Reduction of Methane Leaks through Corrosion Mitigation Pre-treatments for Pipelines with Field Applied Coatings (FE0031874)

Kenneth Lee DNV GL USA

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Dates, Funding, & Participants

• Originally 3 year project: 9/1/2020 to 8/31/2023

Project Total:

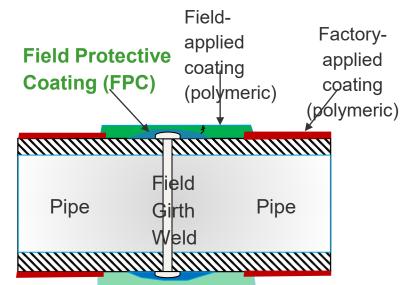
- 6 month NCTE on 8/2022: Amended end date 2/29/2024
- Direct cost (77%) to Principal Investigator

DNV GL USA	\$1,499,252
 Cost share Partners (23%) 	
 Enbridge: pipeline field testing 	\$300,000
 Lincoln Electric: coupon fabrication 	\$75,008
 DNV GL USA: technical advisor, software 	\$57,488
 MC Consult: technical advisor 	\$16,000

Project Participant Organizations

• DNV (Dublin, OH): Leading independent expert in risk management and quality assurance, including leading pipeline corrosion and welding expertise. Global HQ in Norway with 12,000 employees worldwide in 100+ countries.

• Lincoln Electric (Cleveland, OH): Leading world manufacturer of welding, brazing, and soldering alloys and robotic welding and cutting equipment, with 11,000 employees and 60 manufacturing locations worldwide



(Cost Share)

• Enbridge (Houston, TX): Leading operator of oil and natural gas pipelines in North America, headquartered in Calgary, Canada. US operations has 23k miles of gas transmission and midstream pipelines in 30 states, transporting 19% of the natural gas consumed in the US (18 billion cubic feet per day).

Overall Project Objectives

- Develop field protective coating over pipeline girth welds to mitigate corrosion under field applied coatings
- 2. Detail field applicability of the coating system
- 3. Develop guidance for application and technology transfer to industry

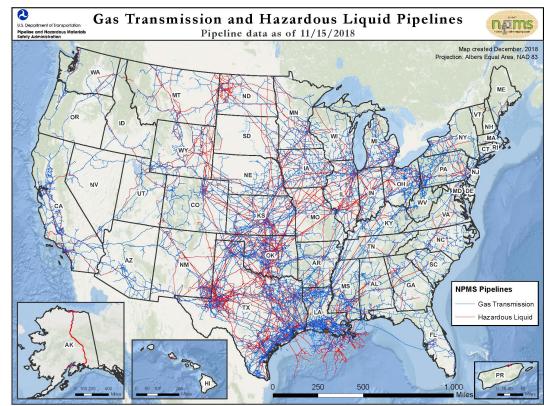
Project Schedule & Milestones

Project Year	Task	Description
1	1.0	Project Management
	2.0	Select optimum coating composition
		Go/No-Go report
2	3.0	Lab tests of coating concept
	4.0	3-month lab & field tests
		Go/No-Go report
3	5.0	6-month field test
	6.0	Coating guidance document
		Final Report

Natural Gas Transmission Pipelines

Length of Pipelines

300 thousand miles of gas transmission


2.2 million miles of gas distribution <u>https://www.phmsa.dot.gov/data-and-</u> <u>statistics/pipeline/pipeline-mileage-and-facilities</u>

Volume of Gas

28 trillion cubic feet delivered annually to 75 million customers (https://www.eia.gov/energyexplained/naturalgas/natural-gas-pipelines.php)

Gas Composition

70-90% methane by volume (pipeline quality gas) http://naturalgas.org/overview/background/

Natural Gas Transmission Pipelines

Pipe material: Steel

- Microalloyed, up to 80ksi min. yield strength
- 12-42" diameter, ¼"-1" wall, manufactured in 40'-80' length segments

External pipeline coating

- Factory coating: Fusion bonded epoxy (FBE) except for pipe ends, left bare for field welding
- Field FBE coating: Applied over welds and pipe ends, often in adverse weather conditions (wind, rain, cold, etc.), and is usually lower quality and has higher failure rate

Pipeline Corrosion

- Corrosion protection: Pipelines are buried underground with polymeric pipeline coating and cathodic protection
- Corrosion is a leading cause of pipeline incidents
- Field coating issues identified by USDOT PHMSA below https://primis.phmsa.dot.gov/meetings/FilGet.mtg?fil=903

Field coating applied over dirt/debris

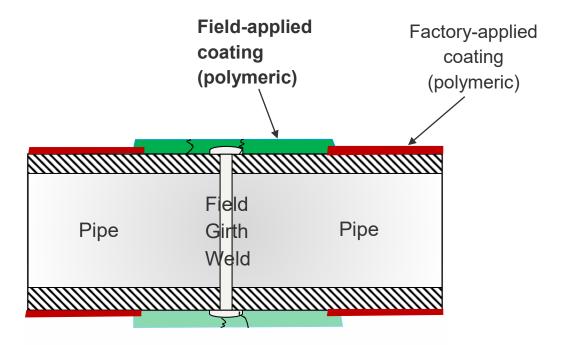
Construction damage of girth weld coating found by DCVG Survey during pipeline operation

Reduction in Methane Emissions

Reducing corrosion of natural gas pipeline welds lowers methane emissions by reducing:

https://www.ingaa.org/File.aspx?id=34990&v=56603504

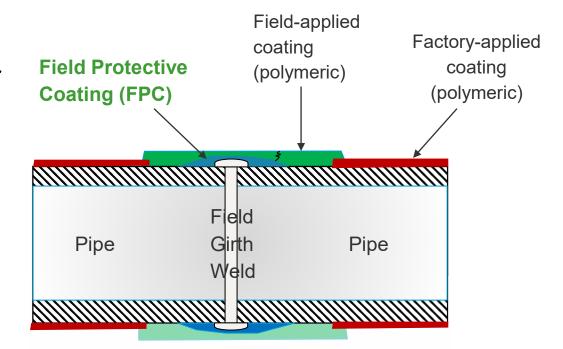
- •Controlled venting: Depressurizing pipeline for maintenance, repairs, inspection, or hydrostatic testing, commonly for integrity management to meet federal pipeline safety regulations.
 - Example: 36" diameter, 800 psig pipeline blowdown for pipe replacement of a 30-mile segment (distance between mainline valves) results in natural gas emission of 60 million cubic feet <u>http://blogs.edf.org/energyexchange/files/2016/07/PHMSA-Blowdown-Analysis-FINAL.pdf</u>


• Fugitive emissions: Leaks and incidents during operations

Current Problem

Field-applied pipeline coating over pipe ends and field girth weld is:

- Usually lower quality than factory-applied pipe coating
- Results in more frequent coating failures

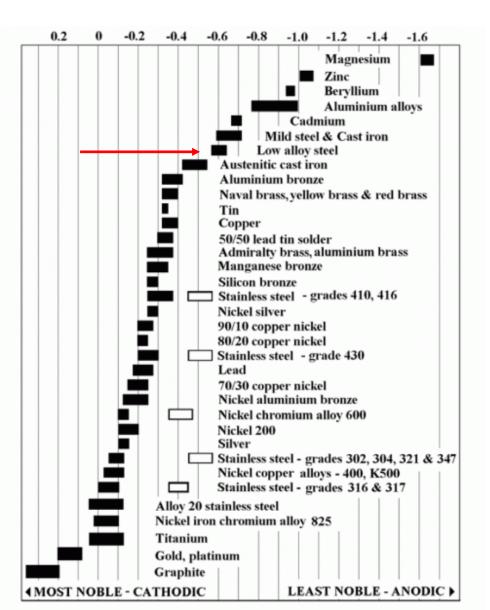

Axial cross-section of buried steel pipeline

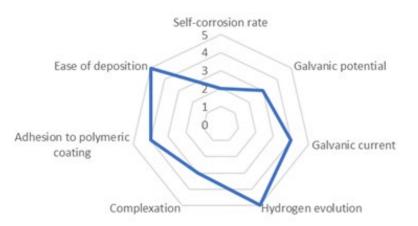
Proposed Solution

Field Protective Coating

(**FPC**) provides extra layer of corrosion protection in girth weld region. Especially when:

- Groundwater penetrates
 the field top coating
- Pipe is shielded from external CP

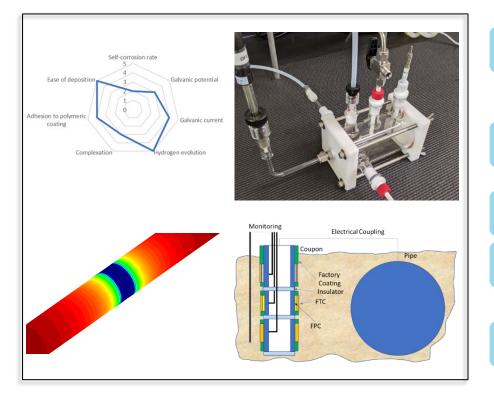



Axial cross-section of buried steel pipeline

Project Approach

- Optimize and select alloy(s) for field protective coating, using models and experiments
- Consider 2 types of alloys:
 - Corrosion resistant
 - Sacrificial
- Generate alloy coated pipe steel coupons
- Testing of corrosion coupons
 - Laboratory
 - Pipeline field site
- Document performance and draft guidance for field protective coating

Alloy Overview & Selection



- Selection Criteria for an effective field protective coating
 - Minimal self-corrosion
 - Optimized galvanic potential and current
 - Mitigate hydrogen evolution
 - Avoid complexation
 - Adhesion to field applied polymeric coating
 - Weldability

Research Approach

Materials overview and selection

- Modeling and data collection
- Candidate list of materials produced
- Downselect criteria developed

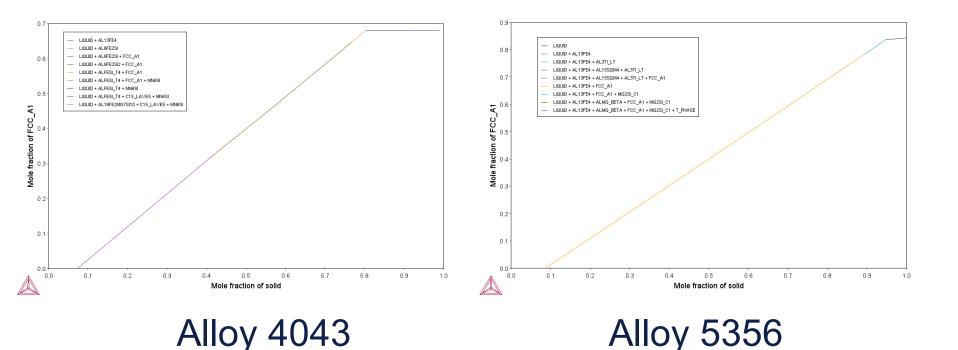
Electrochemical testing

• Polarization curves in soil simulant solutions

Finite element simulation of coating disbondment scenarios

Coated coupon studies

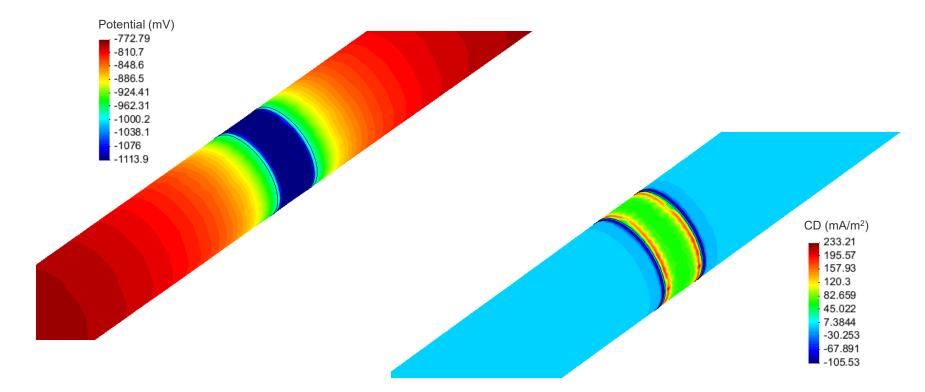
- ·Laboratory, electrochemical
- Field testing of coupons in soils


Final recommendations

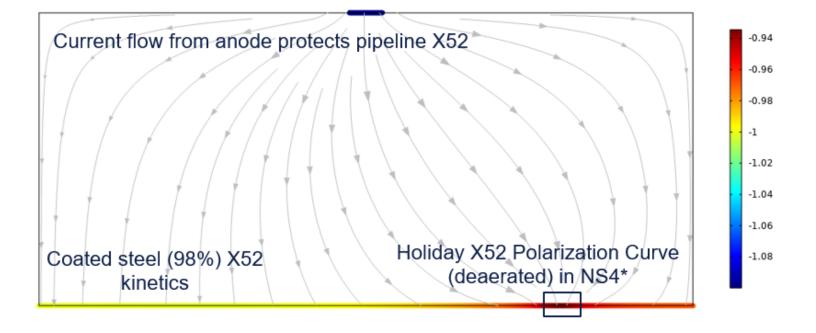
Primary Alloys Considered

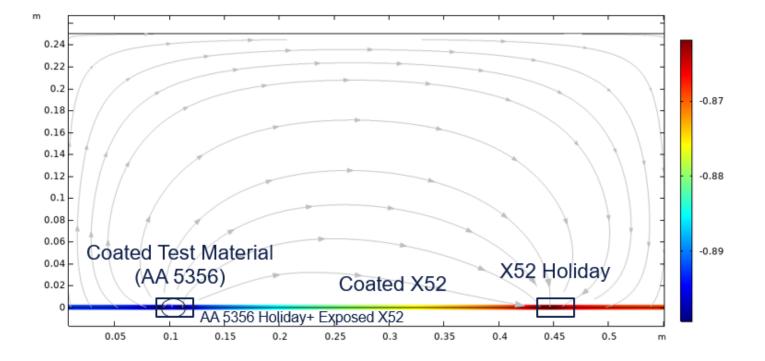
- •Commercially available, practical for field application
- Sacrificial Alloy Aluminum
 - •4043 (Al-Si alloy): 4.5-6.0% Si
 - 5356 (AI-Mg alloy): 4.5-5.5% Mg
- Corrosion Resistant Alloy Steel
 - B2 (Fe-Cr-Mo alloy): 1.00-1.75% Cr, 0.45-0.65% Mo
 - B3 (Fe-Cr-Mo alloy): 2.30-2.70% Cr, 0.90-1.20% Mo
 - B9 (Fe-Cr-Mo-Ni-V alloy): 8.5-9.5% Cr, 0.85-1.10% Mo, 0.40-0.80% Ni, 0.15-0.25% V

ThermoCalc - Scheil Simulation for 5% Dilution with Fe: Content of intermetallics vs. α-phase



Corrosion/CP Modeling: BEASY Mesh

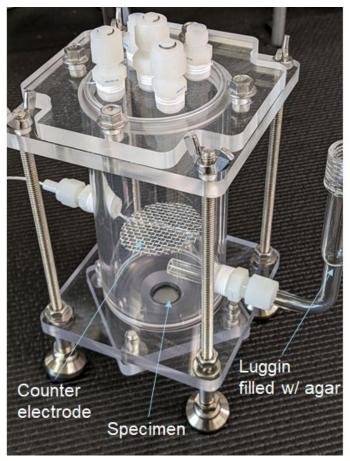


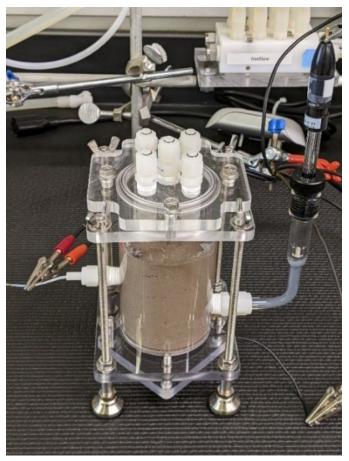

BEASY Results

Example COMSOL Simulation #1: Baseline with CP

Example COMSOL Simulation #2: Without CP and Sacrificial Coating

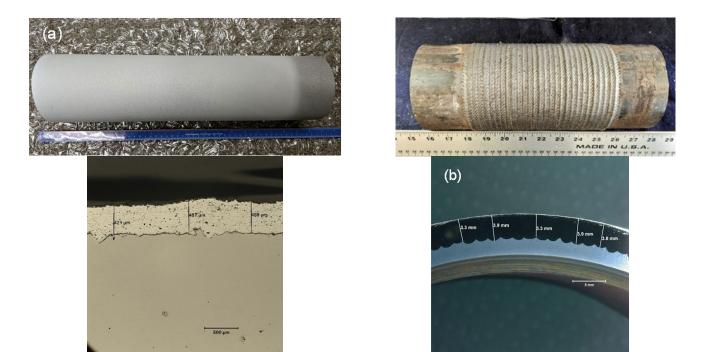
Electrochemical Testing


- Sacrificial FPC:
 - Materials provided by project partners in weldable TIG rods of 4043 and 5356 aluminum
- Corrosion resistant FPC:
 - B2, B3, B9 steel alloys
- Flat cell Luggin capillary, soil simulant solution

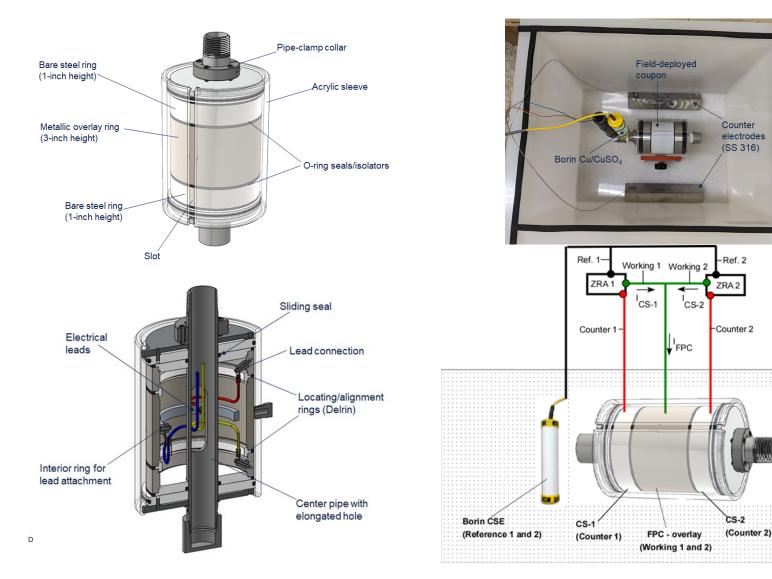

Reagent	g/L
KCI	0.122
NaHCO₃	0.483
CaCl ₂ .2H ₂ O	0.181
MgSO ₄ .7H ₂ O	0.131

Electrochemical Testing

Test cell and electrode configuration used for electrochemical testing in soil



BP1 Go/No-Go Metrics


- 1. Composition should be commercially available, or developed with relatively minor modifications of existing commercial alloys;
- 2. Alloy should be capable of being deposited using methods suitable for pipeline field conditions; and
- 3. Alloy should be amenable to field application of polymer coating
- 4. Sacrificial Alloy
 - Galvanic potential should be in the range of -950 to -850 mV SCE
 - Corrosion rate of sacrificial alloy should be low (e.g. for 0.1 inch thick coating to last 20 years, corrosion rate should be < 5 mils per year)
- 5. Corrosion Resistant Alloy
 - Corrosion rate of the alloy should be low, and at least an order of magnitude lower than unprotected steel
 - Galvanic effect between the corrosion resistant material and steel should be relatively low

Alloys Selected

- Sacrificial Alloy: Aluminum 5356
 Flame sprayed to avoid brittle intermetallics
- Corrosion Resistant Alloy: Steel B9
 - •Gas metal arc welded on 4.5" dia. X42 pipe

Field Coupon

DNV

3-Month Field Test

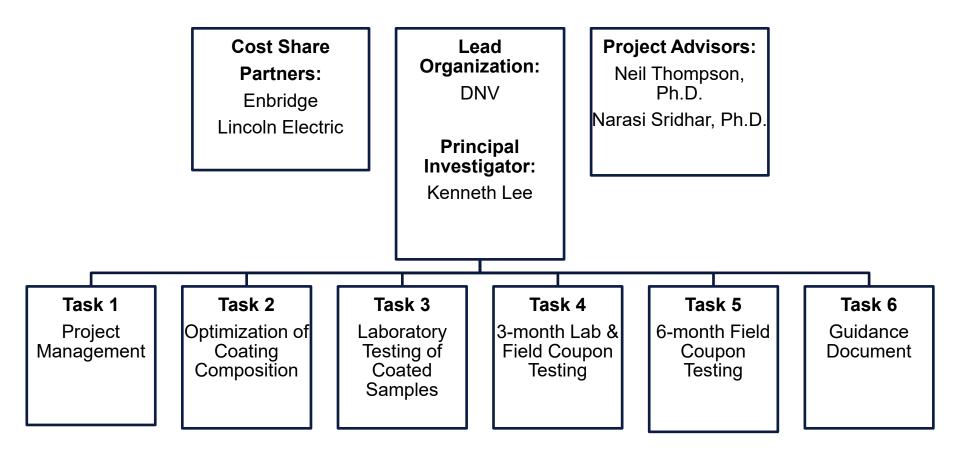
- •Enbridge site: Natural gas pipeline compressor station in San Jacinto County, TX
- •Coupons are electrically coupled to the pipeline to simulate CP conditions that a pipeline undergoes.
- The corrosion rate is monitored using linear polarization resistance and impedance methods after periodically disconnecting the pipe connection.

Outreach

•CORROSION 2021 (April 22, 2021)

 Christopher Taylor presented "Enhanced Protection of Pipeline Field Joints Using Field Protective Metallic Coatings", Research in Progress symposium, virtual conference, Association for Materials Protection and Performance (AMPP) [formerly called NACE International]

Questions?


ken.lee@dnv.com

www.dnv.com

Organization Chart

30

Gantt Chart

	Budget Year 1			Budget Year 2			Budget Year 3					
Task	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Task 1.0 Project Management & Planning												
1.1 Project management plan												
1.2 Technology maturation plan												
Task 2.0 Optimization of Coating Composition												
2.1 Modeling of FPC alloy corrosion												
2.2 Testing of alloy compositions												
Task 3.0 Lab testing of coated samples												
Task 4.0 Fabricate & 3-mo. testing of FPC coupons												
Task 5.0 Field testing 6-mo. of FPC coupons												
Task 6.0 Guidance Report												

Completed as of October 2022 -

