Coal Enhanced PEEK Filament Production for Additive Manufacturing in Industrial Services DE-FE0032146

Dr. Lakshmi Vendra, Baker Hughes Dr. Patrick Johnson, University of Wyoming

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

- Project Duration: 24 months
- Start Date: July 12, 2022
- Kick-off meeting: September 8, 2022

Project Objectives

• Performance Period 1: 12 months

- Development of coal-enhanced PEEK filament
- Integration of coal-enhanced PEEK filament with commercially available 3D printer

Performance Period 2: 12 months

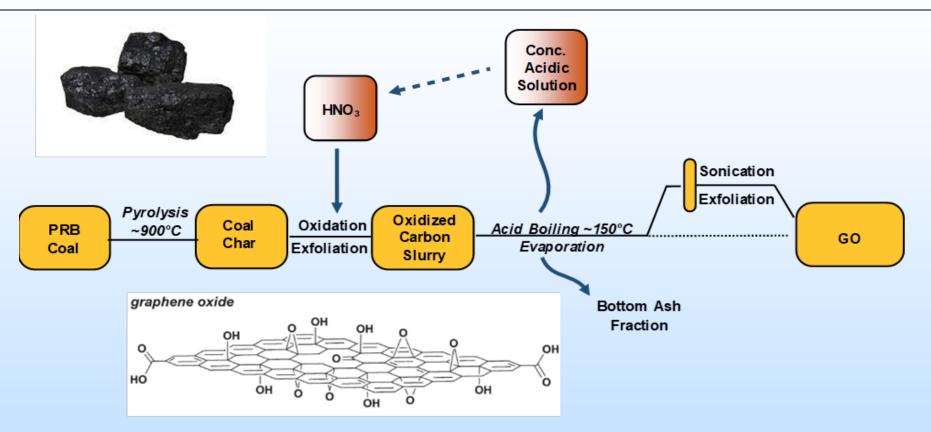
- Print and test a product to quantify properties of coal-enhanced PEEK filament
- Compare & Contrast performance to quantify benefits

Scope: Successfully print product using coal-enhanced PEEK filament

Project Team

Baker Hughes Team

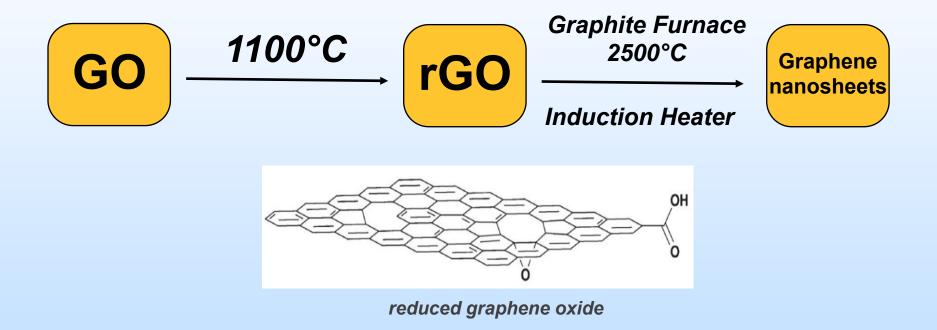
- Dr. Lakshmi Vendra (PI)
- Brian Wieneke
- Dr. Wei Chen
- Ryan Antle
- Maggie Lowry

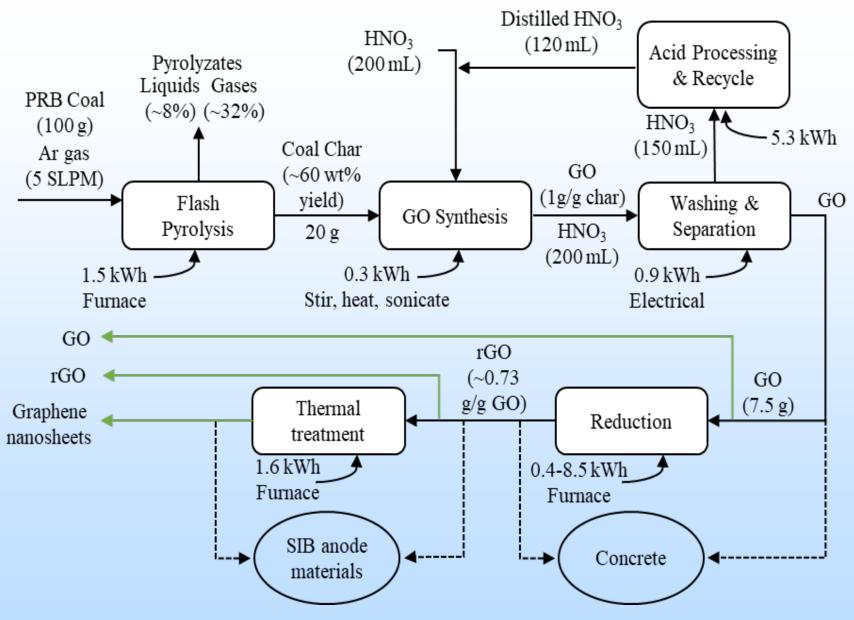

University of Wyoming Team

- Dr. Patrick Johnson
- Maxwell Rathweg
- Jacob Wozny

Technology Background

- Previous work on 'Carbon Engineering'
 - State funded effort for alternative uses of coal
 - Johnson group has several publications / provisional patents on coal-derived graphene oxide, hard carbon, polyurethanes, epoxides
 - Groundbreaking on 9/2/2022 for a state / university run pilot plant for pyrolysis / solvent extraction to generate materials from coal for downstream processing


GO Process Diagram from Coal


Scale-up focused lab process:

- Flash pyrolysis improved sp2 content over tube furnace
- Separation critical large scale processes can be faster than lab
- Recycling acid multiple passes, distillation demonstrated

GO Thermal Treatment

- Small scale: Tube furnace (1200C), graphite furnace (2500C)
- Induction furnace faster turnaround, larger quantities

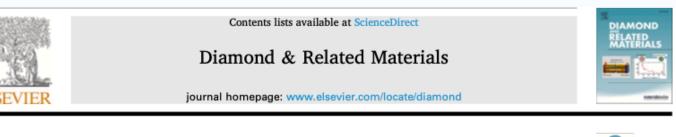

Contaminant Analysis

Table 5. Contaminant levels measured from coal feedstock, coal char, and GO. [++]

+.				
	Element	Raw Coal (wt%)	Coal Char (wt%)	GO (wt%)
	Hg	ND	ND	*
	As	0.0001	0.0001	ND
	Se	ND	ND	ND
	Cd	ND	ND	ND
	Sb	ND	ND	ND
	Pb	0.0001	0.0002	ND
	F	0.0054	ND	ND
	Cl	0.0012	ND	ND
	Br	0.0016	ND	ND
	S	0.34	N/A	N/A
	Ν	0.76	N/A	N/A
	DA 16 1 10	111 (CIVI 04() '111	1. 1	/TT ' 1 C .

* EPA Method 7473 (SW-846) will be applied to test the %Hg in the future.

Technology Background

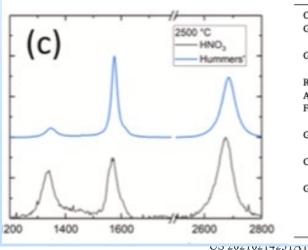
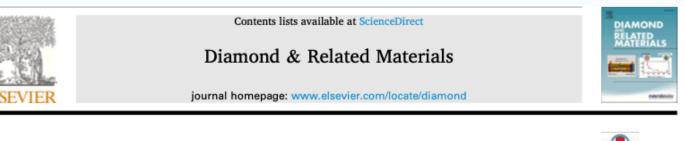

Evolution of structural and electrical properties in coal-derived graphene oxide nanomaterials during high-temperature annealing

Table 3

Comparison of powder electrical conductivity with literature.

Ana Paula Martins Leandro, Michael A. Seas, Kaitlyn Vap, Alexander Scot Hud Wahab^{*}, Patrick A. Johnson^{*}


Material	Annealed temperature [°C]	Conductivity [10 ³ S m ⁻¹]	Ref.		
Ordered mesoporous carbon	1500	2.82	[39]		
Graphite	-	2.12	[38]		
Graphene		0.26			
Graphite	-	2.50	[66]		
Reduced GO		2.42			
Reduced GO	-	1.50	[67]		
Anthracite	950	1.00	[34]		
Flake graphite	-	10.6	[42]		
Natural graphite		19.7			
Graphene microflower	2000	4.5	[60]		
	3000	21.2			
Catalytic-microwave exfoliated graphite oxide	-	53.1	[63]		
Graphite	2500	8.98	This		
HNO3 rGO nanocrystals	2000	2.38 (2.63)	work		
(Hummers' rGO nanocrystals)	2500	4.81 (4.34)			

(19) United States

PP1

(12) **Patent Application Publication** (10) Pub. No.: US 2021/0214231 A1 JOHNSON et al. (43) **Pub. Date:** Jul. 15, 2021

Technology Background

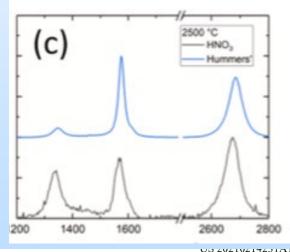
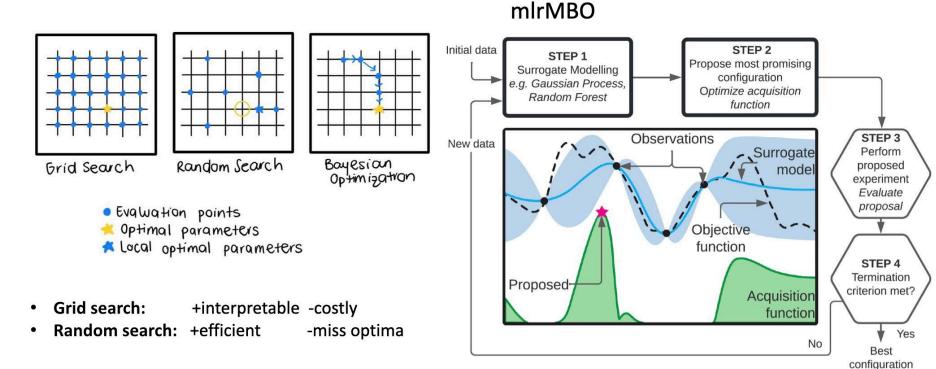

Evolution of structural and electrical properties in coal-derived graphene oxide nanomaterials during high-temperature annealing

Table 3

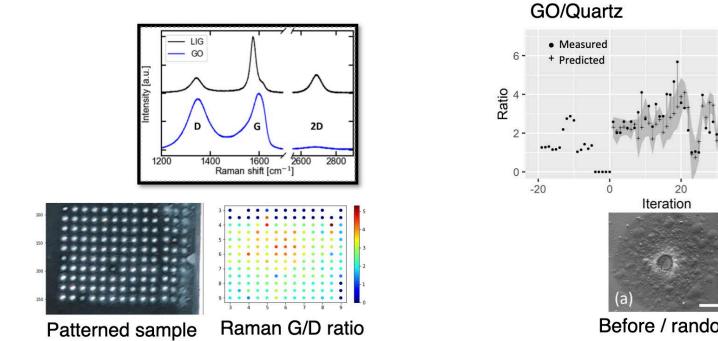
Comparison of powder electrical conductivity with literature.

Ana Paula Martins Leandro, Michael A. Seas, Kaitlyn Vap, Alexander Scot Hud Wahab^{*}, Patrick A. Johnson



Material	Annealed temperature [°C]	Conductivity [10 ³ S m ⁻¹]	Ref.
Ordered mesoporous carbon	1500	2.82	[39]
Graphite	-	2.12	[38]
Graphene		0.26	
Graphite	-	2.50	[66]
Reduced GO		2.42	
Reduced GO	-	1.50	[67]
Anthracite	950	1.00	[34]
Flake graphite	-	10.6	[42]
Natural graphite		19.7	
Graphene microflower	2000	4.5	[60]
	3000	21.2	
Catalytic-microwave	-	53.1	[63]
Graphite	2500	8.98	This
HNO3 rGO nanocrystals	2000	2.38 (2.63)	work
(Hummers' rGO nanocrystals)	2500	4.81 (4.34)	

(19) United States


PP1

(12) Patent Application Publication (10) Pub. No.: US 2021/0214231 A1 JOHNSON et al. (43) **Pub. Date:** Jul. 15, 2021

Bayesian optimization

Single-proposal optimization of Raman

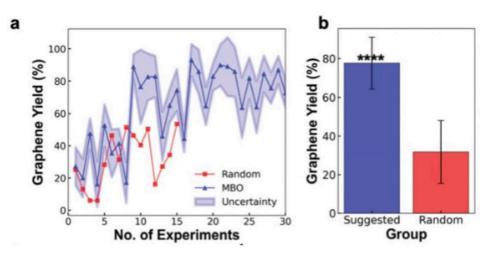
Before / random

After / Al

before after

40

Mat.	Camp.		Media	an Value			Best	t Value	
		Random	40 Random	MBO first 20	all MBO	Random	40 Random	MBO first 20	all MBO
GOQ	1	1.27	1.23	1.95	2.09	2.57	2.87	2.55	3.54
GOQ	2	1.22	1.23	2.86	3.18	2.87	2.87	5.68	7.21
GOQ	3	1.3	1.23	1.69	2.32	2.39	2.87	5.83	5.83

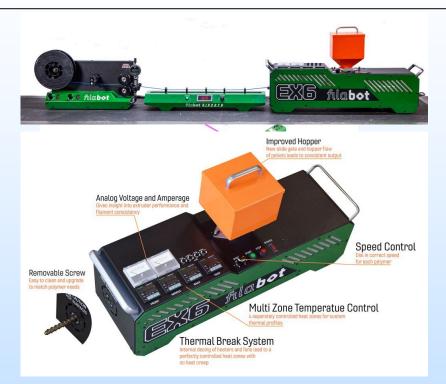

ADVANCED MATERIALS

Research Article 🛛 🔂 Full Access

Machine Learning Guided Synthesis of Flash Graphene

Jacob L. Beckham, Kevin M. Wyss, Yunchao Xie, Emily A. McHugh, John Tianci Li, Paul A. Advincula, Weiyin Chen, Jian Lin, James M. Tour 🗙

First published: 22 January 2022 | https://doi.org/10.1002/adma.202106506


- Our ML work has inspired key researchers in the graphene field
- By following FAIR guidelines to ensure reproducibility, researchers can follow our Bayesian optimization code directly and independently
- Do come and chat for potential collaboration

Technical Approach

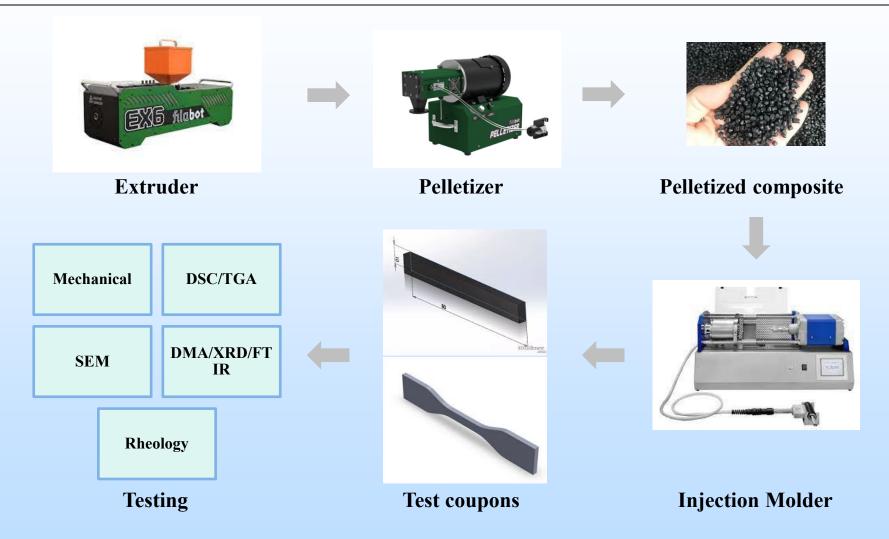
Characterization Capabilities

- Chemical characterization
 - Raman, UV-Vis, FTIR, XRD, TGA, CHNO, ICP-MS
- Advanced instrumentation
 - FIB TEM, SEM, XPS
- Polymer characterization
 - GPC, DSC (glass transition temp)
- Mechanical instrumentation
 - Tensile, bend, impact, compression

Equipment

Extruder and pelletizer

- a. Mixes additives with pellets
- b. Produces filament
- c. Produces pellets
- d. High temperature capabilities
- e. Abrasion resistant


PP1

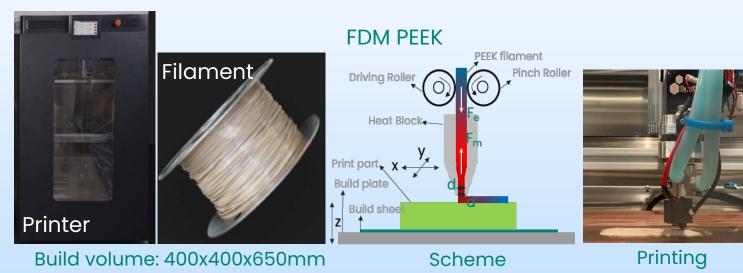
Injection molder

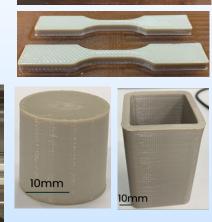
- a. Tests material, not 3D printer
- b. High mold and operating temperature

Materials Processing

Additive Manufacturing Global Footprint

Additive Polymers Lab (Houston)

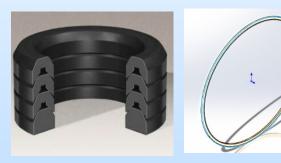

- AON M2 (17"x17"x25")
 - Virgin PEEK
- M400
- F900
- Elegoo Mars 2



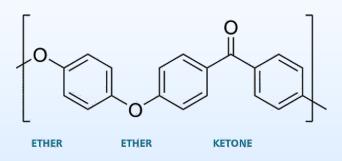
- 3D printer
 - Coal-enhanced PEEK

Technology Background

- **Fused Deposition Modeling**
- Developed AM process to produce virgin PEEK



PEEK filament is fed into a heated extruder that melts the polymer and deposits it layer by layer


AM Coal-Enhanced PEEK

PEEK

- Semi-crystalline thermoplastics, PAEK family
- Mechanical, chemical, temperature resistance
- Widely used in oil & gas
- Hard to manufacture
- \$MM Market Potential

Seals & Back-up rings

Success Criteria

- Develop AM PEEK with isotropic properties
- Potential to have better printability compared to carbon-fiber PEEK
- Enhance corrosion performance
- TRL 4-5

Technical/Economic Challenges

Perceived Risk	Risk Rating			Mitigation/Response Strategy
reiceiveu Kisk	Probability	Impact Overall		Witigation/Response Strategy
Financial Risks:				
Raw material supply risk	Low	High	High	Well-established relationships with raw material suppliers. Look for alternative suppliers as applicable
Cost/Schedule Risks				
Cost estimates could be affected by delays in project schedule	Low	Medium	High	Regular report-outs to ensure the project is on schedule and doesn't impact cost estimates
Technical/Scope Risks				
Coal derived material is not compatible with PEEK	Medium	Medium	High	Robust test matrix for blending parameters. Go/No go decision
Modified PEEK filaments cannot be extruded	Medium	Medium	High	Leverage Univ. of Wyoming extrusion expertise. Go/No go decision
Modified part performance is not improved	Low	Medium	High	Explore economic impacts, consider other end use applications
Health, Safety, & Environmental Risks:				
Competency of operators working on 3D printers and handling coal-enhanced PEEK material	Low	High	High	AM process and procedures handling 3D printers and polymer materials following HSE guidelines and standards are well established at Baker Hughes.

Project Status

Task/		Planned Completion	
Subtask	Milestone Title & Description	Date	Verification Method
1.0	Kick-off meeting	Sep 8, 2022	Project kick-off meeting
2.3	Successful integration of coal in PEEK filament	Apr 2023	Being able to extrude filament with coal and inspecting for desired volume fraction
2.4	Successful printing of test coupons using modified PEEK	Jul 2023	Print test coupons to desired shape and size using commercial 3D printer and coal-enhanced PEEK filament. Verified for dimensional accuracy. Go/No go decision
	Annual Meeting	Aug 2023	Report out on project status.
3.1	Tabulate mechanical properties of coal- enhanced PEEK specimens	Mar 2024	Complete testing of specimens and analysis of results
3.4	Successful printing of baseline part	May 2024	Print functional part using commercial 3D printer and coal-enhanced PEEK filament. Verified for dimensional accuracy and CT scanned for volumetric inspection
	Final Report Out	Jul 2024	Final Report on project outcome

Plans for future testing/development/ commercialization

After the project:

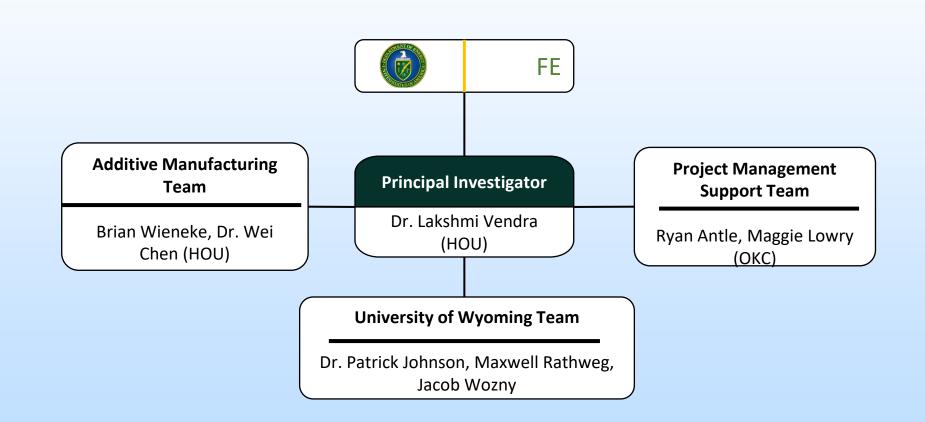
- Partnering with raw material suppliers to commercialize enhanced PEEK filament fabrication
- Collaborating with OEMs to address scalability challenges
- Wyoming state investing in pilot plant for graphene oxide material generated from coal wastes – improves future availability, utilization and applications of the material

Outreach and Workforce Development Efforts or Achievements

- Workforce Development
 - 1-2 post-doctorate students to be hired at University of Wyoming
 - 2 undergraduate students currently working on the project

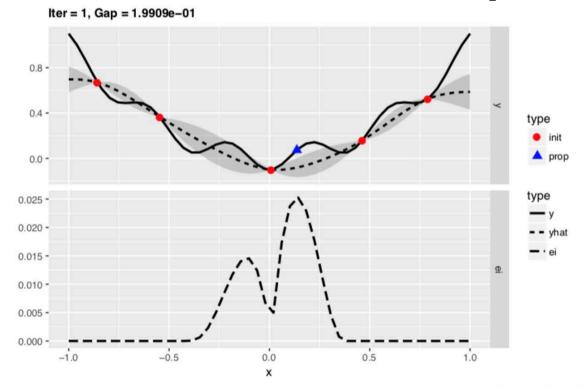
Summary Slide

Project Scope

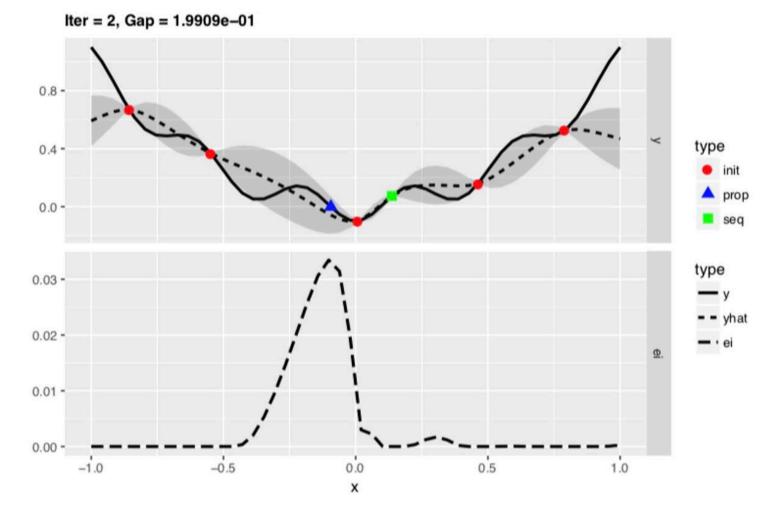

- Development of coal-enhanced PEEK filament
- Integration of coal-enhanced PEEK filament with commercially available 3D printer
- Print and test a product to quantify properties of coal-enhanced PEEK filament
- Compare performance & quantify benefits

Deliverables

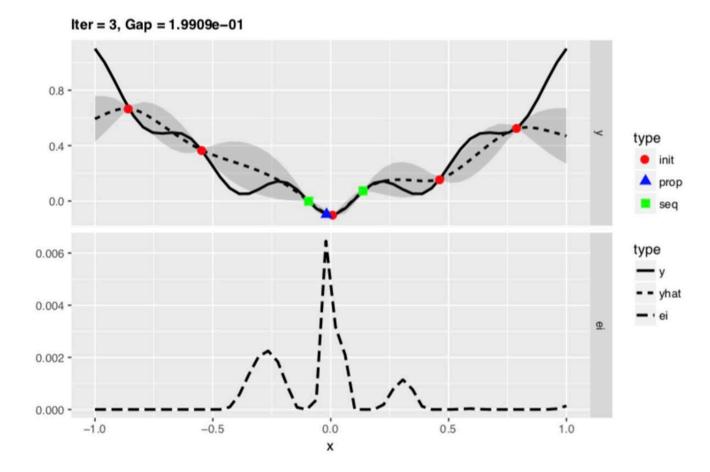
- Material formulation of coal-enhanced PEEK
- Process development
- Property tables
- Final Report
- IP creation

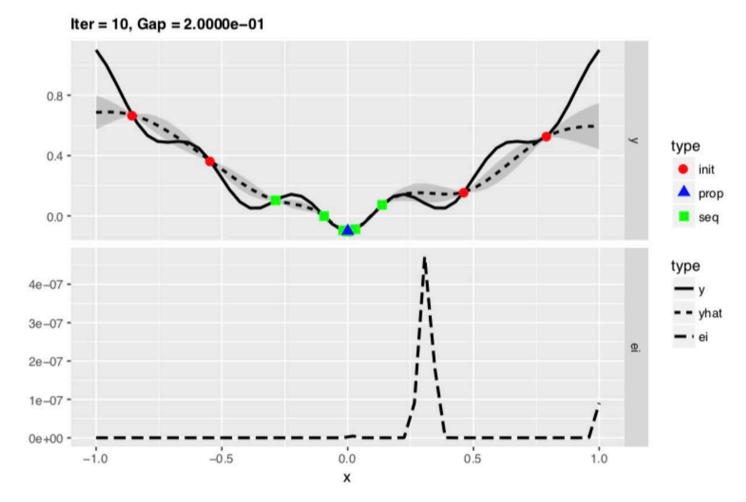

Appendix

Organization Chart

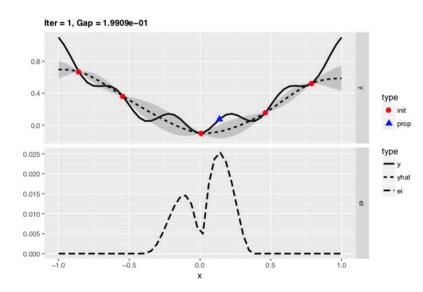

Gantt Chart

● Re	eport or Milestone	♦ Go/No-go		202	22						202	3							2	024		
Miles	tone Description	Month	A S	0	Ν	D J F M A M J J A S O N D			D.	J	F	M	A I	νJ	J							
		Month #	1 2	3	4	5	67	8	9 10) 11	l 12	13	14	15	16	17	18	19	20	21	22 2	23 24
		Task Name																				
1. Pro	ject Kickoff																					
Perfo	rmance Period 1			Pe	erfo	orma	ance	e Pe	rioc	1												
Task 2	2.0	Fabrication and Testing of Filaments																				
	Subtask 2.1	Quality analysis of coal derived materials																				
	Subtask 2.2	Coal enhanced filament fabrication																				
	Subtask 2.3	Extrusions of filaments																				
	Milestone	Successful integration of coal in PEEK filament																				
	Subtask 2.4	Preliminary 3D Printing of test coupons																				
	Milestone	Successful printing of test coupons using modified PEEK																				
Perfo	rmance Period 2													Р	Perf	orm	nano	ce P	eric	od 2		
Task 3	8.0	Commercial Prototyping and Testing																				
	Subtask 3.1	Test sample printing and baseline characterization																				
	Milestone	Property table																				
	Subtask 3.2	Baseline model part selection																				
	Subtask 3.3	Model 3D part printing & process parameter development	t																			
	Milestone	Successful printing of baseline part																				,
	Subtask 3.4	Performance and functional testing																				
Repor	t Out																					




Bischl, Bernd, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and Michel Lang. "MIrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions," March 9, 2017. http://arxiv.org/abs/1703.03373.

AIM / UWYO 11


31

বর

			-						
power	pressure	time	ratio	pred. ratio	max pred. ratio				
486	53	4377	9.75	3.72	5.09				
526	49	4377	4.52	9.19	10.19				
629	53	4377	4.09	8.6	9.73				
486	21	4377	5.14	8.53	9.61				
486	50	4266	3.08	9.34	9.94				
470	30	4381	3.57	5.68	7.16				
876	21	13991	2.39	4.02	5.72				
1124	100	9725	2.71	3.96	5.65				
243	46	5146	8.29	3.92	5.6				
243	46	5146	7.05	4.99	6.77				
243	46	5132	5.81	5.63	7.43				
224	48	5845	6.17	5.76	7.4				
243	46	5153	5.98	5.93	7.59				
243	27	5152	6.95	6.02	7.55				
243	43	5154	5.72	6.2	7.74				
331	84	1191	3.8	4.49	6.18				
243	19	6689	5.49	5.93	7.44				
243	26	6011	6.57	5.92	7.37				
239	46	4917	5.87	6.01	7.56				
243	26	5070	8.71	6.11	7.51				

Y = ratio

Yhat = predicted ratio Max pred. ratio = pred. ratio + uncertainty

Predictions