Development of Novel Sintered Carbon Ore Building Materials DE-FE0032083

Matt Fuka Microbeam Technologies Inc.

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Outline

- Project Overview
- Technology Background
- Technical Approach and Project Scope
- Progress and Current Status of Project
- Plans for Future Testing, Development, and Commercialization
- Summary

Project Overview

- Total project cost: \$649,407
- DOE: \$517,702
 - Award No. DE-FE0032083
- Cost share: \$131,705
 - MTI: \$10,200
 - UND: \$16,505
 - NACC: \$42,500
 - NDIC: \$62,500

Project Overview

- Period of Performance: 10/01/2021 through 09/30/2023
- Develop value-added products from carbon ore
- Carbon ore building materials will contain ≥70 wt.% carbon and ≥51 wt.% of carbon from carbon ore
- Demonstrate the ability to produce Sintered Carbon Ore Building Materials (SCBM)
- Ultimately to produce 5-10 bricks per day
- Complete a Technical and Economic Analysis (TEA), a Technology Gap Analysis, and a Life Cycle Analysis (LCA) on the SCBM process
- Create a conceptual design of a carbon-based building using LIG2 products

Technology Background

- The primary product of SCBM technology will be producing LIG2 standard bricks
 - With capability to brick veneer, CMU's, insulation, and others
 - Appearance of these materials can be modified to add aesthetic value
- Based on the sintering of lignite carbon-ore particles with additive at relatively low temperatures in an inert atmosphere
- During heating, the pyrolyzed carbon-ore and additive interact as a result of sintering with a reactive liquid phase
- Laboratory compressive strength measurements show this technology can produce carbon-ore composites with strengths exceeding the ASTM requirements for various types of brick¹

Technology Background

- Builds on past work conducted by Microbeam and UND (Gupta)
 - Showing carbonaceous foams can be designed using controlled pyrolysis
 - Tailorable properties
 - Addition of biofibers enhanced the mechanical strength
 - Properties of low ranked carbon-ore and waste carbon-ore
- UND and MTI have performed laboratory-scale testing and analysis on sintered carbon-ore and additive blends
- Scanning electron microscopy (SEM) analysis of samples show that the carbon-ore particles are well-bonded to the additive binder

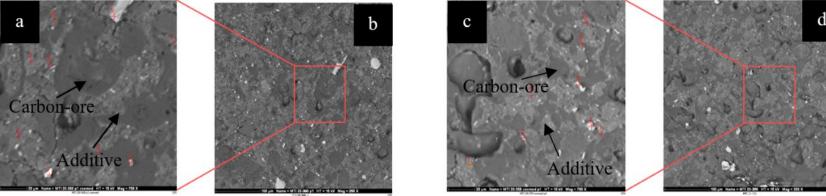


Figure 1: SEM micrographs of (a-b) Cleaned carbon-ore (50 wt.%)-additive (50 wt.%), (c-d) carbon-ore (75 wt.%)-additive (25 wt.%) after sintering in inert environment.

Technology Background

• Technical and/or economic <u>advantages:</u>

- Low temperature production
- Low environmental impact
- Low-cost fabrication
- Easily tailorable properties
- Flexible manufacturing
- High performance
- Direct use of coal in product
- Utilizes ND lignite
- Can utilize REE extracted lignite or waste lignite
- Technical and/or economic <u>challenges:</u>
 - Initial bench scale development
 - Limited domestic sources of required additive
 - Feedstock prices and availabilities are highly dependent on global energy prices

Technical Approach/Project Scope

- Project Scope of Work
 - Task 1: Project Management and Reporting
 - Task 2: Feedstock Procurement
 - Task 3: Production of Building Materials
 - Task 4: Product Testing and Analysis
 - Task 5: Technical and Economic Assessment
- Success Criteria
 - Demonstrate the ability to successfully sinter carbon-ore to produce value-added carbon products and high strength building materials
 - Demonstrate the ability to produce 5-10 bricks/day
 - Complete a TEA, LCA, and conceptual design showing potential for technology to be profitable for the lignite industry

Technical Approach/Project Scope

		Risk Rating		
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy
	()	Low, Med, High)		
			Financial Risk	
Cost of Materials	Low	High	Low	Review cost of materials and identify alternatives as needed.
Underestimate level of effort required to complete the work	Low	High	Med	Continually track costs and schedule.
		Co	isks:	
Cost tracking	Low	High	Low	Assign responsibility for managing cost. Dedicated program resource manager for project management. Utilization of Project cost tracking system.
		Tec	hnical Scope I	
Availability of additive bonding materials	Low	High	Low	Project team has identified multiple sources of additive materials for additive bonding materials.
Operational consistency during testing	Medium	Medium	Medium	Work with plant operations and carbon ore delivery to maintain optimum test conditions to ensure quality data is obtained.
		Management F	Planning and (Oversight Risks:
Equipment Availability	Medium	High	Medium	All equipment and sources of equipment to be purchased have been identified. Current supply chain delays will be monitored and may cause delays in receipt of equipment. Equipment will be purchased as soon as possible to mitigate any potential issues.
Volatile organic compound release	Low	Low	Low	All gases and volatiles released during sintering will be released into a hood.

Technical Approach/Project Scope

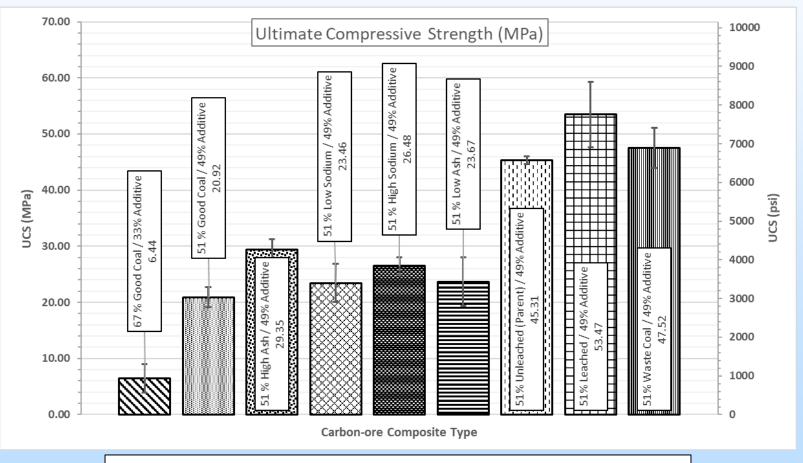
Task / Subtask Number	Milestone Description	Planned Completion Date	Verification Method							
1.1	Project Management Plan	10/31/2021	PMP File							
1.1	Project Kick-off meeting	12/30/2021	Kick-off slides							
1.1	Final Report	9/30/2023	Final Report File							
1.2	Technology Maturation Plan (TMP)	12/30/2021	Initial TMP File							
1.3	Workforce Readiness Plan (WRP)	9/30/2023	WRP File							
1.4	Summary of Environmental Justice Considerations	12/30/2021	Initial Summary File							
✔ 1.5	Summary of Economic Revitalization and Job Creation Outcomes	12/30/2021	Initial Summary File							
1.6	Environmental, Safety, and Health Analysis	12/30/2021	Initial Summary File							
1.7	Safety Management Plan (SMP)	10/31/2021	SMP File							
2.0	Feedstock Procurement Report	12/31/2021	Quarterly Report							
3.0	Identification of Optimum Processing Conditions	4/30/2022	Quarterly Report							
4.0	SCBM Testing and Analysis Report	9/30/2023	Attachment to Final Report							
5.1	Technical and Economic Assessment	9/30/2023	Attachment to Final Report							
5.2	Technology Gap Analysis	9/30/2023	Attachment to Final Report							
5.3	Conceptual Design	9/30/2023	Attachment to Final Report							
5.4	Life Cycle Analysis	9/30/2023	Attachment to Final Report							

• Equipment utilized in this project include:

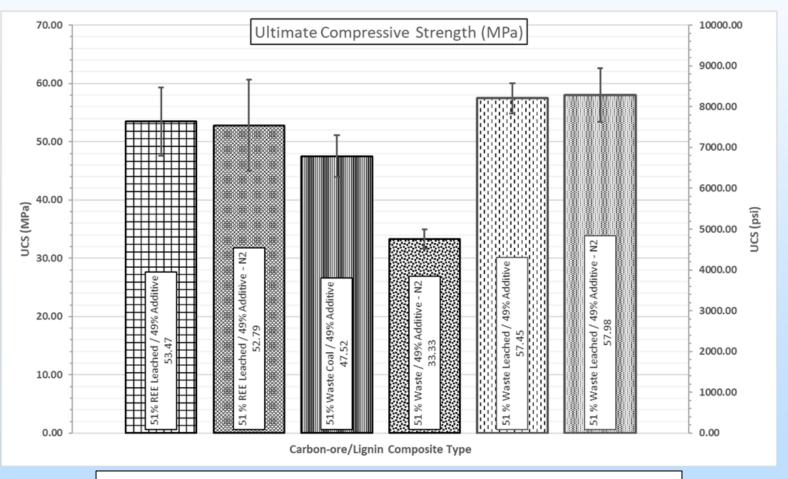
- Custom LIG2 brick die
- Baker electric furnace
- 100 Ton Redline hydraulic press
- SWECO Vibro-energy grinding mill
- Gilson jar mill and mixing accessories
- Gilson vibratory sieve shaker
- Laboratory supplies

Gilson vibratory sieve shaker

Gilson jar mill and mixing accessories



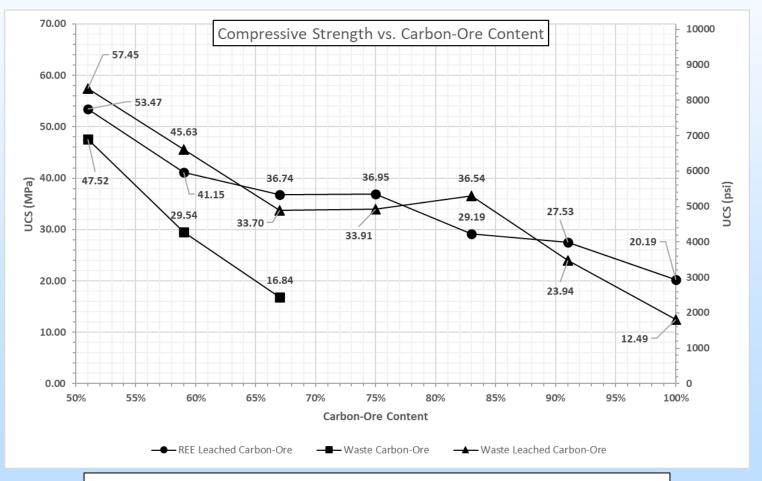
Gilson jar mill and mixing accessories


Baker electric furnace

• Ultimate Compressive Strength

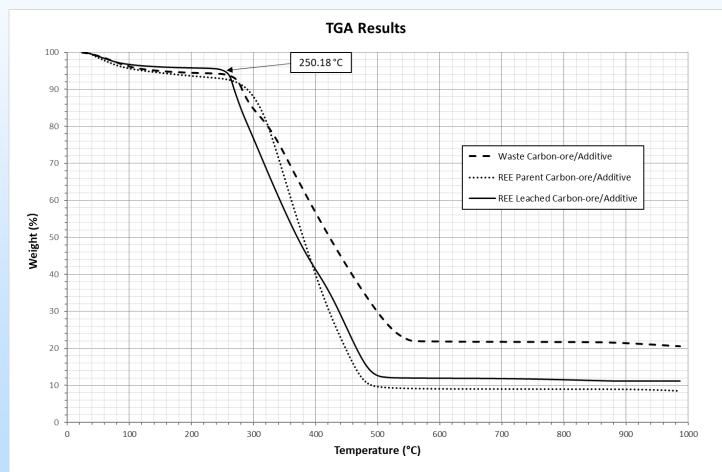
*ASTM C 62 SW compressive strength requirement for building brick = 20.7 MPa

• Ultimate Compressive Strength and Atmosphere

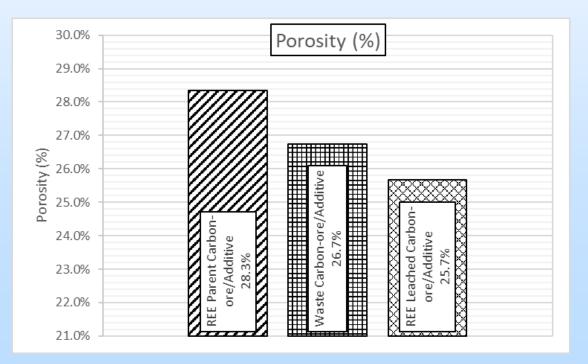


*ASTM C 62 SW compressive strength requirement for building brick = 20.7 MPa

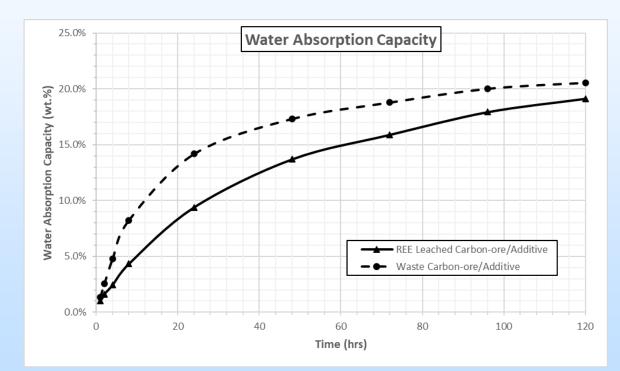
• Compressive Strength vs. Sintering Temperature



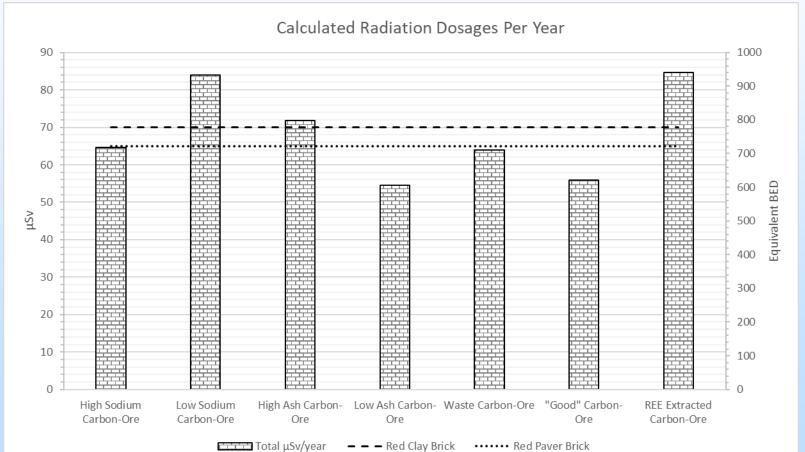
• Compressive Strength vs. Carbon-Ore Content


*ASTM C 62 SW compressive strength requirement for building brick = 20.7 MPa

• Thermogravimetric Analysis


• Density and Porosity Analysis

Sample Type	Pycnometry Density (g/cc)	Apparent Density (g/cc)	Porosity (%)
REE Parent Carbon-ore/Additive	1.563	1.120	28.3%
Waste Carbon-ore/Additive	1.635	1.198	26.7%
REE Leached Carbon-ore/Additive	1.543	1.147	25.7%



• Water Absorption Analysis


Time (hrs)	REE Leached Carbon- ore/Additive	Waste Carbon- ore/Additive
1	1.03%	1.37%
2	1.63%	2.53%
	2.43%	4.77%
8	4.33%	8.23%
24	9.40%	14.17%
48	13.70%	17.30%
72	15.90%	18.77%
96	17.93%	20.00%
120	19.13%	20.53%

• Health and safety testing and analysis

• Preliminary LIG2 brick manufacturing

Preliminary pre-sintered LIG2 brick (left), and post-sintered LIG2 brick (right). Second attempt of LIG2 brick fabrication.

• Preliminary LIG2 brick manufacturing

Preliminary pre-sintered and post-machined LIG2 brick (left), and post-sintered LIG2 brick (right). Third attempt of LIG2 brick fabrication.

- Preliminary LIG2 brick manufacturing
 - 10 total attempts thus far

Preliminary pre-sintered LIG2 brick (left), post-drying (middle), and post-sintered LIG2 brick (right). 9th attempt of LIG2 brick fabrication.

- Performance levels achieved thus far include:
 - Develop value-added products from carbon ore
 - Carbon ore building materials will contain \geq 70 wt.% carbon and \geq 51 wt.% of carbon from carbon ore 💙
 - Demonstrate the ability to produce Sintered Carbon Ore Building Materials (SCBM)
 - Ultimately to produce 5-10 bricks per day
 - Complete a Technical and Economic Analysis (TEA), a Technology Gap Analysis, and a Life Cycle Analysis (LCA) on the SCBM process
 - Create a conceptual design of a carbon-based building used LIG2 products
- Economic and technical advantages of project performance:
 - Environmentally friendly
 - Economically affordable
 - High Performance

- Synergy opportunities of this project include:
 - "Rare Earth Element Extraction and Concentration at Pilot-Scale from North Dakota Coal-Related Feedstocks" DE-FE0031835
 - "Production of Germanium and Gallium concentrates for Industrial Processes" DE-FE0032124

Plans for Future Testing/Development/ Commercialization

- In this project:
 - Tribology
 - Thermal conductivity and expansion
 - Flexural strength
 - Full-scale compressive strength
- After this project:
 - Pilot scale production
 - Building code compliance evaluation and certification
 - Design and construction of LIG2 brick building
- Commercial scale-up potential:
 - Scale-up and identification of mass-production pathways
 - Identification of target markets and fit-for-use production
 - Marketing and securement of preliminary contracts
 - Design, construction, and operation of commercial facility

Outreach and Workforce Development Efforts/Achievements

- Outreach
 - Public news release²
- Workforce Development
 - Provided training to produce sintered carbon-ore building materials (SCBM) samples for employees at MTI and postdoc, graduate, and undergraduate students at UND
 - Provided opportunities for individual study in materials science, carbon-ore and biomass processing, manufacturing, and characterization techniques

Summary Slide

- The SCBM technology is a groundbreaking technology that demonstrates that lignite coal particles can be successfully sintered at relatively low temperatures to produce a high-strength building material
 - Laboratory findings have shown SCBM's to exceed ASTM brick requirements for compressive strength
 - Capable of producing products that meet or exceed building materials requirements while maintaining ≥70 wt.% carbon and ≥51 wt.% carbon coming from carbon-ore
 - Demonstrate the technical and economic flexibility of the SCBM technology
- Will continue development and refinement of scale-up LIG2 brick production
- SCBM technology can valorize waste and REE extracted carbon-ores providing value-added opportunities for the carbon-ore industry

Acknowledgements

• DOE/NETL

- Project Manager: Mark Render
- University of North Dakota
 - Dr. Surojit Gupta
 - Dr. Jin Zhang, Mackenzie Geigle, Tim Fah, Caleb Matzke
 - Nolan Theaker
- North American Coal Corporation
 - Gerard Goven
- North Dakota Industrial Commission/Lignite Energy Council
 - Mike Holmes

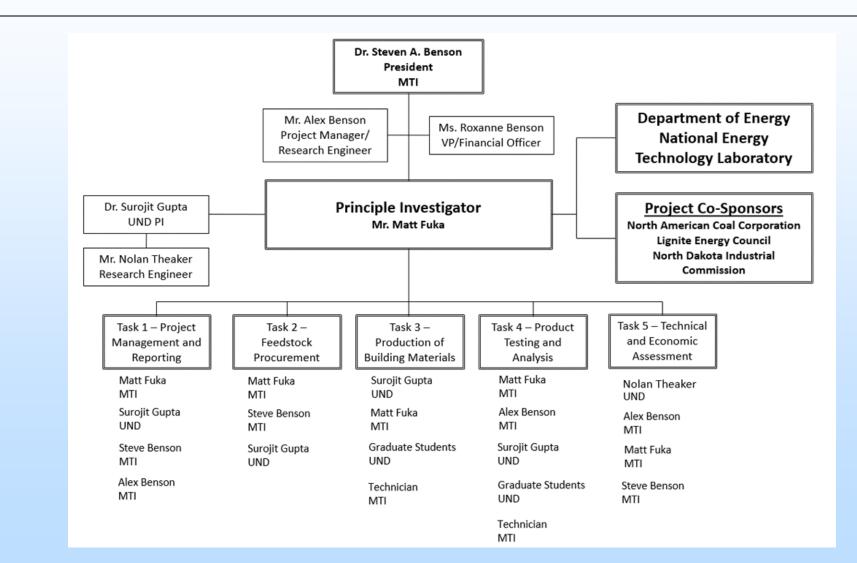
Thank You

Matt Fuka Microbeam Technologies Inc. <u>mfuka@microbeam.com</u> Main: 701-757-6200 Cell: 701-213-6147

Appendix

Organization Chart

- Project Team:
 - Microbeam Technologies Inc. (Lead)
 - University of North Dakota
- Support From:
 - U.S. DOE/NETL
 - North American Coal Corporation
 - North Dakota Industrial Commission/Lignite Energy Council


NORTH DAKOTA.

Enerav Council

Organization Chart

Gantt Chart

Task/Subtask Name	Start Date	E-10-1-	2021 2022											2023													
l askroubtask Name	Start Date	End Date	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Task 1 - Project Management and Reporting	10/1/2021	9/30/2023																	_	-							
Milestones																											
Project Management Plan (PMP)		10/31/2021	(>																							
Project Kickoff Meeting		12/30/2021			(5																					
Technology Maturation Plan (TMP)		12/30/2021			(5																					
Workforce Readiness Plan (WRP)		9/30/2023																								0	,
Summary of Environmental Justice Considerations		12/30/2021			(>																					
Summary of Economic Revitalization and Job Creation Outcome	es	12/30/2021			(>																					
Environmental, Safety, and Health Analysis		12/30/2021			(5																					
Safety Management Plan (SMP)		10/31/2021	(>																							
Final Report		9/30/2023																								0	,
Task 2 – Feedstock Procurement	10/1/2021	12/31/2021																									_
Milestones																											
Feedstock Procurement Report		12/31/2021				>																					
Task 3 – Production of Building Materials	11/1/2021	7/31/2023																									_
Subtask 3.1 - Equipment Set-up	11/1/2021	12/1/2022																1									
Subtask 3.2 - Optimization of Processing Conditions	12/1/2021	4/30/2022			L.,																						
Subtask 3.3 – Production of Testing Quantities	5/1/2022	7/31/2023							∟,										-			-					
Subtask 3.4 - Identification of Commercializable LIG2 Products	4/1/2022	4/30/2022																									
Milestones																											
Identification of Optimum Processing Conditions		4/30/2022							(
Task 4 – Product Testing and Analysis	12/1/2021	7/31/2023																			-						_
Subtask 4.1 - Phase Analysis and Mechanical Testing	1/1/2022	4/30/2023																									
Subtask 4.2 - Scanning Electron Microscopy (SEM) Analysis	2/1/2022	5/31/2023																					1				
Subtask 4.3 - Durability Analysis	4/1/2022	7/31/2023																		-		_					
Subtask 3.4 - Identification of Candidate LIG2 Products	7/1/2022	7/31/2023																	1								
Milestones																											
LIG2 Testing and Analysis Report		9/30/2023																								0)
Task 5 - Technical and Economic Assessment	4/1/2022	9/30/2023																		-							
Subtask 5.1 - Techno-Economic Assessment	4/1/2022	5/31/2023										_							-	_		_	1				
Subtask 5.2 - Technology Gap Analysis	6/1/2022	7/31/2023								1				_				_	_	_	-	-	_				
Subtask 5.3 – Conceptual Design	7/1/2022	8/31/2023																	-	_		_					
Subtask 5.4 - Life Cycle Analysis of Products	8/1/2022	9/30/2023																									
Milestones																											
Technical and Economic Assessment		9/30/2023																								0	£
Technology Gap Analysis		9/30/2023																								0	1
Conceptual Design		9/30/2023																									<i>i</i>
Life-Cycle Analysis		9/30/2023																									•