Modular Processing of Flare Gas for Carbon Nanoproducts

DOE Project Award Number: DE-FE0031870

PI: Alan W. Weimer (Chemical and Biological Engineering) Co-PI: Mija Hubler (Civil Engineering)

Jessica Hauck, Kent Warren, Boning Wang, Robert Anderson, Ethan Borenstein, Samantha Harshberger (University of Colorado – Boulder) Theodore Champ, Andrew Broerman – Forge Nano (Thornton, CO)

Colin Lobo – NRMCA (Alexandria, VA)

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Overview: Year 2 of 3-Year Project

Timeline

Project Start Date: 5/1/2021 Project End Date: 9/30/2023

% Complete: 65%

Technical Barriers Addressed

B. CVD is Carried Out.D. Module OperationF. Optimal cement mix design parameters will be identified

Budget

Total project funding: \$3,750,000 Sub-contract: \$750,000

Collaborators

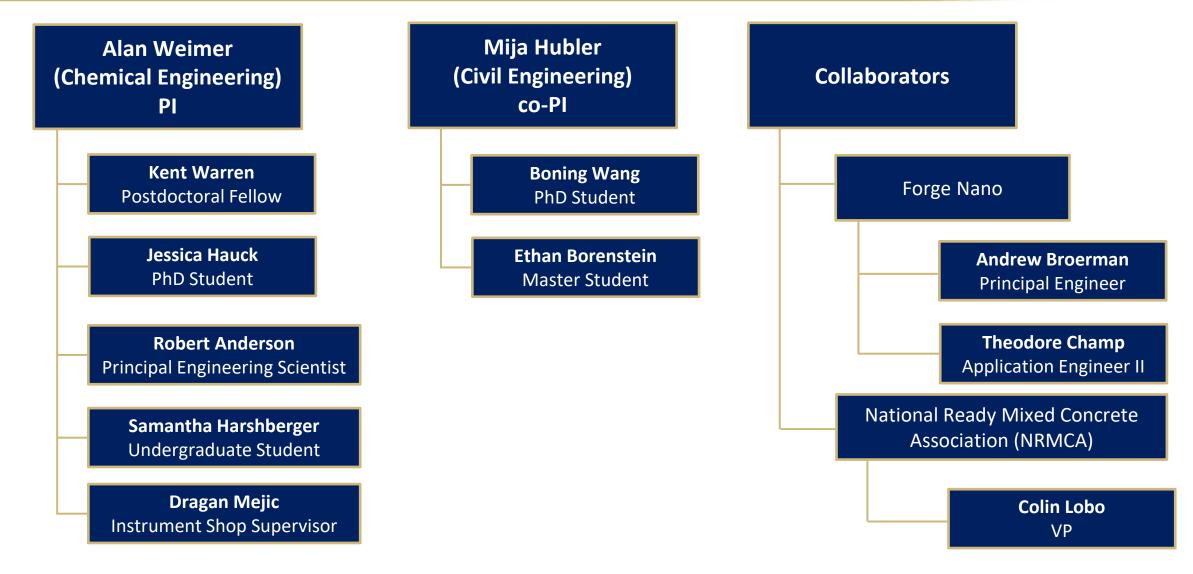
ForgeNano, Thornton, CO

Reactor/process design and technoeconomic analysis

National Ready Mixed Concrete Association

(NRMCA), Alexandria, VA

Concrete materials, mix design, and consulting



Develop a modular unit that will utilize a one-step chemical vapor deposition (CVD) process to grow carbon nanoproducts (nanoparticles and nanofibers) (CNPs) during natural gas decarbonization. A low-cost and scalable process for producing CNPs will be demonstrated at a minimum 25% Investors Rate of Return (IRR).

Develop the introduction of the carbon nanoproduct into ultra-high performance concrete (UHPC), providing a value-added product for the construction industry. The experimental study is applied to establish the cement design relationships to hydration, cracking, and ductility.

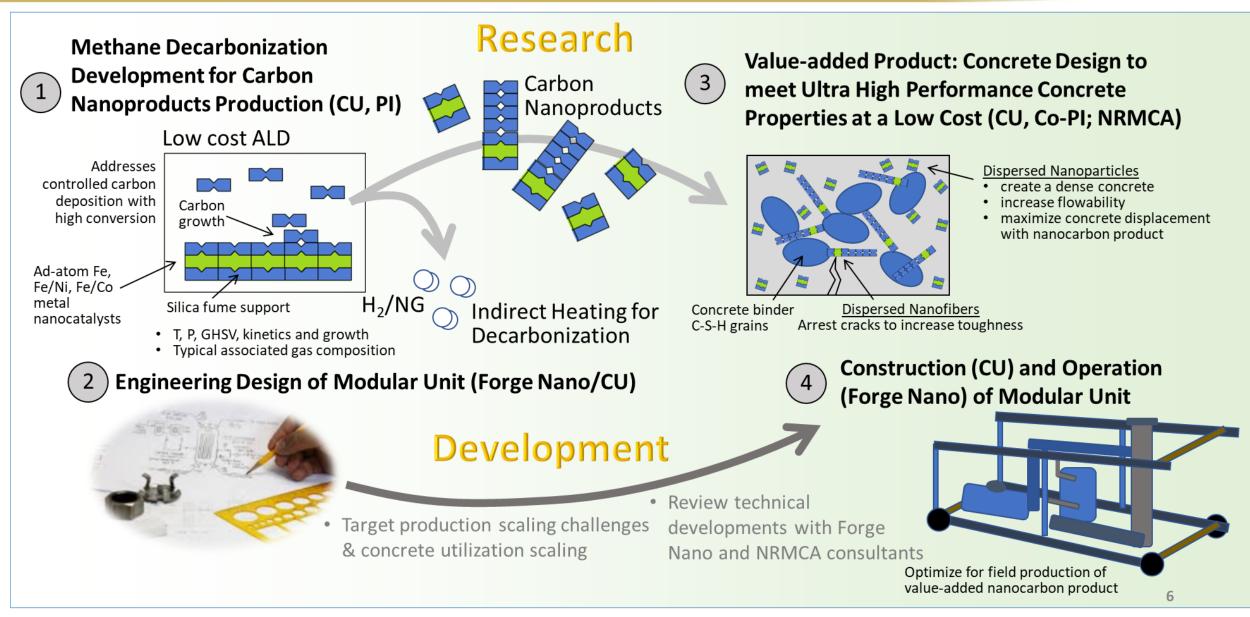
Project Overview: Team

Repurposing of Wasted Methane in Natural Gas Flaring

Sequestering of Flare Gas

- CH₄ is the main component of natural gas, an abundant energy resource
- In 2019, over 500,000 MMcf of natural gas was vented or flared in the US¹
- Natural gas wells exhaust in <5 years, making pipelines a poor solution.
- A modular process to react methane to value-added CNF product 'sequesters' carbon from CH₄ as a solid and can be used for multiple well sites.

CNPs for high performance concrete

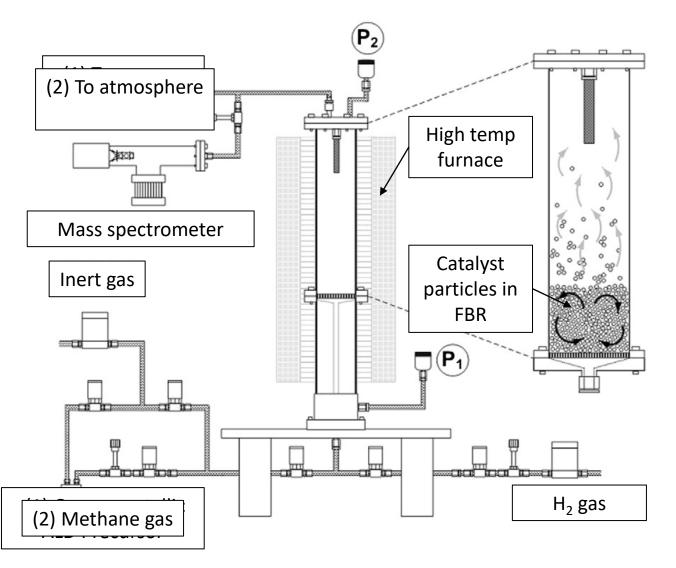

- CNPs: instead of separating CNPs from catalyst/silica fume, use combined product as a crack-bridging additive in concrete
- Silica is already added to concrete to improve its properties
- Cement production accounts for 8% of global CO₂ emissions¹
- Increasing the service life of concrete structures using optimized mixtures as a more economical CNF product

¹U. S. E. I. Natural Gas Gross Withdrawals and Production.

²Johanna Lehne, F. P. (2018). Making Concrete Change Innovation in Low-carbon Cement and Concrete.

Technical Approach

Technical Background: CNPs in Concrete

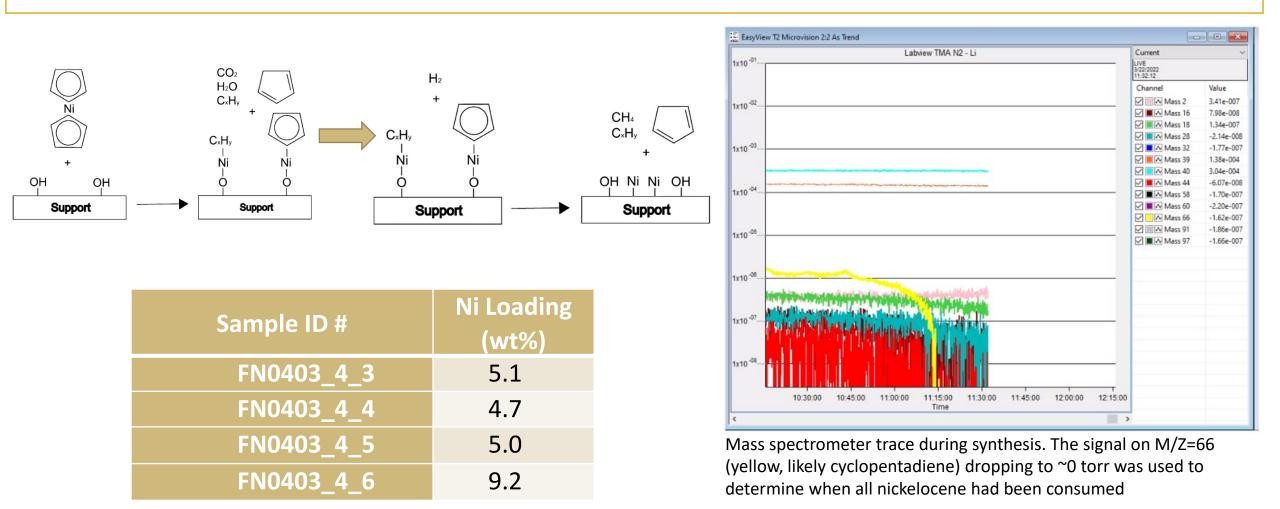

- The fracture process of concrete starts at the nano-scale. The addition of CNPs acts through a bridging effect after cracks appear.
- Previous research¹ has stated that as the content of CNF increased from 0 to 0.3 wt.% of binder, the tensile strength increased by 56%.
- Advantages: Potential improvement in crack resistance performance of UHPC
- Challenges: An efficient and economic dispersion of CNPs in the cement paste

Technical Approach: Fluidized Bed Reactor

 $CH_4 \rightarrow C + 2H_2$ $\Delta H = 74.85 \text{ kJ/mol}$

Key Process Parameters						
Catalyst ALD fabrication	Ex-situ					
Catalyst Support	Silica fume					
Catalyst Metal	Transition metal (Ni, Fe)					
Pressure Range Explored	0 – 500 psig					
Temperature Range	500 – 800°C					
Scale-up	Modular process					
Carbon Nanoproduct Application	Ultra-high performance concrete					

Progress and Current Status of Project



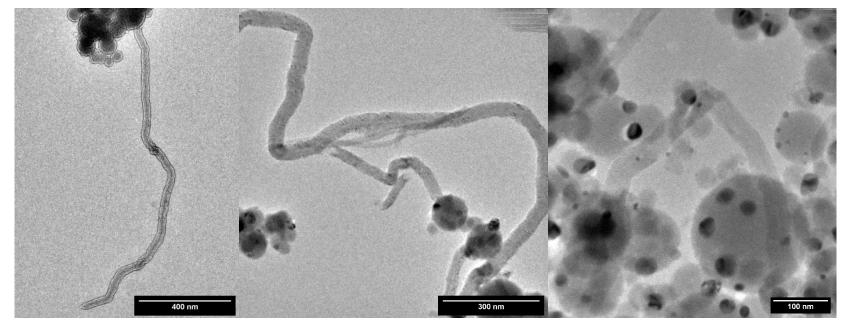
Milestone Title/Description		Actual Completion Date	Status					
Task 2.0 ALD & CVD								
Subtask 2.2		c /20 /2022	Carbon content >25wt% achieved. CVD studies ongoing to further understand how					
CVD will be carried out. 6/30/2022 Milestone B		6/30/2022	to manipulate carbon yield while minimizing metal content.					
	Та	ask 3.0 Module Operation						
Subtask 3.2 Milestone D		On track for 12/30/2022	On track for complete module installed at Forge Nano and operational.					
		Task 4.0 Cement						
Subtask 4.2	Optimal cement mix		Met UHPC performance metrics using					
Milestone F	design parameters will be identified	9/30/2021	commercially available carbon nanoparticles and CNFs					

Progress: CVD is Carried Out

Catalyst Synthesis

Progress: CVD is Carried Out

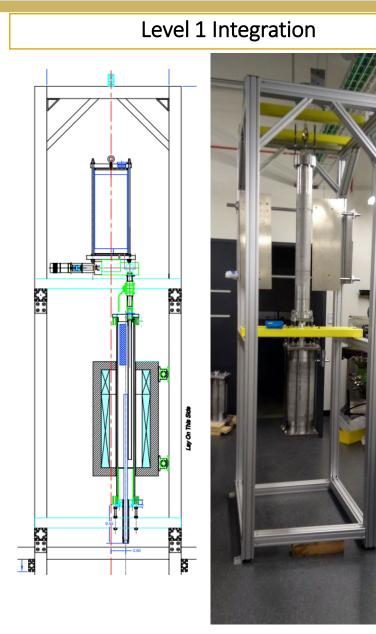
300


Constants

- Weight hourly space velocity: 18 L_n/g_{cat}·h
- Reaction Time: 5 hr
- P_{CH4}:P_{H2} 2:1
- CVD Temp: 550°C
- Ni loading: 9.3wt%

	0.9	-
	0.8	$Q_{CH4,in} - Q_{CH4,out}$
	0.7	$\Lambda_{CHA} \equiv $
sion	0.6	$Q_{CH4,in}$
Conversion	0.5	-
Cor	0.4	_
	0.3	-
	0.2	-
	0.1	
	0	
	Č	0 50 100 150 200 250

Time (min)


Factor	Value
Reduction Step	500°C 1 hour 50% H2, 50% Ar
Methane Concentration (Vol%)	16.7%
Carbon content (wt%)	31.8wt%

Carbon filaments contain L:D >10

Progress: Module Operation

Module Construction Update

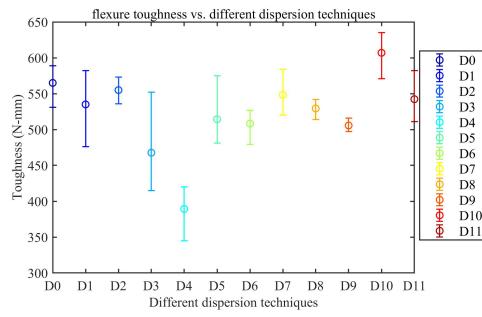
Progress: Module Operation

Modular Skid Facility of Operation

Forge Nano, located in Thornton, CO, has multiple lab facilities and over 80 employees.

Location of modular skid system post-construction.

Progress: Mix design and dispersion of CNFs


Optimized UHPC-CNFs mix design (wt.%)

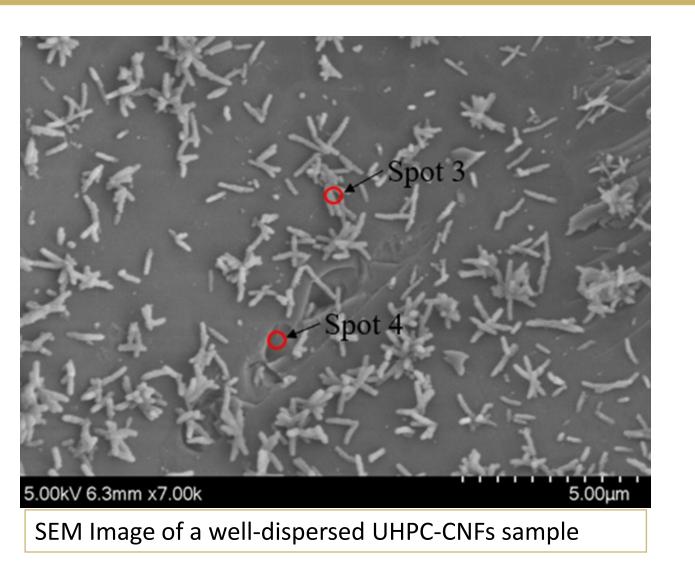
w/c	Cement	Water	Sand	SF	HRWR	CNFs
0.18	35.83	6.45	49.50	6.63	1.55	0.04
		Co	mmerical	CNEcusod	DP_10_VT_	DS (\$171/lb)

Commerical CNFs used: PR-19-XT-PS (\$174/lb)

Various CNF dispersion methods considered (methods D0 –D11):

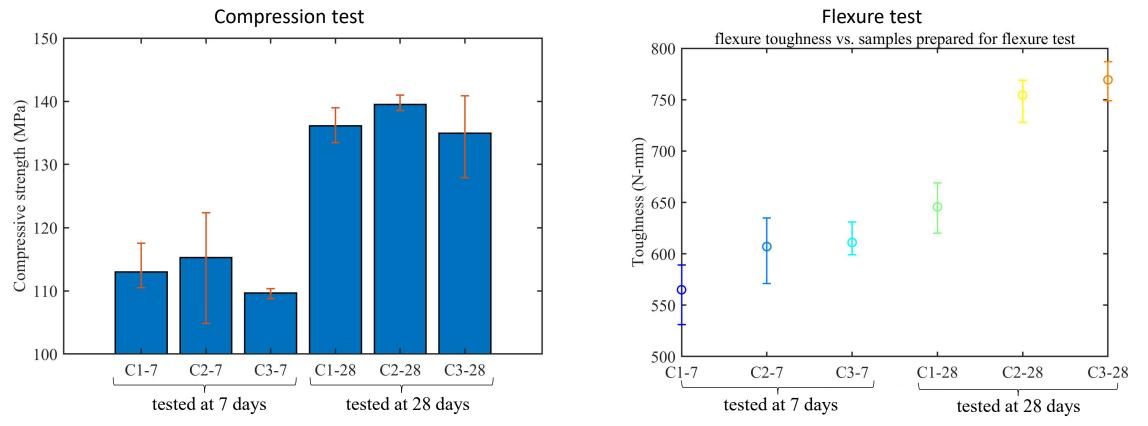
Premixing wet ingredients, premixing dry ingredients, Methylcellulose addition, low speed stirring, high speed stirring, ultrasonic dispersion, polyacrylic acid addition and combinations.

Premixing


Ultrasound dispersion

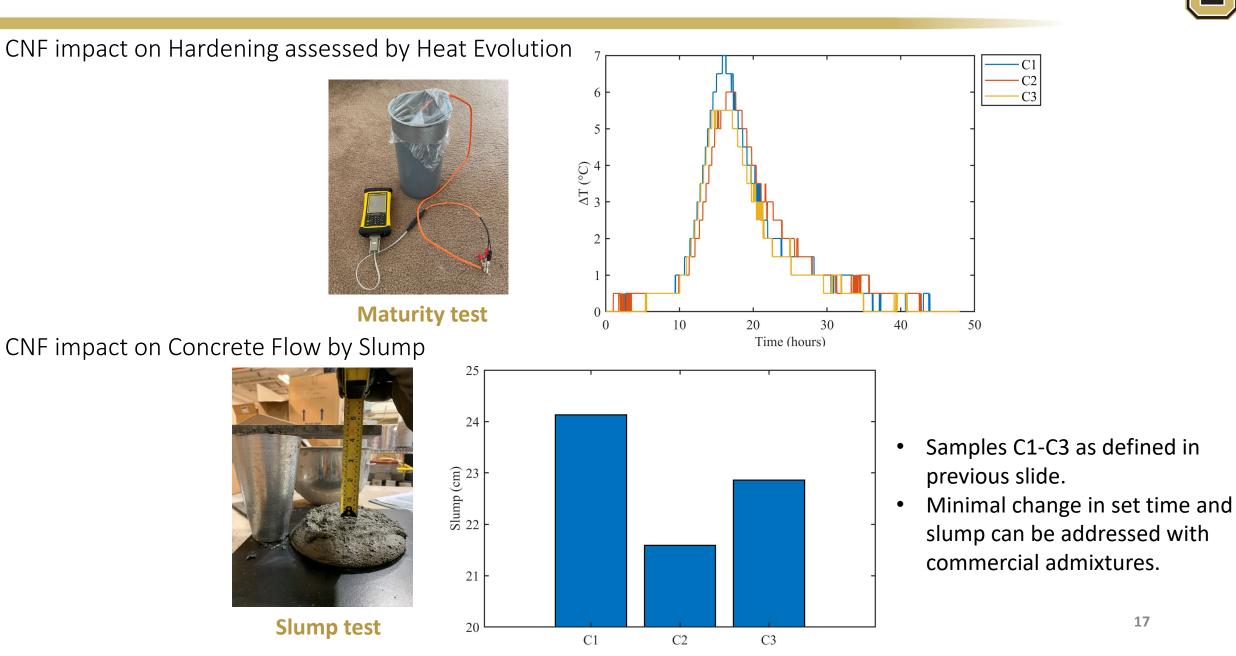
- Dispersion method D10 showed the best performance in terms of toughness improvement.
- This method involves premixing CNFs with water and part of the liquid admixtures, using a highspeed magnetic stirrer for 10 min, then running ultrasound dispersion for 10 mins.

Progress: CNF Dispersion Confirmation in UHPC-CNF

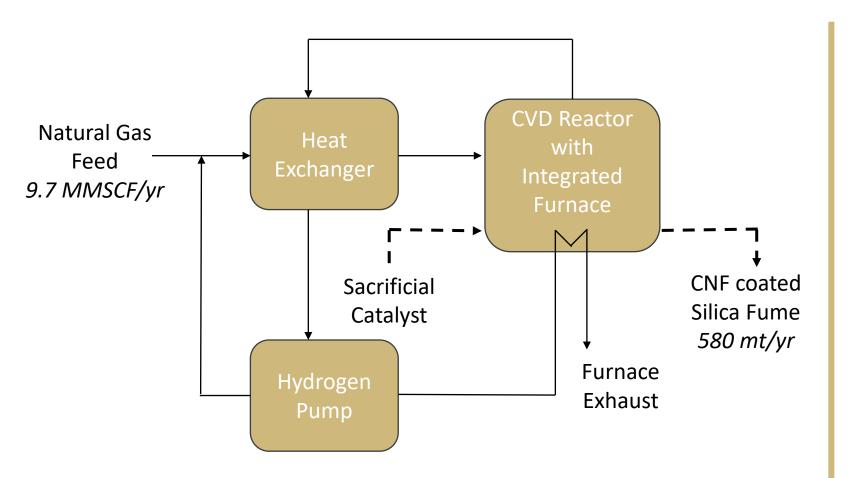

Visual confirmation of successful dispersion with SEM

- SEM shows fibers are welldispersed with dispersion method D10.
- Images of poorly-dispersed CNFs show large-scale bundles of fibers.
- FIB-FESEM and EDS of Spot 3 and Spot 4 were used to confirm white features are single CNFs.

Progress: Optimize CNF addition amount



Specimen	Description
C1-7/28	Control Sample: UHPC only; cured for 7/28 days.
C2-7/28	UHPC-CNFs; HRWR:CNFs=5:1 for dispersion; cured for 7/28 days.
C3-7/28	UHPC-CNFs; HRWR:CNFs=10:1 for dispersion; cured for 7/28 days.


• A High Range Water Reducer (HRWR):CNF ratio of 10:1 showed the highest Flexure Toughness

Progress: Hydration rate and slump

17

Progress: Preliminary TEA

Parameters

NG cost: Free IRR: 25% Lifetime: 15 years Cost of Capital: 8.5%

Results

CNF/CNP coated silica, price range: \$2 - \$4 per kg Pure CNF, price range: \$10 - \$20 per kg Pure CNF, current technology: \$300 per kg (bulk)

Future Work

Lab-Scale CVD	Modular Skid System	Concrete Mix Designs
 The lab-scale CVD studies performed in BP2 will be used to inform the modular operation in BP3. Catalyst focus will switch to Fe. CVD focus will switch to minimized metal content. 	 CVD will be carried out to produce carbon nanoproduct (CNP) at both lab scale and modular scale, with the modular system producing 1kg product/hr. Modular system performance and continued lab scale studies will inform the final commercial path assessment of this technology. 	 Tests introducing the CNP synthesized from the skid system in UHPC will commence.

Potential Technical Work Beyond Current Project

CVD solid carbon production	Concrete	Additional Markets for Carbon
 Catalyst optimization Natural gas feed Correlate process conditions to carbon product form Design of deployable skid Alternative catalyst 	 Mix optimization in conjunction with catalyst optimization Increase carbon fraction in concrete 	 Develop understanding of Carbon Fiber properties Conductivity (H & E) Strength Corrosion resistance Optical Other carbon structures Amorphous
substrates		• Graphitic

Potential Commercialization Work Beyond Current Project

CVD solid carbon production	Concrete Market	Additional Markets for Carbo					
 Identify customers for wellhead skid implementation Refine TEA, GHG, Energy efficiency analyses Collaborate with well head owner 	 Collaborate with concrete producer Improve market understanding Coated silica Product specs Concrete specs Identify customers Product spec optimization 	 Market Assessment Battery raw materials Carbon black Additive manufacturing Polymer Reinforcement Others? 					

Outreach and Workforce Development Efforts

- Outreach
 - Undergraduate Research Opportunities Program (UROP) Undergraduate Mentoring
 - Discovery Learning Apprenticeship (DLA) Undergraduate Mentoring
 - Social Justice in Science (SJS) Graduate Student Led Discussion/Book Group
 - *Elementary Arts Lab* workshops for elementary school students and resources for teachers to explore scientific concepts through art, dance and music
 - Arrupe Jesuit High School Corporate Work-study Program internship program for underserved high school students in Denver to gain STEM job experience

Workforce Development

- Training graduate students, including Jessica Hauck (Chemical Engineering), Boning Wang (Civil Engineering), Ethan Borenstein (Civil Engineering)
- Training undergraduate students, including Samantha Harshberger (Chemical Engineering)
- Training Postdoctoral Associates, including Kent Warren (Chemical Engineering) and Linfei Li (Civil Engineering)

Project Summary

CVD Lab Scale & Modular Operation	Concrete mix design using commercial CNFs	Technoeconomic analysis
 CVD was carried out in labscale system on ALD catalyst target carbon yields achieved. All major modular skid parts have been constructed All major pieces of equipment have been ordered. Expected operation 12/2022 due to supply chain issues 	 The optimal dispersion of CNFs and mix design of UHPC-CNFs were delivered with an improvement of tensile ductility (8% flexure toughness) With 0.1 cwt% CNFs added, the slump decreased up to 10% No obvious compressive strength or setting time change of UHPC by adding CNFs 	 Preliminary TEA and H2A analysis complete Aspen plus simulation and PFD for modular flare gas scale process developed CNP product selling price estimated at \$2-\$4/kg for 25% IRR

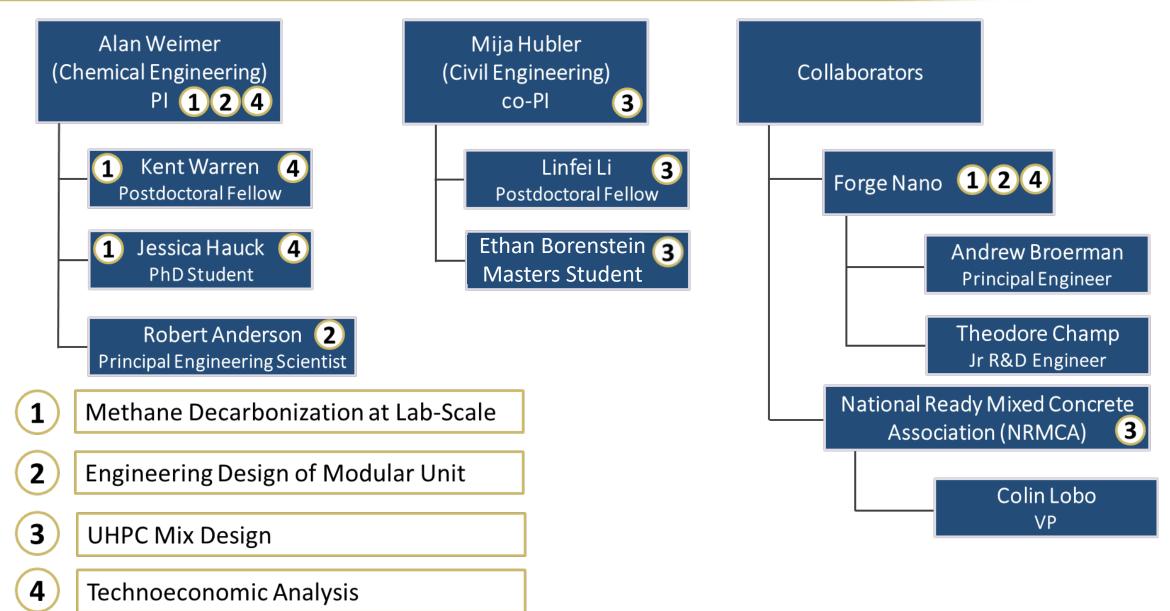
Acknowledgements

- Weimer Research Group Department of Chemical & Biological Engineering
- Hubler Research Group Department of Civil, Environmental, and Architectural Engineering
- Forge Nano
- National Ready Mixed Concrete Association

and the Real Property in

University of Colorado Boulder

Thank you for listening!



Any questions?

University of Colorado Boulder

Team Organization

Gantt Chart Status: end of BP2

Completed Tasks				IDGET F			-		DGET P F Co-pro Integr	oduction				PERIOD to Marke	
1.1 Project Mgt. Plan		01	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	014
1.2 Project Maturation Plan															
1.5 1LA	TASK 1 PM & P														
2.1 Lab CVD Construction	TASK 2 Particle ALD and CVD synthesis	2.1 Lab	System D	esign , Co	nstructio	on,,& Startı	up	3	2.2 CVD Rai	inge Findi	ng				
2.2 Lab CVD Operation 3.1 Skid Design	TASK 3 Module/skid design & construction				3.1 Desi	ign of Skid S	System	3	3.2 Skid Cor	nstructoi	1				
4.1 & 4.2 Concrete Mix Design	BUDGET PERIOD 1 MILESTONES	1.1 1.2	1.3				2. 1 3.1								
	TASK 4 Concrete Mix Design -purchased CNF	4.1	. Establish	Concrete	Mix Desi	ign Relatio	onship		4.2 UHPC C	Concrete					
Current Tasks	BUDGET PERIOD 2 MILESTONES						i i			2.2	3.2 4.2				
3.2 Module Construction &													5.1 Bu	ulk CNF	
Operation	TASK 5 Skid Operation & T2M											5.2 Re	eaction Ki	inetics & Gr	rowth
5.1 Concrete Mix Design with														5. T	2M
Lab Product	TASK 6 Concrete Mix Design – skid CNF						I					·	6.1 Concre	ete Skid CN 6.2 Optim	
,	BUDGET PERIOD 3 MILESTONES												6.1	5.3	
	END OF PROJECT						ľ								6.2
-			N	/lodificati			/NO-GO 1 ed Reacto	L or Operate			/NO-GO 2 cribed Scal				