyzed :
1 o Default or custom
; comparisons ;

Develop analytical framework
for smart modeling

Train and validate Al/ML
models

Integrate metocean statistical
and probabilistic analyses
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OGA Tool Hazard Components N=|NATONAL
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Angl Hazard and/or Process Analysis Approach(s)
. nalyses are
Y Landslide susceptibility GIS (risk-based)

selected for Machine learning

svitability of

predicting a given Landslide detection Convolutional neural network

hazard or Turbidity current susceptibility — GIS interpolation

condition Al/ML spatial analysis

.. Wave height Synthetic storm events simulate future

* Each analysisis extreme events under climate change

de\_/eloped, Generalized extreme value

validated, and : :

orepped for Wind speed Generalized extreme value

integration into Current speed Generalized extreme value

OGA Tool Metocean Lagrangian Coherent Structures (CIIAM)

Loop current eddy shedding Self-organizing maps
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Submarine Landslide Susceptibility Mapping

NATIONAL
ENERGY

L

T TECHNOLOGY
5] ¢ select Region LABORATORY
‘I ,,f O \"_\ { of Interes?t 2
Two approaches for J \ oy | L ROD J

analyzing seafloor Landside Conducive
landslide potential in the Triggers Conditions
oose layers +  Slope
GOM Egsed 0:1 Ro! . Semane Type
: St?morphology

1. Risk-Based Approach

2. Machine Learning (ML)

Apply Risk Criteria
to each layer

Approach

Split into training and validation
datasets

Sum all risk criteria scores | Train and validate models using

advanced analytical methods

Classify
summation score

. U.S. DEPARTMENT OF
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Submarine Landslide Susceptibility Mapping

Landslide Risk Factor

High

[] Landslide

Two approaches for analyzing seafloor landslide
susceptibility in the GOM

1. Risk-based GIS Approach (above)
2. Machine Learning (ML) Approach (at right)

.S. DEPARTMENT OF
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Submarine Landslide Susceptibility Mapping N=
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GBC Model Output

« Utilizing the same input criteria
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along with robust ML models 1o
predict landslide potential

Accuracy evaluated against
validation dataset

« Gradient Boosting Classifier GBC: 70.0%
(GBC) ANN: 65.3%
» Artfificial Neural Network
(ANN)

* Improved accuracy using tuning
methods
 Hyperparameter random
search
« Dimensionality reduction
(SVD)

Natural

Natural Hazards, Springer.
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Submitted to

Hazards for
publication

Dyer, AS., Mark-Moser, M.,
J.R. (submitted) Submarine Landslide
Susceptibility in the Northern Gulf of Mexico.

Duran, R., Bauer,
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Nearshore Adaptation for Submarine Landslide
Susceptibility Mapping

Taylor Energy oil platform, . 897300W
: , e destroyed in 2004 during Hurricane =] [=*%
« Landslides in the Mississippi River delta front Ivan, is still leaking in Gulf -

29°0°0"N
'l

have been recognized to threaten offshore G o T e &
infrastructure since the 1950s

* |In 2004, Hurricane lvan caused a landslide that resulted in the _-
longest lasting spill in U.S. history, with heavy oil sheens still ‘Jf
observed as late as 2019 i

20°00°N (a)

28°30°0"N
1

2005 Bathymetry 2017 Bathymetry Difference of Depth 2005-2017
MROF Southwest Pass MRDF Southwest Pass MRDF Southwest Pass

« Qur effort leverages big data and ML approaches to assess risk in ) o) . ©
the region after developing a ML model in deeper waters where ol \
the quality of data is favorable b {

w78 T T T T T T
—80.550-89.525-A9 500-80.475 —B% 550-80,575-89.500-09.475 —89 550-89.525-80,500-89 475
Longitude (degrees}

 Nearshore submarine LSM considers shallow waters and effects of T aa® maaw T

Depth [m) Depth Change (m)

WO V e S Figure L. (a) The Mississippi River Delta Front region. Color shaded bathymetry derived from last full-coverage survey of
the MRDF region in late 1970s. Blue and red polygons show locations of 2005 and 2017 multibeam surveys, respectively.

Acronyms: PAL = Pass a Loutre; SP = South Pass; SWFP = Southwest Fass. (b) 2005 25 m” resolution Southwest Pass
multibeam bathymetric survey. (c) 2017 100 m” resolution multibeam Southwest Pass bathymetric survey. (d) Difference
of depth between 2005 and 2017 bathymetric surveys; the entire arca deepened by an average of ~26 m in 12 years,
with more dynamic depth changes in mudflow zones. The green line represents the 1-D transect in Figure 5.

Obelcz et al., 2020
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Submarine Landslide Detection
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Using high-resolution seafloor images, a data- Model Design

driven neural network model is used to identify °
the locations of submarine landslides

__________________________________________________________________________ N: NATIONAL
i : . : ) ; == |ENERGY
The transfer of information forward in a residual network. i TL TECHNOLOGY
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Prediction Mask
“;;:’\ Forward Propagation (example)

)
1)

1
I
1

I

I
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1
1
1
\Z

Con‘vl
Conv2
Conv3
Conv4
ConvS
orgméx
Loss

Backward Propagafion

Training Mask
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The FU”y Predction ask ) Training Mask
Convolutional ‘

ResNet model 0 |

was used, a e

prebuilt network
available with

The PYTOrCh 0.0 02 0.4 06 038 10
fr(]mework, Non-landslide Landslide Prediction
Prediction Strength Strength
The model o
performs 5] ‘
semantic w00 {8

segmentation to
create an oufpuft 1 V.
mOSk hlgh“ghhng 0 200 400 600 800 0 200 400 €00 800

. . e —————
landslides given oo oz es s s w0
an input image.




Landslide Detection Resulis
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Submarlne Landslide Detectlon Using YOLO Algorlthm
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Turbidity Current Hazard Modeling N = [NATIONAL
TLJRE0RRToRY
« Turbidity currents are significant and
powerful offshore hazards that are similar
but distinct from submarine landslides N
« Core analysis is accelerated using & e A
automated text extraction and can assist in ° o & 8
locating potential turbidity currents 'ag.g.. o® .
. Locations can be used to inform ML for Q;%gbo S oo o° B 3
turbidity current susceptibility mapping and 0 P g§ °© % o J° ®
forecasting o o8 B o o° j.%
e c °.oo o ® oo OO [TotalScore
“turbidite” 2. 0O © o © 030 o © .0. o |00
e o ©Oo 5’.0 o° ° & ° o 2 o 2
Qo o Q
o4 o °°@ ° 0.% o © o & o (o 3
.9‘8 % o ° o ° 4
s=  Iysmmeign o e o ¢ . e 5
mee g s it %o
oo Demmae T ° 6
- Eremememas- . o 7
uforam - m:'j- %Eww::ﬁ“gmz, ”tu rb|d|ty @ 8
Surbicites'” [ - et © oy TG 1
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Wave Modeling Development N=|NATONAL
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. a) ri : 7§ 1 18 b) A : 1 T 18
« APl and industry have 30 16 30 =y § 16
needed fo revise | | 14 _ 14
platform design criteria ’6 : 4 Vlz e oy |.,
due to unforeseen o .- o
A . L e 10 B =_J 110
exfreme waves 2 2
. ® — : 18 ® * Ea 8
-  We are creafing wave e y — = 221\ .
data from synthetic - R t ' 2k
. ] . L I 4
physics-based fropical 18 ' 4 g ‘ _
cyclones using Joule : 2 : “Sp-all
supercomputer | | . 0 | | L S i
- . . . -98 -94 -90 -86 -82 (m) -98 -94 -90 -86 -82 (m)
« Critical for risk projections Longitude Longitude

in a changing climate

Significant wave height for the 100-years return period obtained from
the general circulation model-derived events ensemble for the (a) present
and (b) future wave climates. Blank areas denote regions where less than

4 models show the same frend.




Advanced Probability and Statistics = [NATIONAL
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40 1

38 1

36 1

34 1

32 1

30 1

wind velocity (m/s)

28 1

26 1 T T I 1 1 I ® Measured
——GEYV distribution

24 1

22 1
0 5 10 15 20 25 30 35 40 45 50
Return period (years)
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Self-Organizing Maps — An Unsupervised Neural N =|NATIONAL
Network TL ) :50raTory

4+ Temporal patterns
24 from self-organizing
maps identifying
predictable
patterns in sea-
surface velocity

LATITUDE
o

“« These insights, in
combination with
advanced analyses
of energy and
information transfers
in the ocean are
expected to
improve Loop
Current
predictability

y- "' U.S. DEPARTMENT OF
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-90 -80 -70 -60
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Loop Current Eddy Shedding N =|NATIONAL
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 The Loop Current (LC) and
associated eddies are
among the most intense
currents in the world and
are a major concern for
offshore infrastructure

* Predicting LC eddy
shedding has been
intractable so far

* Insights from self-organizing
maps are leading to novel
analyses of Loop Current
eddy shedding events
using oceanic energy
transfers







CIIAM Model Updates
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OGA Smart Tool Interface NATIONAL
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&8 Ocean & Geohazard Analysis - O X I.A Bo RATO RY

GA

B Ocean & Geohazard Analysic - m} X
File Help

Select Region SelectHazards ~ Analysis

Analyses

Select Region Select Hazards Analysis

Analyses w Western -~
Current Event =1
CIAM [Hazmat Spill) 8
Earthquakes . .
B s data — Weibul e Weibull T
. Current Event “
Landslide Susceptibility = : . : .
Wind Event 3 Earthquakes = r
Ocean & Geohazard Analysis
Landslide Susceptibility
ﬂ Ocean 8 Geohazard Analysis g
File Help g +
L]
Select Region Select Hazards Analysis E
= L
Hazards kA select al
[ CIAM (Hazmat Spill) ML Data Sources
0.100 1.500 [ smaoth Data [ Current Event [ Aspect 0- i
Detals [ Earthquakes [ Basins 160 161 162 163
n January [ Landslide Detection [] Canyons Return Period @
¥ ‘Landslide 5 Channels
Run Hazard Analyses . ancsice U & Sampled Distributions: Weibull
Extents [ 741662.375, 1247007.75, 1115882.25, 1427176.375] D Wave Event E Curvalure
Reqion Extents -375, -75, 25, - ple Inte: (years):
4] Wind Event [#] Escarprents Samy rvals rs): 10, 15, 25
Hazards: CIIAM {Hazmat Spill), Current Event, Earthquakes, Landslide Susceptibility, Wind Event — & Faults Sample Regions Western, Central
E Gas Run Hazard Analyses
] Hydrates Reqion Extents [ 741562,375, 1247007.75, 1115882.25, 1427176,375]
Mud Vol
b Mud Volcanoes Hazards: CIIAM (Hazmat Spill), Current Event, Earthquakes, Landslide Susceptibility, Wind Event
[ Pockmarks
[ Rugosity Run Analyses
[+] salt Diapirs

[ Sediment Accumulation Rate
[4] sediment Thickness

[] Sediment Type

[] Seeps

=) Slepe
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Collaboration and External Interest

External CIIAM Users

Country Research Institute. Study region Status
Spain ICM Marine Science Institute Spain. Mediterranean Publication in progress
India National Institute of Oceanography India Gulf of Bengal Publication in progress
Mexico Engineering & Coastal Processes UNAM Mexico Caribbean & Loop Current Publication in progress
Tropical Atlantic Gouveia et al (2021).
Brazil National Institute for Space Research Brazil https://www.nature.com/articles/s41
598-020-79386-9
. . Maslo, A., et al. (2020).
Mexico CICESE Ensenada Center for SC|ent|f.|c Research and Higher Deep GOM httos://dol org/10.1016/Limarsys.201
Education, Mexico 5103267
N . Gough, M. K., et al . (2019).
Mexico CICESE Ensenada Center for SC|ent|f.|c Research and Higher NW GOM httos://dol.ore/10.1175/1PO-D-17-
Education, Mexico 0207 1
l,JmtEd Na'_uonal Oceanography Centre North Sea and Caribbean Preliminary results obtained
Kingdom Marine Systems Modelling Group
Saudi Arabia Red Sea Modeling and Prediction Group KAUST Red Sea Preliminary results obtained
Mexico Consortium for Sargassum forecasts (CICESE, UNAM, ECOSUR) Caribbean and GOM Preliminary results obtained
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https://www.nature.com/articles/s41598-020-79386-9
https://doi.org/10.1016/j.jmarsys.2019.103267
https://doi.org/10.1175/JPO-D-17-0207.1

Next Steps for OGA Tool = |[Ekay
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« Integrating analyses for furbidity currents,
nearshore submarine landslide susceptibility,

®

extreme waves and wind in a changing Ocean & Geohazard Analysis

climate, Loop Current predictability

« Assembly of database containing metocean
and seabed datasets that feed OGA analyses

OGA Tool
Version 2

release
March ‘23

« Strategize conversion of OGA Tool to online-
accessible web application

Email;: MacKenzie Mark-Moser
Mackenzie.mark-moser@netl.doe.gov
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Key Takeaways

""”’\ U.S. DEPARTMENT OF

Q)j ENERGY

Predicted Seafloor Landslide Potential

Low [T  High

Variable Grid Method
Uncertainty determined using radial mean accuracy
EH Grid cells with accuracy > 0.65

Bﬂ Grid cells with accuracy > 0.45 O Feature map

extent
I:I Grid cells with accuracy > 0.28

More information at
https://edx.netl.doe.gov/offshore/
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Advancing the current state of
knowledge, supporting offshore
activities, forecasting hazards to
maintain environmental integrity
that may evolve with a changing
climate

Improved characterization of
metocean and seabed related
hazards will help to prevent
catastrophic incidents as human
and engineered systems
integrate with natural systems in
the offshore environment

2GA

Ocean & Geohazard Analysis

25
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VISIT US AT: www.NETL.DOE.gov
@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

Contacts

r.duran@theissresearch.org
MacKenzie.Mark-Moser@netl.doe.gov Eu. r
Jennifer.bauer@netl.doe.gov rrolpa

4y Offshore Offshore information available at  ==-
/& R&D hitps://edx.netl.doe.gov/offshore/ EH.
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Advanced Offshore Research Task 6 Timeline [N=|vanona
TL | Rton
Research Problem:

. Changes in the ocean environment (e.g., mudslides or burial from subsea currents, strong e
weather events or natural fluctuations) have been linked to billions of dollars of impacts.
Climate change is expected to intensify many of these problems.

27°N 1o

/
24°N |

« These events can have a significant effect on the success and longevity of offshore 200
infrastructure, as well as affect safety and cost during exploration, production, and 150y i ; i _
storage activities. o6°W 92°W 88°W B4°W o1 02 03 04

Research Approach:

. Determine current state of knowledge regarding hazardous metocean and bathymetric
conditions, and data availability regarding these conditions and historic events.

. EY19-EY21: Evaluated if AI/ML models can be developed to better identify current
hazardous metocean and bathymetric conditions. Developed, tfrained, and tested Al/ML
models to identify conditions and forecast changes and vulnerabilities to offshore
infrastructure. Refined Smart Tool to host Al/ML models and develop user interface.
Developed forecasting and integrated selected hazard types into tool. Released desktop
version at end of EY.

=

o g
.
g
(0]

. EY22: Refine analytical logic and smart tool functionalities through user testing and
development. Build metocean and seabed hazard database for release on EDX. Report
research in technical report or publication.

. EY23+: Strategize conversion of OGA Tool to online platform. Submit integrated seabed
hazard database for release to EDX. Continue to produce technical publication(s).

Benefit:

. Improved characterization of metocean and seabed related hazards in the offshore can
help prevent catastrophic incidents that impact the environment, coastal communities,
and their economies while supporting offshore energy and carbon storage efforts.

Ocean & Geohazard Analysis

= O 00 N O b WO

® ¢ ¢ ¢ © © 0 0 ©
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Task é: Infrastructure and Metocean Technology
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Milestones
[ Number | Date | .
EY21.6.1 06/2021 List summarizing identified improvements and enhancements for analytical logic and smart tool.
EY21.6.L 02/2022 Internal release of the Ocean & Geohazard Analysis tool, desktop version, to EDX.
EY21.6.M 03/2022 Evaluate TRL for smart tool and determine if additional development or enhancements are needed to obtain target TRL.
EY22.6.N 06/2022 List summarizing tool enhancements priorities identified by user testing on OGA Version 1.
EY22.6.0 09/2022 Draft manuscript(s) of individual smart tool model(s) or algorithm(s) completed
EY22.6.P 12/2022 List optimizations made to the Ocean & Geohazard Analysis tool.
EY22.6.Q 01/2023 Assemble metocean and seafloor database to support smart tool analysis.
EY22.6.R 06/2023 Strategize conversion of Ocean & Geohazard Analysis tool to online platform.
EY22.6.S 10/2023 Update integrated metocean and seabed hazard database for management review and approvals to release on EDX.
EY22.6.T 12/2023 Outline a technical report or additional publications.

Chart Key

Go / No-G Project
TRL Score I .0 / No-Go I rojec . Milestone
Timeframe Completion
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Landslide Susceptibility Results N= A
TL TECHNOLOGY
ML Approach with Variable Grid Method LABORATORY

* The Variable Grid Method (VGM)
(Bauer & Rose, 2015) utilized to
visualize spatial uncertainty.

* Smaller grid sizes indicate a higher
certainty of model predictions for that
region while larger grid sizes indicate
lower certainty.

MA_BM% LE Predicted Seafloor Landslide Plotential 5 7«
¥ e Low [T High C——Miles j}*
GRID

Variable Grid Method

L 1 Uncertainty determined using radial mean accuracy
METHOD

Eﬂ Grid cells with accuracy > 0.65

HH Grid cells with accuracy > 0.45
I:I Grid cells with accuracy > 0.28

O Feature map
extent
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Alec Dyer, Scott Pantaleone, MacKenzie Mark-Moser, Andrew Bean, Paige Morkner, Samuel Walker, Jennifer Bauer, Historic Submarine Landslides in the Northern Gulf of Mexico, 8/8/2022,
https://edx.netl.doe.gov/dataset/historic-submarine-landslides-in-the-northern-gulf-of-mexico, DOI: 10.18141/1879673
Duran, R., T. Nordam, M. Serra and C. Barker (2021). Horizontal transport in oil-spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. https://arxiv.org/abs/2009.12954
Nordam T., J. Skancke, R. Duran and C. Barker (2021). Vertical tfransport in oil spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. https://arxiv.org/abs/2010.11890
Nordam, T. & R. Duran (2020). Numerical integrators for Lagrangian oceanography. Geoscientific Model Development. https://gmd.copernicus.org/preprints/gmd-2020-154/.
Gouveia, M. B, R. Duran, J. A. Lorenzzetti, A. T. Assireu, R. Toste, L. P. de F. Assad and D. F. M. Gherardi (submitted, revision in progress, 2020). Persistent meanders and eddies lead to quasi-
steady Lagrangian transport patterns in a weak western boundary current. https://arxiv.org/abs/2008.07620
Zhang, R., P. Wingo, R. Duran, K. Rose, J. Bauer, R. Ghanem (2020). Environmental Economics and Uncertainty: Review and a Machine Learning Outlook. Oxford Encyclopedia of
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