Multi-Sourced Collaboration for the Production and Refining of Rare Earth and Critical Metals FE0032119

Dr. Joshua Werner University of Kentucky

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

– Funding

- Federal Funds = \$199,989
- Cost Share = \$61,409
- Overall Project Performance
 Dates
 - Start 12/1/2021- End 2/28/2023
- Project Participants:
 - University of Kentucky
 - Argonne National Labs
 - University of Alabama
 - MP Materials

Organization	Team Member
U. Kentucky	Rick Honaker
	Josh Werner
Virginia Tech	Aaron Noble
	Wencai Zhang
U. Alabama	Ramana Reddy
Argonne National	John Hryn
	Matt Earlam
Alliance Coal	Ernie Thacker
MP Materials	Ethan Arden

Project Overview

- Overall Project Objectives:
 - Concept of a prototype facility producing 1-3 tonnes/day of high purity REO mixes
 - (REEs) of greater than 99.5% purity – Y, Pr, Nd, Gd, Dy, Sm
 - (CMs) of greater than 90% purity

– Ga, Sr, Li, Ni, Zn, Ge

Technology Background

Technology Background

Technology Background

- AMD Selective Precipitation
 - Low concentrations mean very high volumes Would rely on sunk costs for treatment
- AMD Precipitation Redissolution
 - High Acid consumption
 - Or if done with Heap or BioAcid, high contaminant loading
- Coarse Refuse Heap Leach Expensive Capital and Operationally
 - High contaminant loading
 - Pilot Heap Leach concluded June 2022
- Roasting & Leaching w/ BioAcid
 - High Contaminant Loading
- Middlings & Acid Leach
 - Combination of recovery, lowest contaminants, and cost

Technical Approach/Project Scope

Technical Approach/Project Scope

Milestone No.	Milestone Title & Description	Planne d Comple tion Date	Verification method
1	Modified Project Management Plan	12/31/2021	PMP approved by the NETL program manager.
2	Market Analysis Complete	2/31/2022	Submission of Research Progress Performance Report
2.1	Market Analysis (Sm, Ni, Zn, Ge) Complete	9/30/2022	Submission of Research Progress Performance Report
3	Resource Assessment Complete	2/31/2022	Submission of Research Progress Performance Report
4	Purity Product Estimates Complete	10/31/2022	Submission of Research Progress Performance Report
5	Teaming Plan Complete	10/31/2022	Submission of Research Progress Performance Report
6	Flow Diagram Complete	1/31/2023	Submission of Research Progress Performance Report
7	Technical Research Plan Completed	2/28/2023	Submission of Final Report
8	Final Technical Report Completed	2/28/2023	Submission of Final Report

Production Parameter	FOA 2003
Designed Feed Rate (kg/hr)	113.5
Capable Daily REO Production (kg/day)	0.44
Capable Annual REO Production (kg/yr)	110

Circuit - 1

Circuit 1 – REE Products

Circuit 1 – CM Products

Heap leach PLS Rare earth product (oxalate converted to oxides by roasting)

Flements	Elemental	Concentration	Elemental MW	Ovide Form	Oxides Concentration			
Liements	mg/kg	% dry weight	g/mol	Onderonni	% dry weight			
Sc	287	0.0	45	Sc2O3	0.04			
Y	303804 30.4 89 Y		Y2O3	38.58				
La	2889	0.3	139	La2O3	0.34			
Ce	28337	2.8	140	CeO2	3.48			
Pr	9080	0.9	141	Pr6011	1.10			
Nd	69877	7.0	144	Nd2O3	8.15			
Sm	54613	5.5	150	Sm2O3	6.33			
Eu	16037	1.6	152	Eu2O3	1.86			
Gd	111411	11.1	157	Gd2O3	12.84			
Tb	16656	1.7	1.7 159		1.96			
Dy	123926 12.4 163		Dy2O3	14.22				
Но	12564	1.3	165	Ho2O3	1.44			
Er	27816	2.8	167	Er2O3	3.18			
Tm	3192	0.3	169	Tm2O3	0.36			
Yb	15534	1.6	173	Yb2O3	1.77			
Lu	2067	0.2 175 Lu2O3	0.2 175 Lu2O3	175 Lu2O3	2 175 Lu2O3	0.2 175 Lu2O3	0.2 175 Lu2O3	0.24
TREE	798091	79.8		∑REO	95.89			
AI	4294	0.4	13	Al2O3	1.22			
Са	44847	4.5	40	CaO	6.28			
Fe	8865 0.9		56	Fe2O3	1.27			

Circuit 1 - Products

Heap leach PLS Co-Ni-Zn product (sulfide converted to oxides by roasting)

Heap leach PLS Mn product (hydroxide converted to oxides by roasting)

	Elemental	Concentration	Elemental MW		Oxides Concentration		Elemental	Concentration	Elemental MW		Oxides Concentration	
Elements	mg/kg	% dry weight	g/mol	Oxide Form	% dry weight	Elements	mg/kg	% dry weight	g/mol	Oxide Form	% dry weight	
							116/16	70 dry Weight	6/1101		yo di y weight	
TREE	2768.3	0.3			0.33	TREE	8465.0	0.8			1.03	
Al	5960.3	0.6	13	Al2O3	1.70	Al	67481.9	6.7	13	Al2O3	19.21	
Ca	1427.9	0.1	40	CaO	0.20	Са	1046.7	0.1	40	CaO	0.15	
Со	56371.3	5.6	28	CoO	8.86	Со	200.6	0.0	28	CoO	0.03	
Cu	9724.6	1.0	64	CuO	1.22	Cu	26.9	0.0	64	CuO	0.00	
Fe	10556.5	1.1	56	Fe2O3	1.51	Fe	2530.3	0.3	56	Fe2O3	0.36	
Mg	26914.2	2.7	24	MgO	4.49	Mg	217721.9	21.8	24	MgO	36.29	
Mn	17784.4	1.8	55	MnO2	2.81	Mn	142053.3	14.2	55	MnO2	22.47	
Na	33888.2	3.4	23	Na2O	4.57	Na	57405.7	5.7	23	Na2O	7.74	
Ni	187197.6	18.7	59	NiO	28.93	Ni	1095.8	0.1	59	NiO	0.17	
Se	251.1	0.0	79	SeO2	0.04	Se	643.2	0.1	79	SeO2	0.09	
Sr	78.2	0.0	88	SrO	0.01	Sr	0.0	0.0	88	SrO	0.00	
Zn	136566.9	13.7	65	ZnO	17.02	Zn	365.1	0.0	65	ZnO	0.05	

Circuit 2 – Solvent Assisted Chromatography

SCHEIBEL column

https://kochmodular.com/

Figure 7. (a) Lanthanum, praseodymium and neodymium nitrate separation process: stage-wise profiles at the end of force-feeding; (b) lanthanum, praseodymium and neodymium nitrate separation process: stage-wise profiles at the end of total reflux.

Brown, C. G., & Sherrington, L. G. (1979). Solvent extraction used in industrial separation of rare earths. Journal of Chemical Technology and Biotechnology, 29(4), 193-209.

Circuit 2 – Solvent Assisted Chromatography

Circuit 2&3 – Advanced Thermal & Electrochemical Processing

- Proprietary blend of thermal and electrochemical process to produce:
 - Sm
 - Dy
 - -AI
 - Gd
 - Nd

Circuit 3 – Advanced Molten Salt EW

Circuit 3 – Advanced Molten Salt EW

- Small electrowinning cell commissioned. (10-100 A size)
 - Safety internal review completed.
 - Cell testing completed
 - Several improvement made in initial design
 - Didymium electrolyte made, melted.
 - Cell furnace temperature capability verified.
 - Metal and electrolyte sample removal method refined
 - Determined that alumina straws work better than steel or titanium for collection
 - Successful in draining of crucible by this method.

Circuit 4 – Co-Ni-Zn Processing

- Proprietary blend of thermal and electrochemical process to produce:
 - Zn
 - Mn
 - Ni
 - Co

Circuit 4 – Mg Thermal Processing

Thermodynamic equilibrium calculations were performed based on the Gibbs energy minimization method to determine the stable compounds.

Circuit 4 – Mg & Mn Processing

- The electrochemical process of alloy will provide the anode material for electrochemical deposition of Mn.
- Using ionic liquids at a constant 2V and 323 K, pure Mn can be deposited.
- Current efficiency > 99%.

Circuit 4 – Li

 Proprietary membrane/solvent enabled electrowinning for the direct reduction of Li

Circuit 4 – Ge

- Flowsheets for Ge(IV) purification have been developed
- Solvent extraction and ion exchange are most frequently used methods for the purification of Ge(IV)
- A certain degree of purification can also be obtained through selective precipitation with an efficient precipitant, such as tannic acid
- High-purity Ge(IV) products of >99% pure have been generated from other resources by combining solvent extraction or ion exchange with selective precipitation

Plans for future testing/development/ commercialization

Plans for future plans

- a. In this project
 - Down select of unit technologies
 - Integrated flowsheet
 - Technical/Economic analysis
- b. After this project
 - Pursue reduction to practice funding opportunities
 - De-risking experimentation

Outreach and Workforce Development Efforts or Achievements

- Workforce Development
 - 3 Undergraduate students
 - SAC Modeling and flowsheet development
 - 2 Graduate Students
 - Thermodynamic modeling and electrochemical process development

Summary

- Multi-path approach to purifying and metal making
- Tasked with process development stopping short of significant experimentation
- Utilizing internal competition to finalize flowsheet
- Draws upon significant REE and CM concentration experience
- Work ongoing to finalize flowsheet

Integrating REE & CM concentration with advanced processes to produce individual high purity metals

Appendix

Organization Chart

Gantt Chart

		21	2022								20						
Task	Description	D	J	F	М	Α	М	J	J	Α	S	0	Ν	D J		F	
1.0	Project Management and Planning																
2.0	REE & CM Market Analysis		Μ	1									M:	5			M8
2.1	REE Market Analysis				Μ	2											
2.2	CM Market Analysis				Μ	2						M	2.1				
3.0	Resource Identification, Characterization and Assessment																
3.1	Resource Identification and Characterization;				M	3											
3.2	Resource Assessment				Μ	3											
4.0	Circuit 1 Pilot Plant Data & Required Circuit Modifications																
4.1	Flowsheet and Data Analysis																
4.2	Modification and Optimization																
5.0	Circuit 2 RE Individually Separated High Purity Products																
5.1	State-of-the-Art Technology Review																
5.2	Extractant Selection																
5.3	Solvent-Assisted Chromatography																
5.4	Modular Physical Concept Design																
6.0	Circuit 3 RE Metal Production																
6.1	SOTA Technology Review																
6.2	High Temperature Molten Salt EW																
6.3	Low Temperature Membrane Organic EW																
6.4	Thermal Plasma Process																
6.5	Carrier-Based Ionic Liquid EW																
7.0	Circuit 4 CM Product Production																
7.1	State-of-the-Art Technology Review												M	1			
7.2	St-Li Adsorption Process																
7.3	Reduction/Ionic Liquid/Plasma Distillation Circuit																
7.4	Other CMs																
8.0	Process Integration & Technology Downselect																
9.0	Process Flow Diagram Development															M6	
10.0	Technical Research Plan Development																M7
11.0	Techno-Economic Analysis																