

Coal Plastic Composite Pipe Infrastructure Components (DEE0031982)

Wednesday, October 26th, 2022 U.S. DOE-NETL Resource Sustainability Project Review Meeting Jason Trembly, Ph.D. Ohio University

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

Project Specifics

- DOE/NETL Cooperative Agreement No. DE FE-0031982
- DOE Project Manager: Jason Montgomery
- Principal Investigator (PI): Jason Trembly
- Participants: CONSOL Energy, Engineered Profiles, and Clear Skies Consulting

Project Budget

- Federal: \$500,000
- Non-Federal: \$125,000

Project Duration

• January 1, 2021– December 31, 2022

DOE-NETL Carbon Ore Processing Program

Coal Plastic Composites

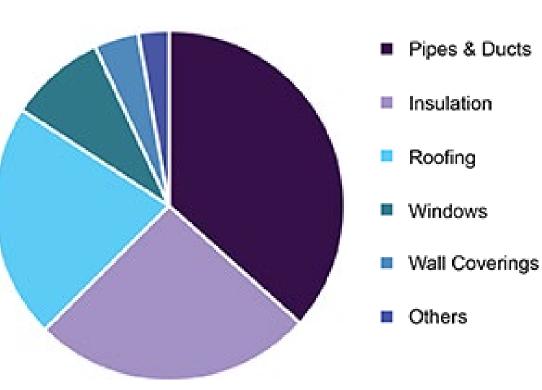
Background

- In past 3 years, OHIO and industrial partners have developed CPC materials for decking applications
 - DE-FE0031809
- Successfully matured technology from TRL4 to TRL8
- Meets or exceeds ASTM and IBC requirements
- Performance advantages
 - Equivalent or greater strength
 - Greater resistance to oxidation
 - Lower flammability
 - Better price point
 - Lower embodied energy and emissions

Deck Constructed with CPC Boards

CPC Pricing with Commercial Products

Manufacturer	Product	End User Pricing (\$/linear ft)
DE-FE0031809	CPC	1.29
Trex	WPC	1.75-5.78
Choicedek	WPC	3.67
TimberTech	WPC	4.48-6.68


OHIO Pipe Materials Market

Overview

- Pipe is the largest thermoplastic resin market segment
- In 2019, the U.S. plastic pipe and fitting market had a value of \$20 billion, and it is expected to grow at 2.5% annually through 2026
- Sewage and drainage account for the largest market segment (35%)

Coal Plastic Composite for Pipe

- Favorable physical properties including high thermal and thermo-oxidative stability
- Upcycles the value of coal (~0.040.03 \$/lb), as HDPE and PVC pipe materials sell for ~\$2.203.70/lb.
- Replacing CaCO₃ (\$0.130.22/lb) or carbon black (~\$1.00*I*b) with coal offers attractive cost savings
- Must meet rigorous ASTM performance requirements for compounds and pipe materials

Building/construction plastic market share

Project Objectives

Overall: Develop coal plastic composite (CPC) pipes for use in home, industrial, and infrastructure applications.

- Consist of $\geq\!51\,$ wt.% coal and $>\,70\,$ wt.% carbon
- Offer performance, cost, and environmental benefits

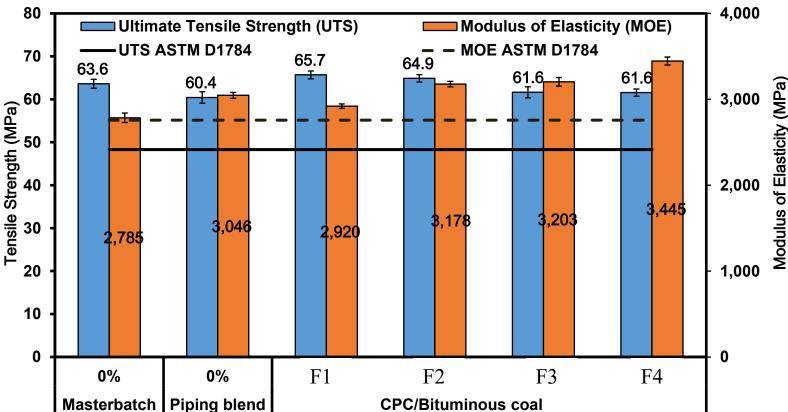
Phase I Objectives

- Develop CPC compounds that meet ASTM specifications
- Analyze existing market applications
- Conduct costing and technology gap analyses

Project Scope Project Milestones

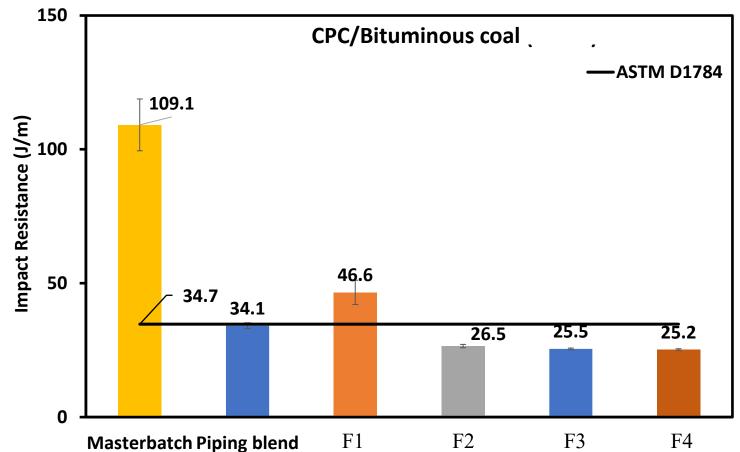
Description	Planned Completion Date	Actual Completion Date
CPC Formulation Performance Report	January 31, 2022	January 31, 2022
Techno-economic and Market Analyses	July 31, 2002	July 28, 2022
Technology-gap Analysis	December 31, 2022	

Project Success Criteria


- Demonstrate the ability of CPC pipe formulations containing greater than 51 wt.% coal meet ASTM plastic pipe compound attribute requirements,
- Demonstrate continuously-manufactured CPC pipes meet ASTM plastic pipe attribute requirements, and
- Demonstrate manufacturing CPC pipes containing at least 51 wt.% coal.

CPC Compounds: Tensile Properties

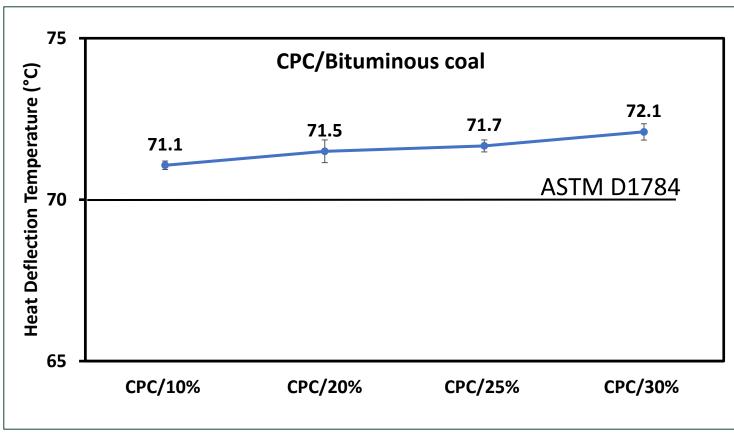
- Tensile properties for CPC pipe formulations with different coal types and particle size distributions were investigated
- CPC formulations meet or exceed tensile properties requirements for tensile 12454 per ASTM D1784
- UTS for F4 was comparable to commercial pipe material blend
- MOE for F4 was slightly higher than commercial pipe material blend



OHIO UNIVERSITY

CPC Compounds: Impact Resistance

- Impact resistance for CPC pipe formulations with different coal types and particle size distributions were investigated
- CPC formulation with F1 coal exceeds the impact resistance requirement for class 12454 per ASTM D1784
- Reduction in impact was attributed to stiffening of polymer chains and coal agglomeration at the higher coal content



CPC Compounds Heat Deflection Temperature (HDT)

- HDT for CPC pipe formulations with different coal types and particle size distributions were investigated
- CPC formulations (1680 wt.%) exceeds HDT requirement for class 12454 as per ASTM D1784

Flammability

- Burning extent values were below 25 mm and burning times were less than 10 s when tested as per ASTM D635
- All CPC compounds meet flammability requirements for class 12454 as per ASTM D1784

EHS Evaluation

Heavy Metal Leaching

- EPA Method 1311
- Determines ability to safely dispose of materials in MSW landfills
- CPC Passes, all metals below detectable levels

Respirable Dust

- NIOSH Method 0600
- CPC Passes, well below coal standards
 and construction dust standards

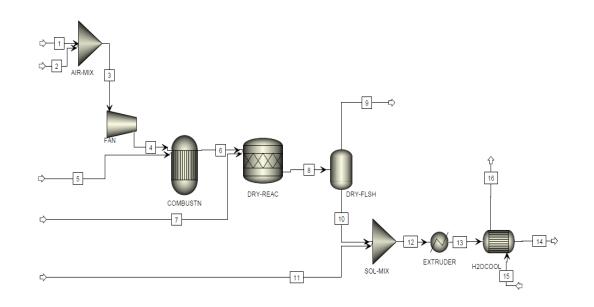
EPA Method 1311 Results

Metal	CPC (mg∙L¹)	EPA Limit (mg•L ¹)
As	< 0.05	5.0
Ba	< 0.05	100.0
Cd	< 0.05	1.0
Cr	< 0.05	5.0
Pb	<0.05	5.0
Se	<0.05	1.0

Continuous CPC Pipe Manufacturing

- Pipe testing completed for 1.25" CPC pipe
- CPC pipe (2" or greater) should meet ASTM requirements for sewer pipe and fittings applications

	ASTM D2665	ASTM D2729
Pipe type	Drain, Waste,	Sewer Pipe and
	Vent Pipe	Fittings
Cell	12454	12454
classification	12434	12434
Impact		
resistance	60 ft.lbf	35 ft.lbf
(ASTM D2444)		
Pipe stiffness	600 psi	59 psi



Techno-economic Analysis

Base Assumptions

- nth plant design
- 12.5 ton/hr manufacturing capacity
- Feedstocks: PVC and Pitt No.8
- Cost Categories
 - CAPEX and Fixed/Variable OPEX
- Manufacturer's Sales Price (30% IRR)
 - PVC Pipe: \$2.48/ft
 - CPC Pipe: \$2.13/ft
 - Current Pricing: \$3.17/ft

Future Development Pipe Formulations

- PVC-based formulation R&D has been the primary focus of project efforts
- Polyethylene-based formulation R&D to be evaluated during project remainder

Pipe Manufacturing

- Preliminary CPC pipe manufacturing scaleup demonstrated at Engineered Profiles
 - 1¼ in Schedule 40 pipe
 - Meets ASTM D2729 performance requirements
 - ASTM D2729 requires ≥ 2 in pipe

1¹/₄ in Schedule 40 PVC pipe made with CPC formulation

Summary

- CPC materials demonstrate potential for use in pipe infrastructure applications
 - CPC formula developed which meets ASTM specs for D2729
 - CPC formulations successfully used in manufacturing 1¼ in Schedule 40 pipe
 - Initial pipe Meets ASTM D2729 requirements for sewer pipe and fittings
 - Techno-economic analysis indicates CPC materials offer cost savings over existing PVC materials
- Project team competencies were integral in overcoming challenges in a timely manner
- CPC pipe technology matured to TRL5

Acknowledgements

- U.S. DOENETL
 - Carbon Ore Processing Program
 - DOE Staff: Jason Montgomery and Joseph Stoffa
- CONSOL Energy
 - Eric Shereda and Dan Connell
- Engineered Profiles
 - Vick Dhanapal and Bob Heigel
- Ohio University
 - Logan Veley, Yahya Al Majali, Samantha Forshey, and Damilola Daramola

Questions

- Contact:
 - Jason Trembly, Ph.D.
 - (he/him/his)
 - Russ Professor of Mechanical Engineering
 - Director, Institute for Sustainable Energy and the Environment
 - Ohio University
 - Phone: (740) 566-7046
 - Email: trembly@ohio.edu

