Development and Testing of an Integrated Acid Mine Drainage (AMD) Treatment and Rare Earth/Critical Mineral Plant DE FE 0031834

Paul Ziemkiewicz, PhD Water Research Institute, West Virginia University

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

- Funding
 - USDOE: \$4,998,954
 - Cost Share: \$1,887,250
- Project Performance Dates
 - 1 Jan 2020 to 30 Jun 2023
- Project Participants
 - West Virginia University
 - Virginia Tech
 - West Virginia Department of Environmental Protection
 - TenCate Corp.
 - Rockwell Automation

Project Overview

- Overall Project Objectives
 - design, construct, and test a pilot-scale continuous process for efficiently treating AMD while producing an enriched rare earth element/critical mineral (REE/CM) concentrate.
 - Major technology components include:
 - (1) an integrated water treatment/pre-concentration unit that will purify AMD to environmentally-compliant discharge standards while simultaneously producing REE/CM preconcentrates and
 - (2) a secondary **acid leaching/solvent extraction (ALSX)** process that will generate high purity rare earth oxide (REO) products.

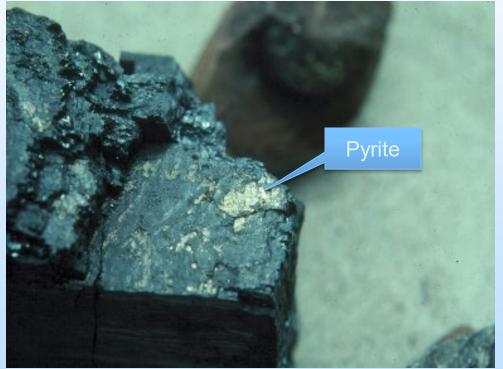
Current Project: Integrated Acid Mine Drainage treatment and REE/CM extraction plant USDOE Project DE FE00 31834

Project Leadership:

West Virginia University Paul Ziemkiewicz, Jim Constant, Harry Finklea, Lance Lin, David Hoffman, John Quaranta

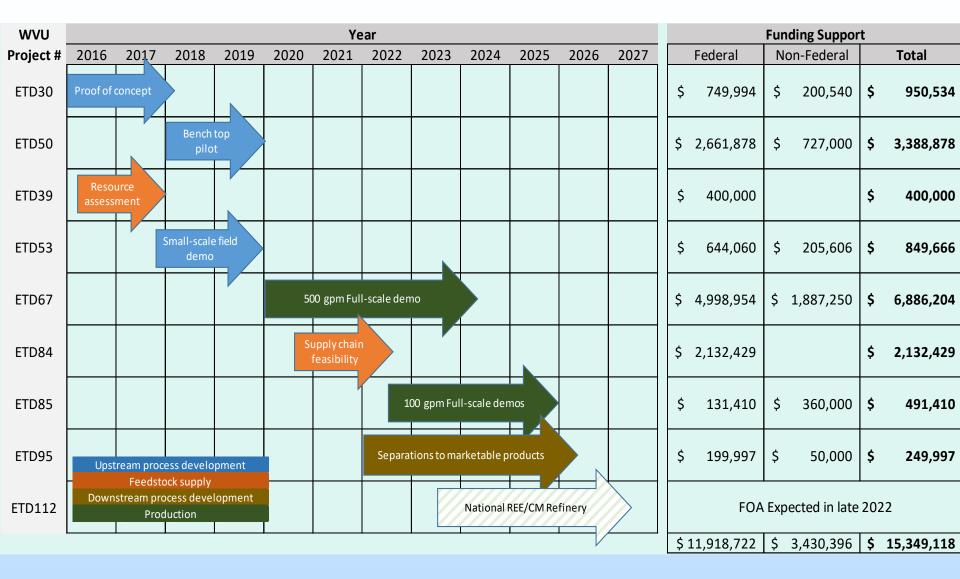
Virginia Tech Aaron Noble

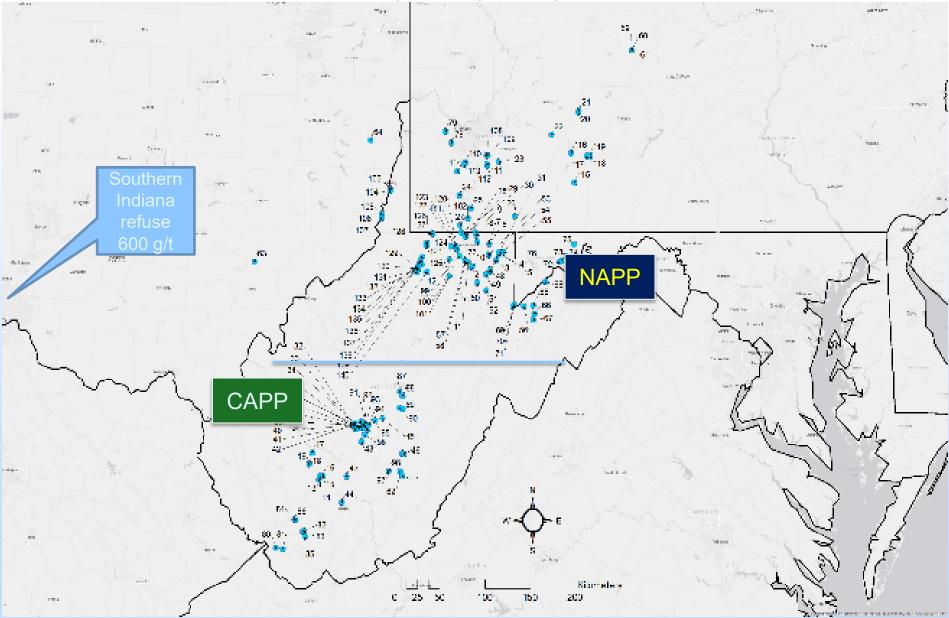
State: WVDEP-Office of Special Reclamation


Industry: Rockwell Automation TenCate Corporation L3 Eng

Acid Mine Drainage: AMD

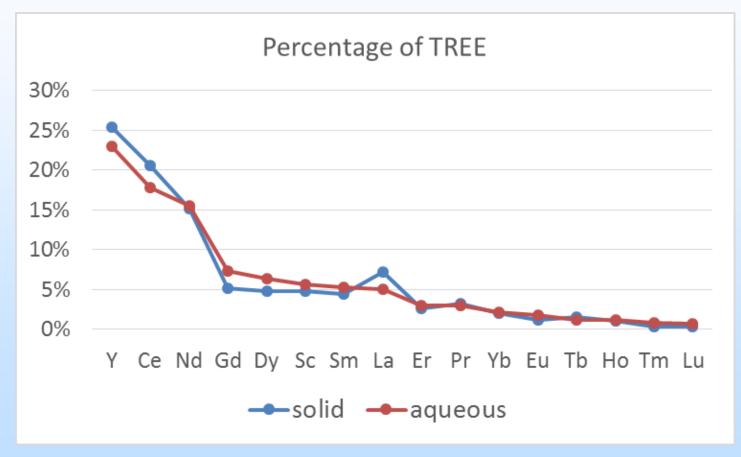
H₂SO₄ leaches REE from shale
REEs precipitate with Fe(OH)₃


Pyrite + O_2 + $H_2O = Fe^{2+} + H_2SO_4$

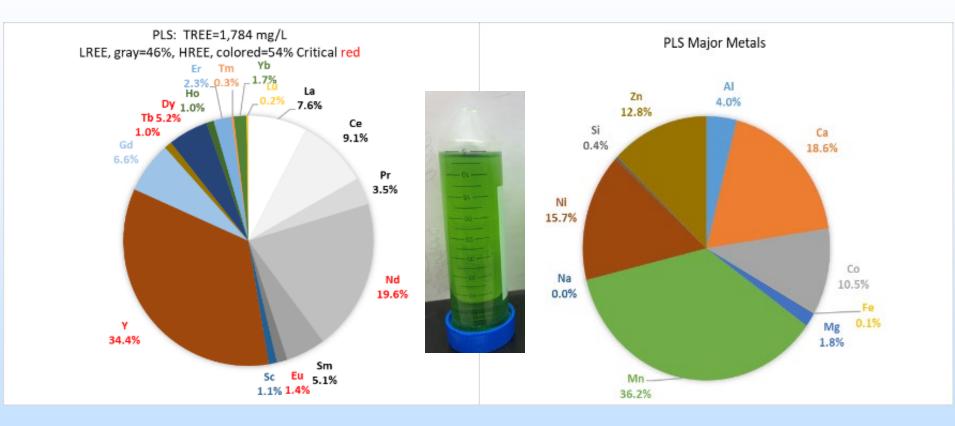

$$Fe^{2+} + O_2 + OH^- = Fe(OH)_2$$

Water Research Institute: Recovering REE/CM from Acid Mine Drainage Technology Development Strategy

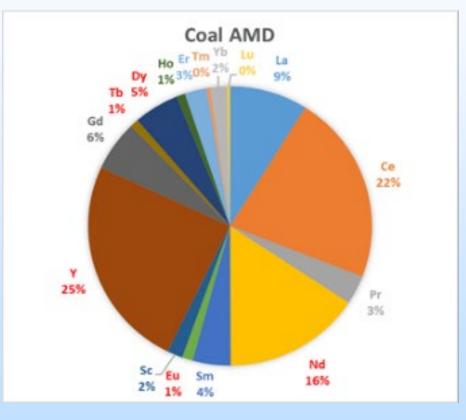
140 Sampled locations: MD, OH, PA, WV

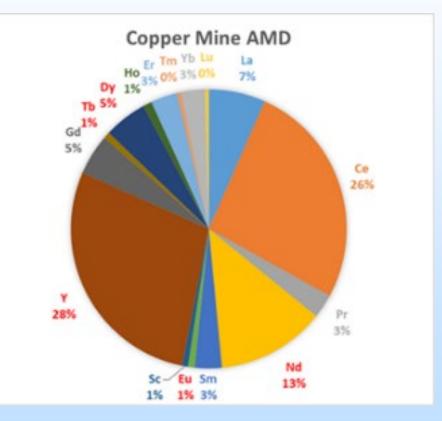


Consistent feedstock: average of 140 sites Tb + Dy ~ 7%


Conventional AMD treatment **REE/CM Recovery and refining** APPALACHIAN COAL AMD *PC = preconcentrate L 45% Heavy REO avg 462 ug/L i. Er Yb Lu m Ho La e 1.9%_0.3% 0.9% -2.4% 7.9% Dy ть 5.1% clarifier B mixerA 0.9% mixerB clarifier C water clarifier A Gd 5.8% PC* Ce 22.3% dewatering PC ~ \$150/t ALSX in-mine disposal Y REE/CM 25.8% Pr >80% 3.0% Nd 15.9% Sc. Eu 2.2% Sm 1.1% 4.3%

Integrated AMD treatment/REE/CM recovery


All REEs precipitate to AMD sludge nearly equally



Recent PLS production: 1,784 mg TREE/L, 54% HREE almost no Al, Si

Coal and Copper mine AMD samples have nearly identical REE distributions

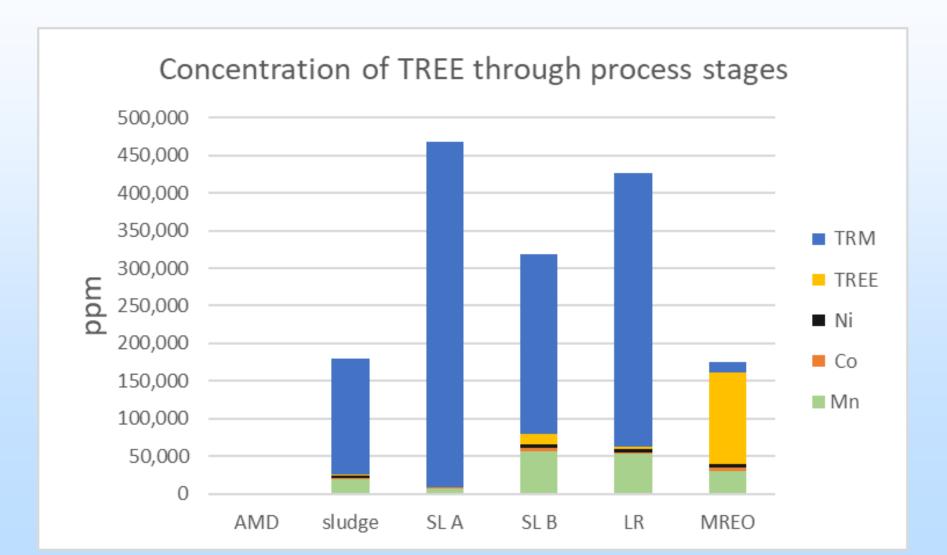
Disadvantages of sourcing REE/CM from AMD

- Low concentrations
- Requires collection from many sites
- Need to manage upstream supply chain
- Quality control: moisture, grade

Advantages of sourcing REE/CM from AMD

- Already permitted sites, no delays due to permitting
- Easy to quantify yield, minimal exploration cost
- Environmentally beneficial, byproduct is clean water
- Solid wastes are RCRA subtitle D, non hazardous
- Distributes jobs and benefits across broad areas
- Incentivizes treatment of legacy AMD discharges
- Uniform feedstock, across mines and sectors
- Attractive economics
- No rads

- 1. Generate pre-concentrate (brown floc)
- 2. GeoTubes passively dewater to 40-85% solids
- 3. Transport to a central processing facility
- 4. Convert it to high-grade PLS (green), then MREO
- 5. Elemental oxide, reduction to metal


Process:

Our process increases the REE/CM grade from AMD to Product

TRM=total reject metals

	AMD	SLpond	SL A	SL B	LR	MREO							
Concentration (ppm)													
Mn	24	19,236	7,879	56,834	53,327	30,314							
Со	1	1,957	92	4,825	2,406	4,227							
Ni	1	2,196	200	4,782	3,306	5,635							
TREE	1	2,727	352	12,941	3,964	120,678							
TRM	184	154,022	458,818	239,684	363,281	13,782							
		6 increase)											
Mn	1	787	322	2,325	2,182	1,240							
Со	1	2,419	114	5,964	2,975	5,225							
Ni	1	2,381	217	5,185	3,584	6,110							
TREE	1	2,343	302	11,116	3,405	103,665							
TRM	1	837	2,494	1,303	1,975	75							

Rejection of gangue Ni, Co report to other circuits for recovery

Conceptual supply chain: Concentrates move to central processing facilities

Project ETD67: Mt. Storm Pilot Plant AMD treatment: Up to 1,000 gpm, Production rate ~ 1 tpy each: REE, Cobalt, Nickel Much more: Manganese, Lithium, Zinc

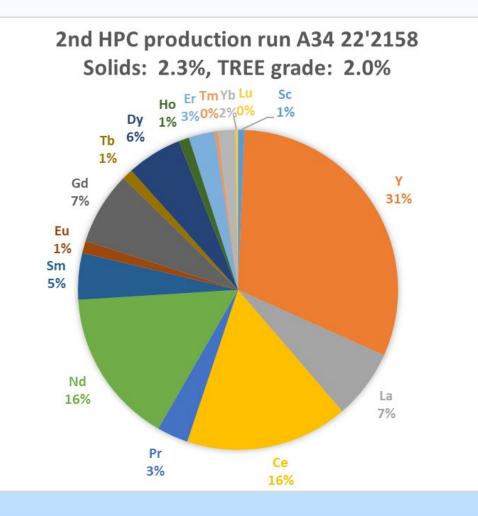
A34 components

Inside the Lime Silo

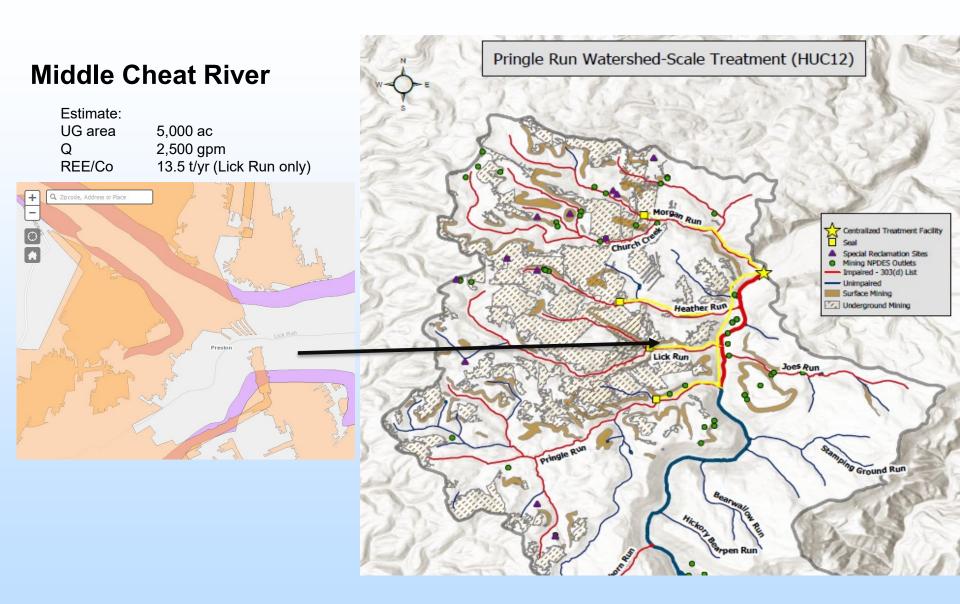
Three clarifiers

Downstream Processing

Solvent Extraction


Raffinate Storage

Second Batch of Preconcentrate leaving A34 6 Oct 2022: 70 kg Tb+Dy/yr 190 kg Nd+Pr/yr


Supply Chain Middle Cheat Project: Four tribs generate about 60 t REE/CM per year

Morgan Run

Lick Run

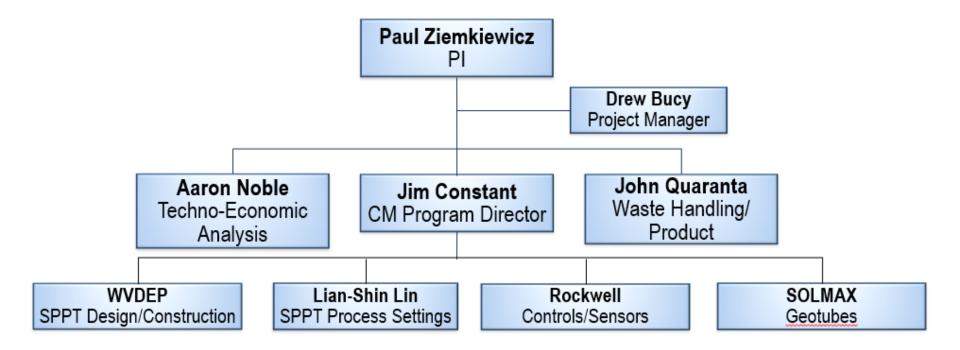
Outreach and Workforce Development Efforts or Achievements (If Applicable)

- Outreach
 - Over 60 public presentations/briefings since 2016:
 - Senate/Congressional delegations, staff
 - Citizen watershed groups
 - State, Federal agencies
 - Professional organizations
 - Industry meetings
- Workforce Development
 - Graduate research experience
 - Undergraduate work experience

Summary Slide

- Achievement of target TREE grade and moisture content at fully operational, 500 gpm AMD/REE facility
- ALSX unit should be operational within the month
- Ready for buildout to new AMD treatment facilities

WVU Water Research Institute


REE/CM Recovery from Acid Mind Drainage: Summary of progress 2016-2022

Paul Ziemkiewicz, Director WVU Water Research Institute pziemkie@wvu.edu

Appendix

Organization Chart

Project ETD67 Gantt Chart

															E	Project I	Month														
ID	Task	Lead	1	2 3	4	5 6	7	89	10 11 1	2 13	14 1	5 16	17 18	3 19 2	20 21	22 23	3 24	25 2	6 27	28 29	30 3	1 32	33 3	34 35	36	37 38	39 4	0 41	42 43	44 4	i
	DOE Required Tasks														<u> </u>																
	Project Management & Planning*	Ziemkiewicz, Bucy																	_												
	Finanical Plan for Commercialization*	Noble								_																					
3	Techno-Economic Assessment*	Noble								_																					
	Milestone 3.0 Finalize Techno-Economic Assessment																														•
4	Provide Split Samples*	Ziemkiewicz																													
	Feasibility Study*	Noble																													
	Milestone 5.0 Feasibility Study Complete																														
Upstream Concentrator Tasks																															
	Test Unit Design/Construction	Noble																													
	Milestone 6.0 Complete Test Unit Construction			-																											
	Test Unit Parametric Evaluation	Constant																													
1	Full-Scale Unit Construction	Constant																													
	Milestone 8.0 Go/No-Go Decision Made																														
	Full-Scale Operation & Testing	Constant																													
ALSX System Tasks																															
10	ALSX System Design	Noble																													
	Milestone 10.0 Complete ALSX System Design																														
1	ALSX Construction	Constant																													
	Milestone 11.0 Complete ALSX System Construction																														
1	ALSX Shakedown	Constant																													
	Milestone 12.0 Finish ALSX Shakedown Testing																														
13	SC Operation & Testing	Constant																													
		Ziemkiewicz																													
Support Tasks				_												-															
1	Alternative Feed Stock Testing	Lin/Constant						1	i i		1												L - 2								
	Laboratory Support & Testing	Lin/Constant																													
	Technical Systems Analysis	Quaranta/Constant														I															
		Noble								_																					
		Quaranta/Constant																													
	* = DOE Required Task		Jan I	Feb Ma	ar Apr N	lavlune	July A	ugSept	Oct Nov D	ec Jan	Feb M	ar Apr	Maylur		ug Sent	Oct No	v Dec	Jan Fe	b Mar	Apr May	June li		Sep O	oct Nov	Dec	an Feb	Mar Ar	or Maylu	une Jul	Aug Se	p
	Go/No Go. (Oct 1, 2021)			20,00		202		-90-56						021	-Slorbe						2022							2023			1
GU/NU GU. (ULL 1, 2021)				2020							2021							2022							2023						