Methane Mitigator

Development of a Scalable Vent Mitigation Strategy to Simultaneously Reduce Methane Emissions and Fuel Consumption from the Compression Industry DE-FE0031865

> Derek Johnson, PhD, PE West Virginia University

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

- Funding DOE: \$1,498,405, Cost Share: \$433,093
- Overall Project Performance Dates
 - Original: 3/20/20 to 3/19/23
 - Current: 3/20/20 to 3/19/24
- Project Participants
 - WVU PI Derek Johnson, Co-PI Andrew Nix, Nigel Clark
 - Caterpillar Michael Bardell
 - NEW Energy Environmental Analytics (EEA)
- Overall Project Objective
 - Develop a stand-alone vent mitigation system and fuel delivery control system capable of consuming transient vent gas emissions in well site engines to reduce GHG and other pollutants.

Technology Background

Commonly Vented Sources of Methane in Compression Industry

- Engine crankcases vented to atmosphere
- Compressor vents vented to atmosphere
- Pneumatic controllers (PCs) vented to atmosphere
- Liquid storage tanks
 - Condensate tanks vented to atmosphere, combustor, or VRU
 - Produced water tanks primarily vented to atmosphere

Technology Background

Build On and Integrate Current Technologies

- Closed Crankcase Ventilation
- Dual fuel natural gas fumigation systems

Technical Approach/Project Scope

- 1) Literature review
 - Most recent data on sources
- 2) Filling gaps
 - New measurements
 - New activity data
 - Verification of "existing" data estimates
- 3) Laboratory R&D
 - Selection of representative engine technology CAT G3508J
 - Baseline characterization
 - Evaluation of aftermarket CCV
 - Modification and redesign
 - Inclusion of other streams

- 4) Modeling
 - Current and new data
 - Estimation of "methane" recovery as potential fuel offset
 - Time varying volumes, compositions, heating values, MN
 - Sizing tool scenario capabilities
- 5) Technology Demonstration
 - Mimic real-world scenarios in laboratory
 - Deployment in the field

Sources "Steady"

Engine crankcases

- Vary with engine load and age
- Short term steady
- Inerts, oil vapor, and methane

Compressor vents

- Vary with load and age
- Short term steady
- Gas with oil vapor

Engine	Blow-by Estimate			
Now Engine	Blow-by [dm ³ /s] =rated power [kW]/180			
New Engine	Blow-by [ft ³ /min]=rated power [hp]/120			
Worn Engine	Blow-by [dm ³ /s] =rated power [kW]/90			
	Blow-by [ft ³ /min]=rated power [hp]/60			

*Total flow

vent Estimates
5-10 SCFH
120-180 SCFH

*Per cylinder/throw

Crankcases

- Methane ~<5% by vol
- Total flow estimation
- 25 engines (current and previous programs)
 - 3306s, **3508**, 3512s, 3516s, 3612
- 22/25 88% follow conventional ranges
 - Questionable fuel/load for 3 cases outside range

Compressors

- Verified high pressure= higher losses
- High pressures
 4.8 to ~300 SCFH
- Low pressures
 - 6 to 34 SCFH

Sources "Un-Steady"

• PCs

- GPUs and other separators collocated
- Short term variable
 - Stovern, et al. 4.9 PC per well
 - CPC up to 9.9 SCFH (time average)
 - IPC 0.1 up to 31.3 SCFH (time average)
 - Luck, et al. 12 SCFH (time average)
 - Peak rates up to 200 SCFH (3 SCFM) (instantaneous emissions for actuations)
 - EF 13.5 SCFH

Tanks

- Variable composition high VOCs
- o Short term variable
- Variable based on gas, condensate and water production

*Hours at best

Condensate

- 33.3±24.3 lb/bbl (VOC) (Hendler, et al.)
- 0.01 lb/bbl (Environ)

Water

- Previously no VOC/CH₄ reported
- Newly included in GHGRP EFs

PCs

Highly variable

 Below and above current EF of 13.5 SCFH

	Site 1 PC Flow Rates (SCFH)							
	Dates	23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun
PC	2H (MFM F)	0.329	0.453	0.385	0.392	0.407	0.498	0.434
1	4H (MFM E)	0.002	0.007	0.012	0.003	0.011	0.031	0.022
	6H (MFM D)	0.022	0.036	0.034	0.036	0.030	0.028	0.022
	8H (MFM G)	0.033	0.057	0.056	0.067	0.058	0.063	0.043
	10H (MFM C)	0.009	0.020	0.016	0.018	0.019	0.017	0.013
	14H (MFM A)	0.011	0.012	0.015	0.014	0.016	0.007	0.009
	18H (MFM B)	0.021	0.034	0.037	0.043	0.033	0.035	0.037
	Total per Day	0.425	0.621	0.554	0.573	0.575	0.680	0.580

Site 2 PC Flow Rates (SCFH)							
	Dates	29-Jul	30-Jul	31-Jul	1-Aug	2-Aug	3-Aug
PC 2	2H (MFM G)	2.045	1.930	2.365	2.135	1.898	1.775
	2H (MFM H)	0.855	0.908	0.945	0.898	0.902	0.874
	4H (MFM E)	0.065	0.051	0.052	0.058	0.050	0.049
	4H (MFM F)	3.399	2.970	2.813	5.960	2.354	2.406
	6H (MFM B)	2.867	2.624	2.676	2.606	2.397	2.237
	6H (MFM D)	0.055	0.051	0.053	0.032	0.061	0.065
	10H (MFM A)	NA					
	10H (MFM C)	18.282	15.630	14.337	14.337	15.366	14.171
	Total per Day	22.656	19.610	18.200	21.285	18.734	17.565

Tanks

Highly variable

 Variable compositions

	Day		LFE Size	Initial Vent Volume Estimates (CF)	New Vent Volume Estimates Total Flow (CF)	H2O Produced (CF)	Composition Data
	0	Site 1	2"			121.21	June 27th GC analysis
ſ	1	Site 1	2"	405.05	923.23	102.4	June 27th GC analysis
	2	Site 1	2"	270.66	196.37	141.53	June 27th GC analysis
Ī	3	Site 1	2"	876.53	742.48	127.61	June 27th GC analysis
Ī	4	Site 1	2"	863.31	1239.3	115.48	GC analysis
ľ	5	Site 1	2"	291.09	600.68	102.12	Interpolated
ſ	6	Site 1	2"	961.52	1482.8	97.01	Interpolated
ſ	0	Site 2	1"	242.98	247.9	109.37	GC analysis
	1	Site 2	1"	250.32	255.07	103.47	Interpolated
	2	Site 2	1"	157.5	153	97.91	Interpolated
	3	Site 2	1"	250.78	338.88	101.13	GC analysis
	4	Site 2	1"	183.83	188.22	107.06	GC analysis August 1st
	5	Site 2	1"	212.58	215.83	108.41	GC analysis August 1st

NOTE: DATA ANALYSIS NOT FINAL – EXAMPLE ONLY

Progress and Current Status of

Project

Modeling

- Design and analysis tool
 - MATLAB and Simulink
- Using literature and new data
 - Time based emissions
 - o Compositions
 - Total flow
 - o Energy content
 - o MN

Using literature and new data

o Scenarios

Inputs	Outputs				
Engine Size	Engine BHP				
Engine Load	Engine Fuel Consumption				
Gas Production Rate	LHV, HHV, MN of Fugitive Gasses				
Condensate Production Rate	Emissions Flow Rates				
Water Production Rate	Fuel Offset Factor				
Site Composition					
Wells Per Site					
Piston Ring Wear					
Packing Seal Ring Wear					

Progress and Current Status of

Project

- Potential recover limited by "condensate" tank emissions
 - MN/heating value not necessarily total flow limited
- Uncertainty on EFS
 - New condensate data is required

M² R&D

- Platform donated CAT G3508J
- Representative –
 35** series 3508,
 3512, 3516, 3520

• WVU sale of VETL

- Energy
 Environmental
 Analytics (E2A)
- Providing services
 dedicated R&D
 test cell

Delayed –
 laboratory issues

M² R&D

- Test cell and control room nearly completed
- o Major equipment installed
 - o Engine/generator
 - Load bank
 - o Radiator
- \circ Ongoing
 - NG line upgrade
 - DAQ instrumentation
- o Future
 - Baseline testing
 - Evaluation of AIRSEP

Plans for future testing/development/ commercialization

a. In this project

- Laboratory R&D
- Laboratory demonstration CAT G3508J
- Field demonstration*** (time and funding permitting)
- b. iM4 and other funding for continued R&D refinement
 - Focus on only CCV and closed compressor vents (CCV²)
 - STEAQ better understanding of tanks for future systems

c. Scale-up potential, if applicable

- Current/future modeling to highlight savings
- https://netl.doe.gov/sites/default/files/netl-file/Brun.pdf
 - +15,000 upstream prime movers (small to large engines and compressors)
 - Most units 4SLB < 2000 hp
 - \circ 800-900 boosting stations
 - \circ 850 900 mainline compressor stations

Summary Slide

Methane Mitigator

- Verified industry rules of thumb
 - Engine crankcase total vent rates including compositions
 - Total compressor vent emissions including compositions
- Verified and expanded on PC vent rates and behavior (6-7 continuous days)
- o **Tanks**
 - Atmospheric tanks complex due to breathing and operations
 - PW data lacking working through development of EFs from real world data
 - Condensate even higher variability and complexity identified with modeling
 - Need new data and understanding
- High potential 95% reduction in engine crankcase and compressor vents
- With buffer storage
 - High potential to consume PC emissions
 - Tanks dependent on dry/wet gas and "real emissions" produced

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Primary R&D – WVU G3508J – Setup and control modifications – CAT

SWN – Site Measurements

New***- Northeast Natural Energy – Multiple Dry Gas Sites with Compression

New***- Energy Environmental Analytics – Laboratory Services

• WVU, CAT, Bryan Marlow – Ariel, Tracey Footer – ERG, Nathan Fowler – Baughner, Richard Atkinson - Consultant 21

Gantt Chart

- Original Gantt Chart
- 1st 6-month NCTE – overcome pandemic delays
- 2nd 6-month NCTE – overcome laboratory delays

Gantt Chart

New Gantt Chart

