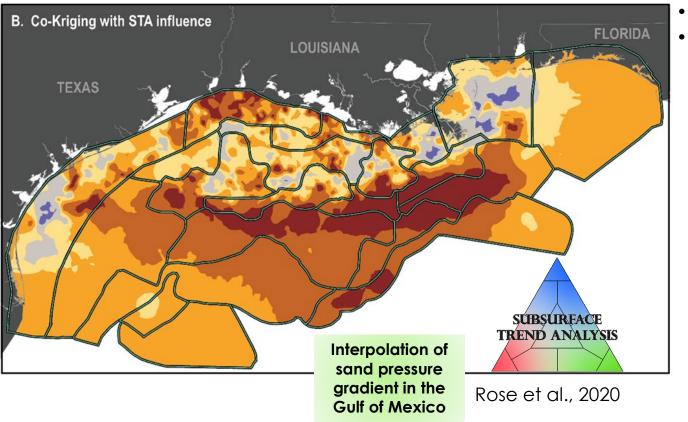

Geohazards and Subsurface Uncertainty Smart Modeling with the Subsurface Trend Analysis Tool

MacKenzie Mark-Moser, Co-PI NETL Support Contractor

Legal Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MacKenzie Mark-Moser^{1,2}, Kelly Rose¹, Patrick Wingo^{1,2}, Scott Pantaleone^{1,3}, Dakota Zaengle^{1,2}, Jacob Shay^{1,2}, Brendan Hoover^{1,2} Chukwuemeka Okoli^{1,2}

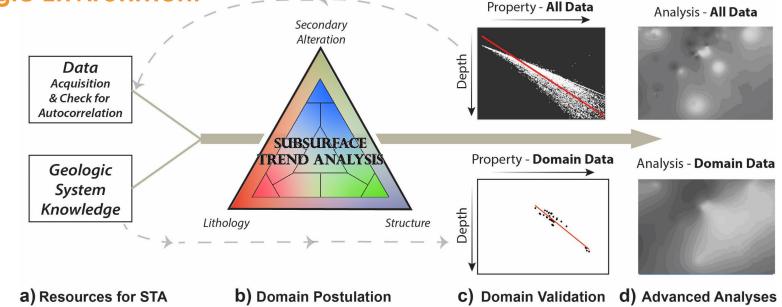

¹National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA ²NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA ³ORISE, 1450 Queen Avenue SW, Albany, OR 97321, USA

Geohazards and Subsurface Uncertainty Smart Modeling

Integrating Artificial Intelligence/Machine Learning (AI/ML) to Improve Prediction of Subsurface Conditions

Issue/R&D Need

- Subsurface introduces hazards that are difficult to constrain and predict
- Ongoing operations increase risk in offshore regions
- There is a need for rapid, accurate, and efficient tools that predict subsurface conditions, even in areas with little to no data

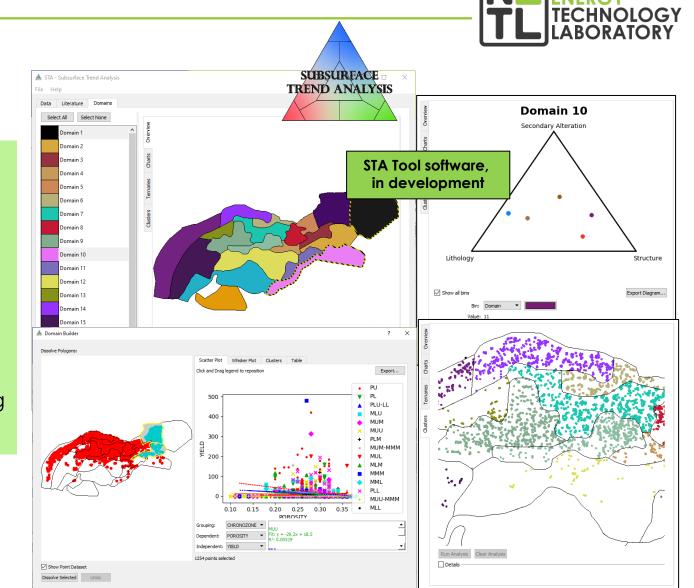

Task Objectives

- Develop a 2D/3D, adaptive smart tool using the Subsurface Trend Analysis (STA) method framework
- Test and validate the STA smart tool in the offshore Gulf of Mexico (GOM)
- Release the tool for public use

Subsurface Trend Analysis

An Al/ML-Informed Methodical Framework to Predict Subsurface Properties and the Geologic Environment

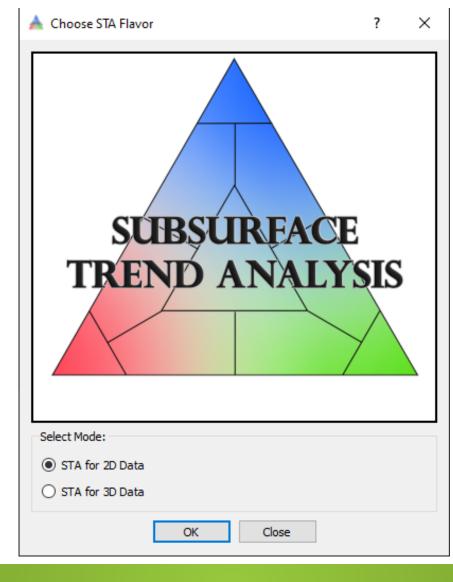
Initial method published: Rose, K., Bauer, J.R., and Mark-Moser, M. **(2020)** Subsurface Trend Analysis, a multi-variate geospatial approach for subsurface evaluation and uncertainty reduction, *Interpretation*


Initially developed to address spill risks following Deepwater Horizon

Validated method is expanding to an AI/ML, 2D/3D adaptive Smart Tool: the STA Tool

<u>STA Tool – a virtual research assistant</u> <u>designed to:</u>

- Organize and visualize disparate big data and knowledge resources
- Simplify and automate geologic domain formation
- Provide and execute statistical analyses and validation
- Utilize AI/ML to accelerate knowledge gathering and subsurface property analysis



NATIONAL

STA Tool Analytical Components

2D STA Components

- Autocorrelation
- Literature management
 - Natural Language
 Processing (NLP)
 - CNN embedded
 image analysis
- Domain Builder GIS file import, data and polygon viewer, analytical charts
 - Statistical charts
 - AI/ML statistical analyses
- Wireline analysis ingests .las files to update data

3D STA Components (in dev)

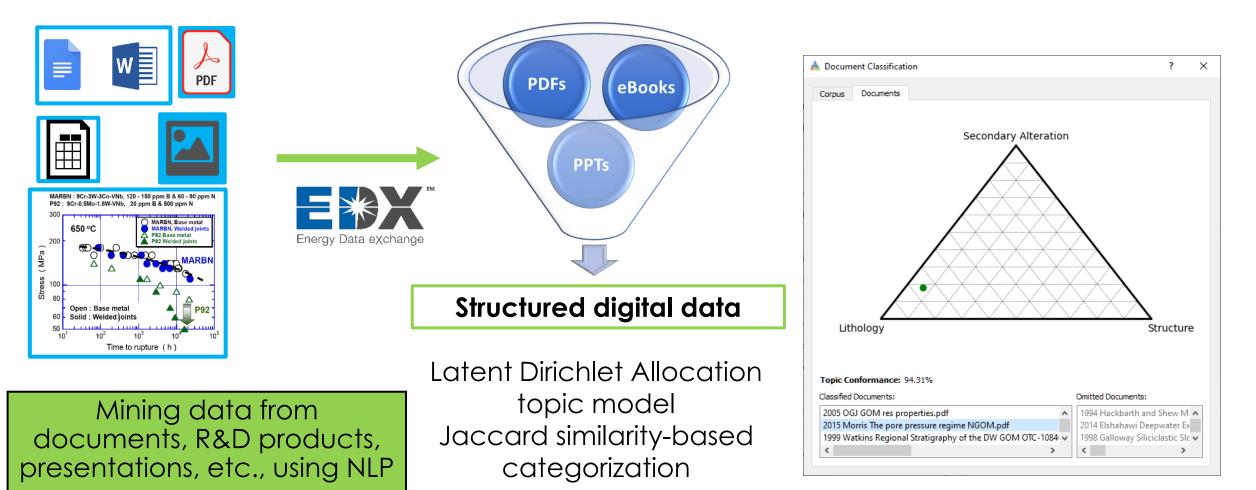
- 3D Domain Builder
- 3D Interpolation
- Wireline analysis conversion to 3D in progress

Download the 2D STA Tool

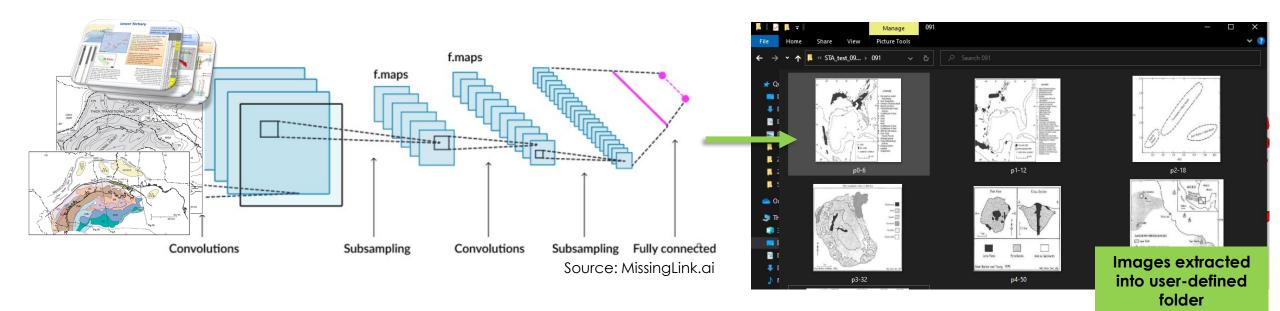
https://edx.netl.doe.gov/datas et/subsurface-trend-analysis-2d-tool

3D Tool to be released Dec. '22

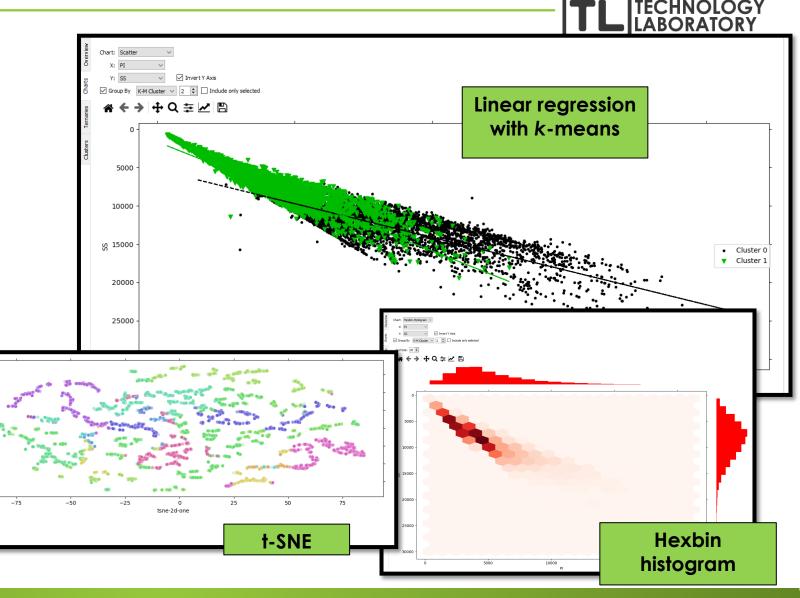
Knowledge and Data Management in the STA Tool


🔺 STA - Subsurf	face Trend Analysis						- C	Spatial Data upload and
File Help								autocorrelation check
Data Literat	ture Domains W	ireline Analysis						📥 Autocorrelation (Global Moran's I)
Data Source: P:	:/03_DataFinal/GOM/Infi	rastructure/Subsurfa	ice/BOEM_Sands/2015	5Sands/2015SandsPrj	j.shp		Bi	
Attributes:								Elaosed time: 47.84 seconds
API	API_Well_N	ASSESSED	BGI	BHCOMP	BH_Total_M	BOEM_FIELD	BO	Results
0.0	427043003600	Y	236.4	1.0	12500.0	BA001A	0.0	User upload of point
0.0	427043003600	Y	238.0	1.0	12500.0 7360.0	BA001A BA001A	0.0	datacat PI I: 0.3426
0.0	427043003600	Y	240.2	1.0	12500.0	BA001A BA001A	0.0	EI: -0.0001 p_norm: 0.0000 z_norm: 224.5733
0.0	427043003600	T V	263.3	1.0	12500.0	BA001A BA001A	0.0	p_rand: 0.0000 z_rand: 224,5893
0.0	427043003600	v	264.2	2.0	12500.0	BA001A BA001A	0.0	permutations: 999.0000
0.0	427043003600	v	264.4	1.0	12500.0	BA001A BA001A	0.0	
0.0	427044018100	v	223.7	1.0	10994.0	BA002A	0.0	→ Data attribute
0.0	427044010100	v	337.709	2.0	13109.0	BA007A	0.0	
0.0	427044005500	v	364.5	1.0	16887.0	BA007A	0.0	viewer
0.0	427044005500	v	361.7	2.0	16887.0	BA007A	0.0	
0.0	427044005500	Y	370.8	1.0	16887.0	BA007A	0.0	Autocorrolation
0.0	427044001900	Y	185.8	1.0	8035.0	BA017A	0.0	- Autocorrelation
<		-						🔺 detection 🔄 🦉 💻
10100								
						Det	tect Autocorre	ons
Autocorrellate: Pro	ogress Complete							
								separa Demansa. 🕡 show data Farata
								adduct constanting

Natural Language Processing for Unstructured Data


Extracting Knowledge

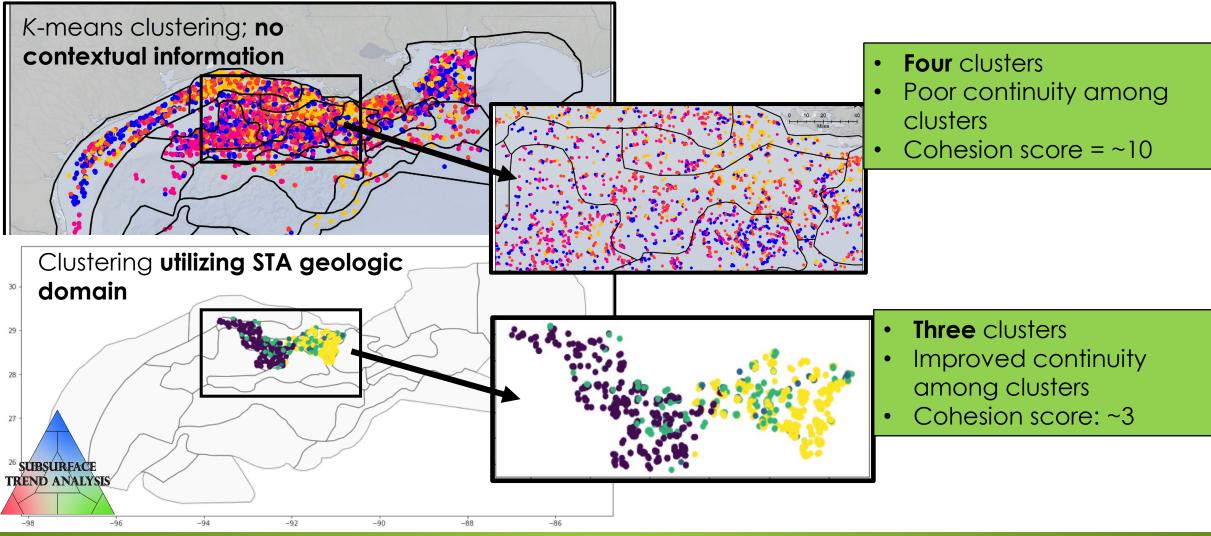
Extracting Knowledge


- User feeds unstructured data to Convolutional Neural Network model that returns all relevant images, saving hours of work and reducing error
- Transfer learning via VGGNet, tested on >1300+ images
- Multiclass image identification accuracy ~77%

Breadth of Statistical Analytics in STA Tool

STA Tool provides both classic and Al/ML statistical analyses for broad insight into subsurface property data:

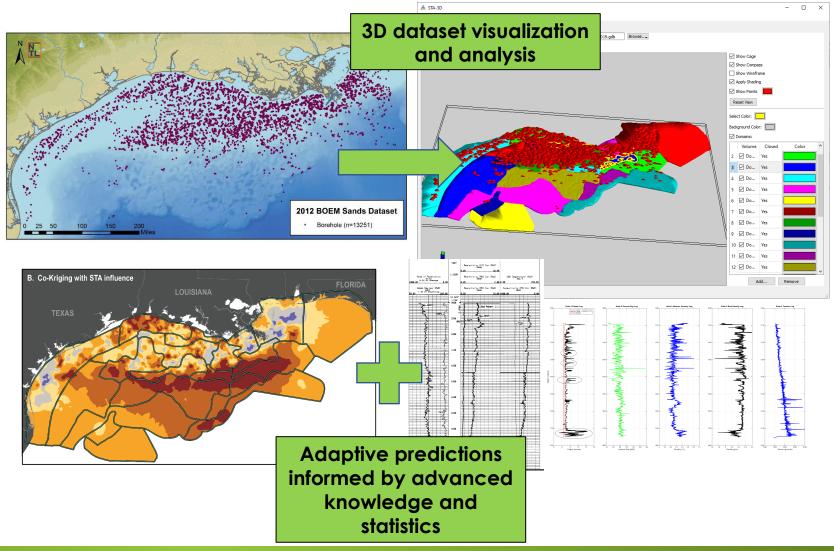
- Scatter (linear regression included)
- Box-and-whisker
- Hexbin-histogram
- DBSCAN
- **†-SNE**
- k-means



ATIONAL

Domain Validation and Clustering Analysis

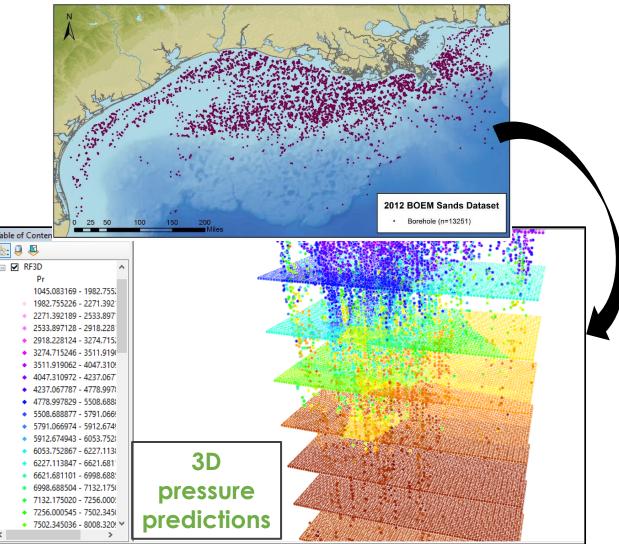
Gulf of Mexico application using reservoir properties


ATIONAL

HNOLOGY

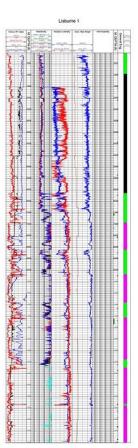
3D Enhancements and Adaptive Prediction

- 3D visualizations to gain perspective on data and subsurface predictions
- Integrating geologic knowledge and new field data to update prediction of subsurface conditions



Expanding Property Prediction to 3D

- 3D interpolations of property predictions can constrain subsurface conditions and forecast hazards
- This method expands variography from 2D to 3D
- Integrates multiple variables, including quantitative and qualitative information, for 3D co-kriging
- Ultimately, model produces 3D subsurface property predictions

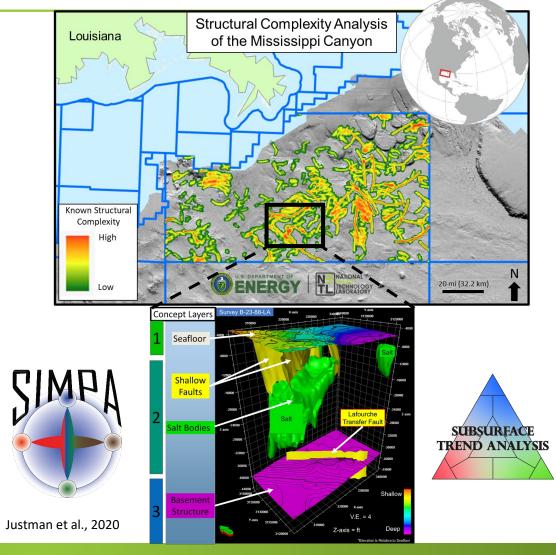


2D/3D Wireline Analysis

Data Literature Domains Wireline Analysis Selected LAS files	Log File Preview				
608024000100	Section: Well	~			
608024000101					
608024000102	Mnemonic	Unit	Value	Description	^
608024000270	STRT	F	8350.0	Top Depth	
508024000300 508024000400					- 11
608024000500	STOP	F	10678.0	Bottom Depth	
508044014900	STEP	F	0.5	Depth Increment	
608044016000					
608044016001	NULL		-999.25	Null Value	
608044016200	FLD		PI BLK 525	Field Name	
608044016300 608044016500					- 11
608044016501	WELL		OCSG08268 00	NAME	
608044017600	API		608024000101	WELL API	
608044017601					_
608044017700	EDF	F	86.0	ELEV DRILL FLOOR	
608044017801	COMP		B P	OPERATOR	
608044017802 608044017803					_
608044017803	TDD	F	10678.0	FINAL TO DRILLER	•
Add LAS files Remove Selected					- A
Supplementary Data: Select Include Fields From Data Source Well API Field: API Vell API Field: API		1			B
Select Result Location					
					C
		l interf			0

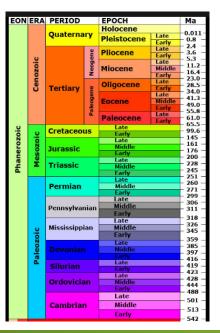
Automated Wireline Analysis performs the following:

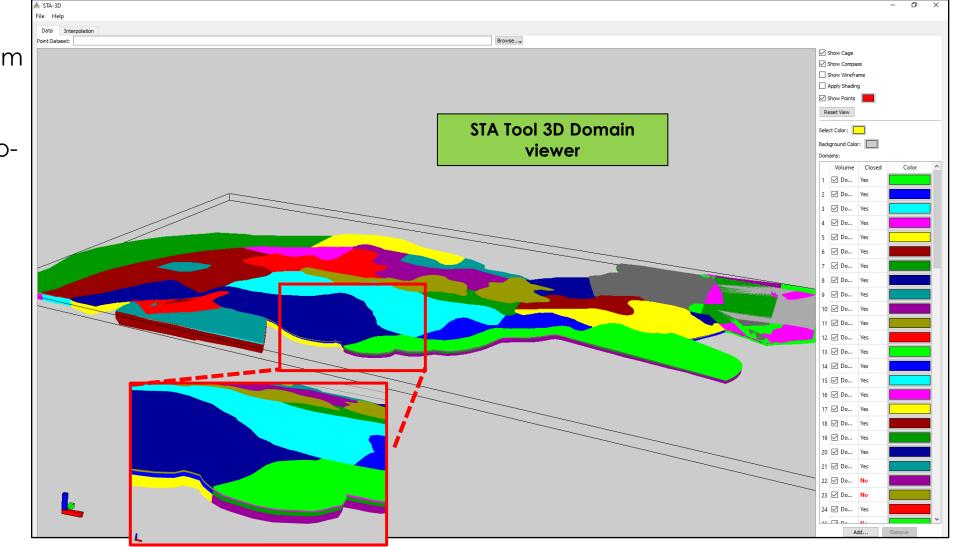
- A -- LAS File management
- B -- Additional data inputs
- C -- Analysis run and output
- Updates previously existing point data with newly extracted properties from well logs
- 3D version in dev calculates overburden stress to indicate pressure along the wellbore


ΟΝΔΙ

Source: USGS

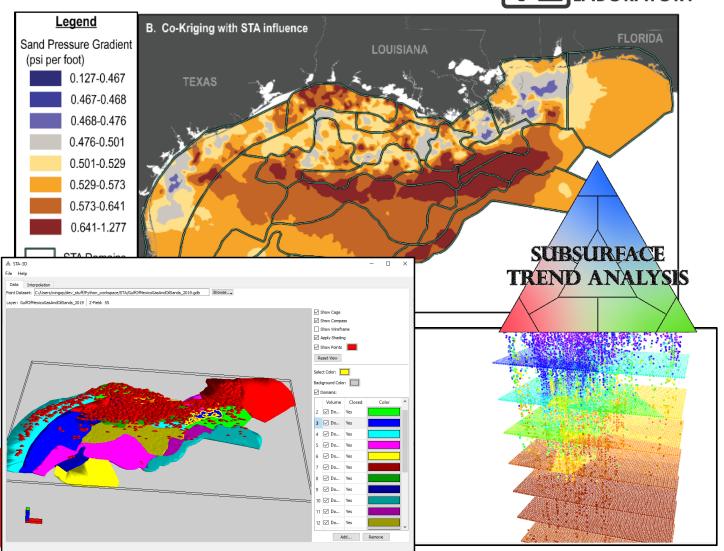
Generating Datasets to Validate Geohazard Analysis in the STA Tool


- Use case: Mississippi Canyon in the Gulf of Mexico
- Multiple datasets analyzed
 - Seafloor fault mapping, seismic, basement structure
 - Subsurface data analyzed using SIMPA to produce STA geologic domains
 - Combined with spatial wellbore data to test tool capabilities



3D STA Domains for 3D Tool visualization and testing

- Basin-scale 3D STA Domains based on chronozone analysis from original STA Gulf of Mexico use case
- To be utilized with 3D cokriging interpolation


NATIONAL ENERGY TECHNOLOGY LABORATORY

Summary

- The STA Method and Tool integrate data, knowledge and science-based analytics to accelerate data collection and knowledge integration, and improve predictions of subsurface properties
- STA Method and Tool:
 - Adapt to different regions and scales of analysis
 - Integrate newly acquired data and update predictions of subsurface properties
 - Seeks to provides insights where gaps in data and analytical tools exist

Download the 2D STA Tool!

https://edx.netl.doe.gov/dataset/subsurface -trend-analysis-2d-tool

NETL Resources

VISIT US AT: www.NETL.DOE.gov

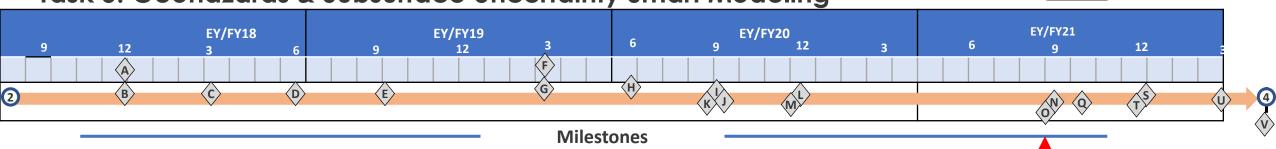
@NETL_DOE

@NationalEnergyTechnologyLaboratory

<u>Contacts</u>

<u>MacKenzie.Mark-Moser@netl.doe.gov</u> <u>Kelly.Rose@netl.doe.gov</u>

Offshore information available at https://edx.netl.doe.gov/offshore/



Offshore Unconventional FWP

Key Team Members: PI – Kelly Rose - CO-PI – Mackenzie Mark-Moser

Task 5: Geohazards & Subsurface Uncertainty Smart Modeling

Number	Date	Description
EY20.5.H	06/2020	Initiate STA analysis of GOM subregion to refine use of the STA at multiple scales (wellbore-to-field scale) and provide a validation/test of the enhanced STA tool.
EY20.5.I	09/2020	Continue analysis of advanced subsurface properties in the central GOM and use new 3-D approach and visualization techniques as available. These may include CO ₂ and/or H ₂ S occurrence, fracture and fault distributions, and reservoir thickness. The team will pick one of these variables, based on data availability, and initiate an STA analysis for this parameter.
EY20.5.J	09/2020	Release of the ML-NLP enhanced STA beta tool for 2-D analytics.
EY20.5.K	09/2020	Initiate development of 3-D analytical and visualization logic into the ML-NLP-STA tool.
EY20.5.L	12/2020	Finalize development of ML driven neural network analysis of statistical dimensions and image embedding.
EY20.5.M	12/2020	Initiate 3-D analysis use-case using STA analysis with a separate fuzzy logic-driven NETL tool of a GOM subregion for subsurface structural complexity or other advanced subsurface property. This effort will use high-resolution bathymetry to map seafloor features (this has ties to Offshore Task 6.0 goals) in combination with geophysical datasets to constrain the GOM subsurface and basement boundary to understand and forecast subsurface structural complexity (areas of more likely faults and fractures) and uncertainty.
EY20.5.N	09/2021	Continue and finalize development on the component to handle real-time ingestion of subsurface geologic property data from LWD/SWD and wireline data streams. Real-time subsurface prediction and uncertainty reduction by combining STA with LWD/SWD data streams in the 2-D ML/AI STA tool.
EY21.5.O	09/2021	Evaluate and implement beta augmented reality/virtual reality (AR/VR) capabilities that may be paired with outputs from the tool for 3-D visualization of STA properties, end-user benefit.
EY21.5.P	-	If appropriate, seek and engage a partner for a DOE TCF proposal to commercialize ML-NLP enhanced STA tool during summer of 2021.
EY21.5.Q	09/2021	Complete journal manuscript describing and documenting the 2-D ML/AI enhanced STA model and validation use-case from EY/FY20.
EY21.5.R	10/2021	Complete application of the 3-D ML/AI enhanced STA model, test case, initiated in EY/FY20 for structural complexity and bathymetric analytics. Evaluate for any changes or enhancements required to finalize and validate the tool.
EY21.5.S	12/2021	Complete a 2-D validation test case for 2-D ML NLP enhanced STA tool. The STA hybrid GOM analysis (see previous bullet) and/or the LWD/SWD real-time property capability can be used for this validation.
EY21.5.T	12/2021	Improve and finalize development of 3-D analytical and visualization logic into the ML-NLP enhanced STA tool.
EY21.5.U	03/2022	Enhance handling of real-time ingestion of subsurface geologic property data from LWD/SWD and wireline data streams. Real-time subsurface prediction and uncertainty reduction by combining STA with LWD/SWD data streams in the 3-D ML/AI STA tool.
EY22.5.V	06/2022	Complete development, testing, and validation of the 3-D ML NLP enhanced STA tool.

Chart Key

Project

Completion

Milestone

Go / No-Go

Timeframe

NATIONAL ENERGY

TECHNOLOGY LABORATORY

Publications, Presentations, External Interest

Upcoming Publications

- Mark-Moser, M., Rose, K., Suhag, A., Wingo, P., Hoover, B., Bean, A., Pantaleone, S., and Bauer, J., Exploring integrated data science techniques for subsurface property trend analysis and prediction. In prep, Computers & Geosciences
- Hoover, B., Zaengle, D., Mark-Moser, M. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. In prep, Environmental Modeling and Software

Presentations

- Pantaleone, S., Mark-Moser, M., Bean, A., Walker, S., Rose, K. Accepted. Forecasting 3D Structural Complexity with AI/ML Methods: Mississippi Canyon, Gulf of Mexico.
 AAPG/SEG IMAGE conference 2021, Sept. 26th-Oct. 1, Denver, CO/Virtual.
- Rose, K., Mark-Moser, M., Suhag, S., Bauer, J. Submitted, invited talk. Improving prediction of subsurface properties using a geoscience informed, multi-technique, artificial intelligence approach. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: H071 Machine Learning Applications in Geosciences Modeling and Measurement.
- Mark-Moser, M., Wingo, P., Duran, R., Dyer, A., Zaengle, D., Suhag, A., Hoover, B., Pantaleone, S., Shay, J., Bauer, J., Rose, K. Submitted. AI/ML integration for accelerated analysis and forecast of offshore hazards. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: EP027 Proven AI/ML applications in the Earth Sciences.

Past publications*

- Rose, K., Bauer, J.R., and Mark-Moser, M., 2020, A systematic, science-driven approach for predicting subsurface properties, Interpretation, 8:1, 167-181 https://doi.org/10.1190/INT-2019-0019.1
- Mark-Moser, M.; Miller, R.; Rose, K.; Bauer, J.; Disenhof, C. <u>Detailed Analysis of Geospatial Trends of Hydrocarbon Accumulations</u>, Offshore Gulf of Mexico; NETL-TRS-13-2018; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2018; p 108. DOI: 10.18141/1461471.

Past Presentations*

- Machine Learning for Oil and Gas, November 2020
- SMART Webinar December 2019
- AGU Fall Meeting 2019
- Machine Learning for Unconventional Resources 2019
- AAPG Special Topic Forum Invited Talk 2018
 Cardonic and Society of American 2017
- Geological Society of America 2017

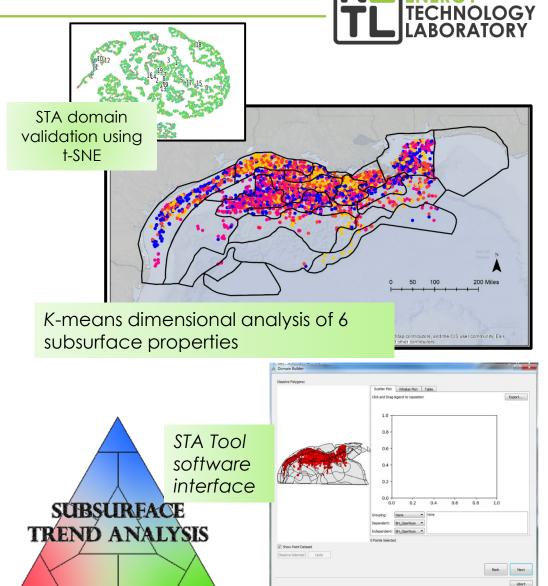
<u>Datasets</u>

- Mark-Moser, M. Subsurface Trend Analysis domains for the northern Gulf of Mexico, 3/25/2020, https://edx.netl.doe.gov/dataset/subsurface-trend-analysisdomains-for-the-northern-gulf-of-mexico, DOI: 10.18141/1606228
- *Previous project ended in 2016. Some of these are subsequent products from that relate to this ongoing AI/ML offshore geohazard research effort

Advanced Offshore Research Task 5

ΔΤΙΟΝΔΙ

Research Problem:


- Offshore sedimentary systems are complicated, and heterogeneous ٠ subsurface introduces hazards and risks that are hard to constrain and predict pre-drill leading to deleterious impacts, such as the Macondo blowout and Deepwater Horizon spill in 2010
- There is a need for rapid, accurate, and efficient tools that • effectively predict pre-drill subsurface conditions, even in areas with little to no data

Proposed Research:

- Develop a 2D, and eventually 3D, real-time "smart" tool using the • Subsurface Trend Analysis method framework
- Integrate machine learning and artificial intelligence (AI/ML) to ٠ improve efficacy and robustness of analyses
- Test and validate the AI/ML-enhanced STA Tool utilizing LWD/SWD • datasets and analyses of structural complexity in the Gulf of Mexico (GOM)

Benefit:

Reduction of subsurface hazards and risks by utilizing these ٠ predictions to assist in efficient geohazard prevention and resource estimation, e.g., prevention of oil spills, CO₂ storage estimation, rare earth element enrichment, and geothermal prospects

