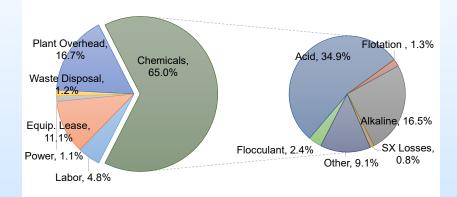
Demonstration of Scaled-Production of Rare Earth Oxides and Critical Materials from U. S. Coal-Based Sources

Project Number: DE-FE0031827

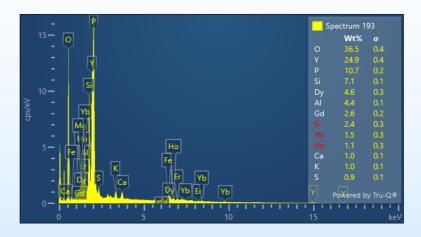
Aaron Noble, PE, PhD Virginia Tech Rick Honaker, PhD University of Kentucky

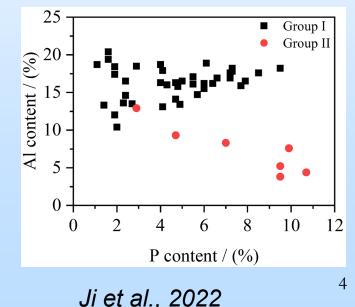

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

Funding	Organization	Team Member
DOE Funds: \$5,000,000	U. Kentucky	Rick Honaker
Cost Share: \$1,333,830		Josh Werner
Overall Project Performance Dates	Virginia Tech	Aaron Noble
Phase 1: 10/1/2019 – 3/31/2021		Wencai Zhang
 Phase 2: 4/1/2021 – 12/31/2022 	U. Utah	Michael Free
Overall Project Objectives		Xinbo Yang
 Demonstration of scaled production of high purity rare earth oxide mix from 	Alliance Coal	Joe White
coal refuse sources using innovative	KY River Prop	Chuck Mullins
technologies that will reduce cost and	MST	Charles Roos
improve environmental outcomes.		

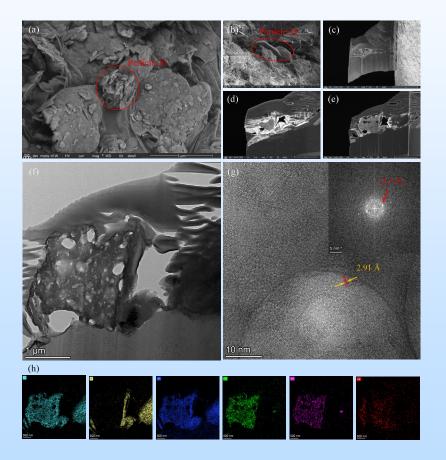
Technology Background

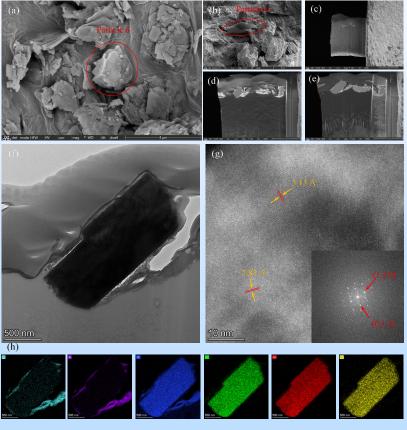

- REE mineral grain size is less than 10 microns which limits the ability to pre-concentrate.
- Requires direct hydrometallurgical processing which leads to high contamination in PLS.
- Low feed grade, poor leaching recovery, low PLS concentration, and waste disposal are other concerns of note.
- Prior analyses have shown that chemical costs (acid and base) are a major impediment to an economically viable process.



OPEX breakdown for a hypothetical coal-based REE recovery facility.

Mineralogical Analysis


- Study was conducted on coarse refuse generated from the Baker seam.
- Most particles showed relatively high contents of Ca, Sr, and Ba, agreeing with the chemical formula of crandallitegroup minerals.
- The REEs in zircon and xenotime were primarily heavy REEs.
- REEs in apatite were primarily light REEs.



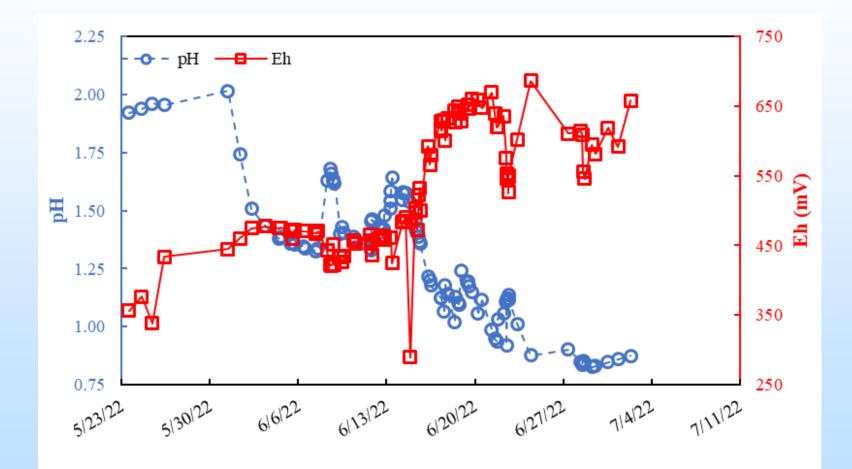
Mineralogical Analysis

□ REE mineral grain size is less than 10 microns; mostly < 1 micron.

Technical Approach

- Coal is associated with minerals that provide natural acidity and alkalinity:
 - Pyrite
 - Calcite
- Both minerals have physical properties that allow low-cost recovery and concentration.

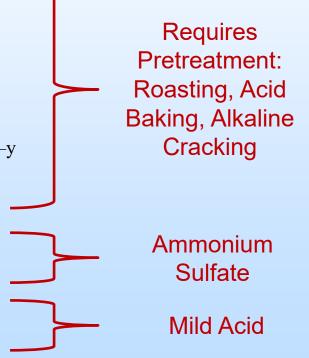
Size Fraction	Weight		Major Minerals (%)										
(mesh)	(%)	Pyrite	Silica	Calcite	Kaolinite								
+100	8.84	6.3	6.4	68.2	4.9								
100 x 200	43.72	20.0	14.1	62.8	3.1								
200 x 325	14.88	43.3	12.2	35.4	1.1								
-325	32.56	30.1	44.8	21.0	3.7								
Total	100.00	25.5	23.1	45.6	3.2								



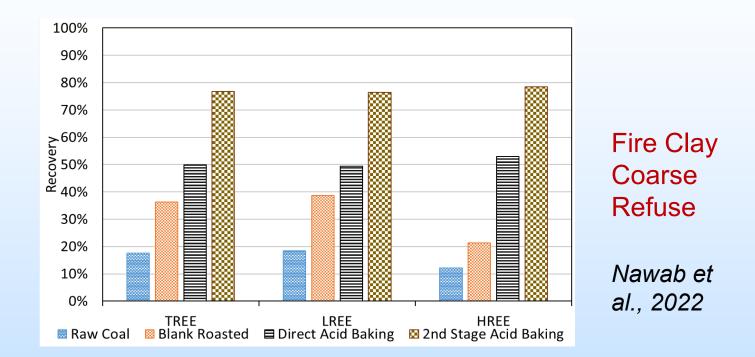
Technical Progress Biooxidation: Sulfuric Acid Production

- Acidithiobacilus ferrooxidans was used to oxidize coal pyrite.
- Pyrite (60%+ grade) slurry was added at a 5% solids from a 3000-gal tank.
- Two 3000-gallon bioreactors.
- 300 gallons daily production of 0.5 M sulfuric acid.

Technical Progress Biooxidation: Sulfuric Acid Production



Technical Approach Process Pretreatment Requirements


Mineral association

- monazite (Ce,La,Pr,Nd,Th,Y)PO₄
- crandallite $(CaAl_3(PO4)_2(OH)_5 \bullet (H_2O))$
- xenotime (YPO₄)
- bastnaesite (Ce, La)CO₃F
- zircon ZrSiO₄, (Zr_{1-y}, REE_y)(SiO4)_{1-x}(OH)_{4x-y}
- apatite $Ca_{10}(PO_4)_6(OH,F,CI)_2$
- □ Ion substitution in clay

Organic association

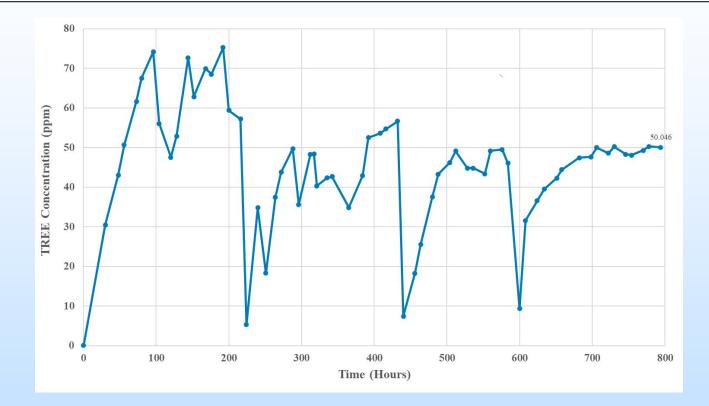
Technical Progress Process Pretreatment Requirements

Calcination (roasting) at 600°C improves light REE recovery due to the decomposition of crandallite-group minerals.
 Acid baking decomposes monazite, xenotime and zircon to elevated

heavy REE recovery.

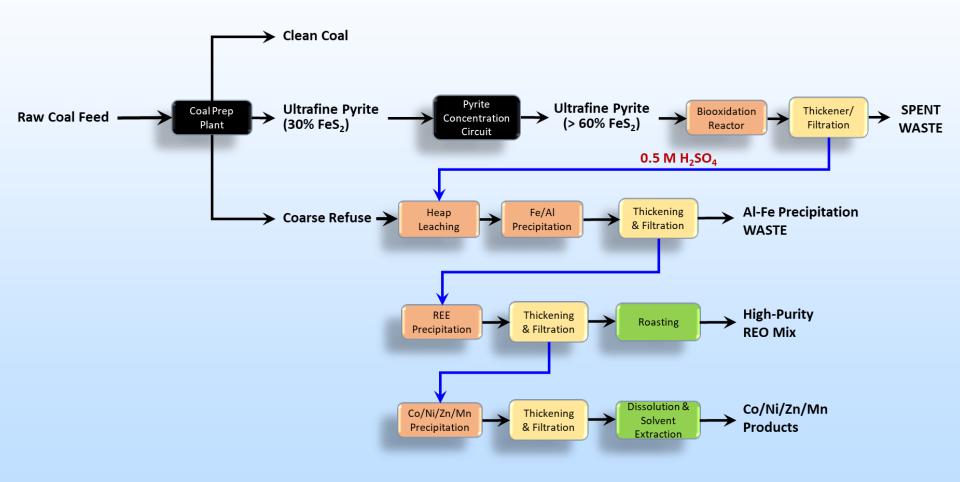
Technical Approach Leaching Options

- Direct recovery from acid mine drainage
- Heap leaching of coarse refuse
- Tank leaching of coal waste

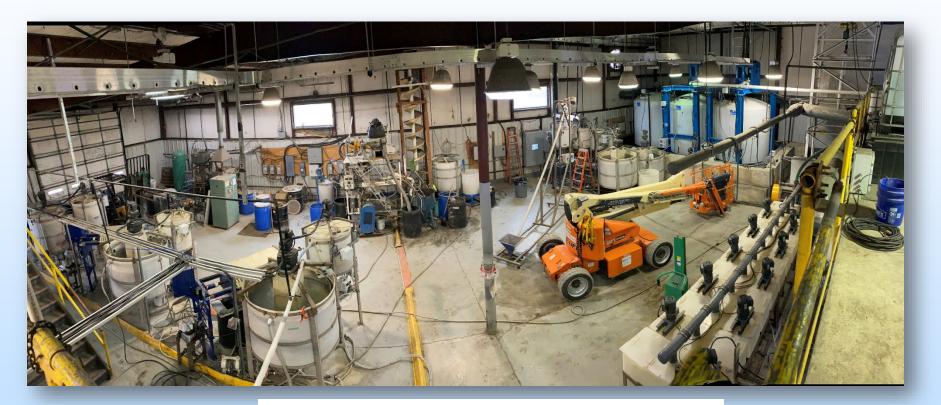


Technical Progress Heap Leaching

- 2000 tons of Baker (West Kentucky No. 13) seam coarse coal refuse
- □ 65 x 65 ft² area with a 15-ft vertical lift
- Underlined with a clay liner and a HDPE 60 mil liner
- □ 100-yr rain event
- Sump to collect 3000 gallons of the pregnant leach solution (PLS)

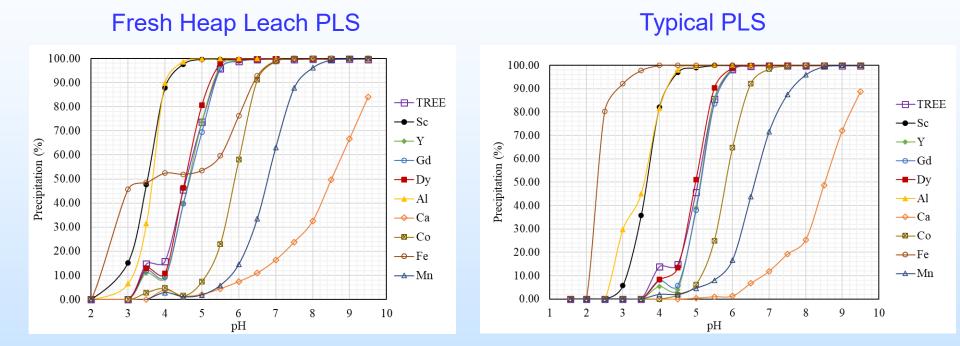


Technical Progress Heap Leaching: Pregnant Leach Solution

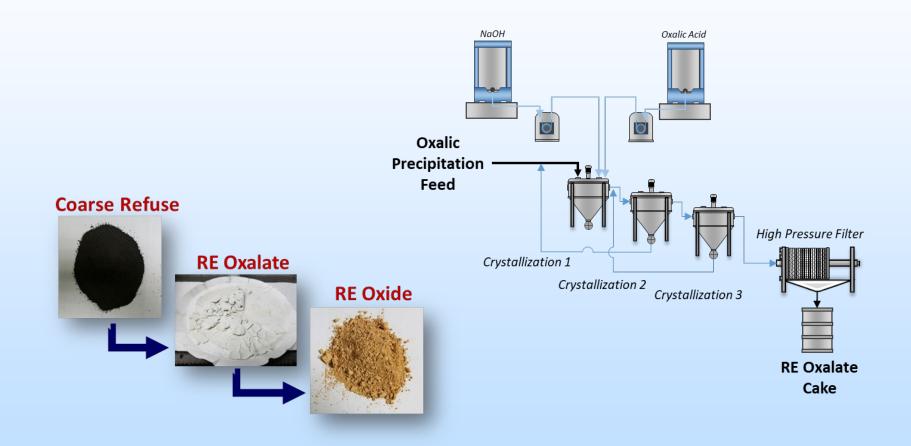


- Started at 75 ppm and leveled off at 50 ppm; spikes represent dilution from rain events.
- \square > 3000 ppm of iron and aluminum if the PLS hampering economics.

Technical Progress Block Flow Diagram of Process



Technical Progress Block Flow Diagram of Process


Production Parameter	FOA 2003
Designed Feed Rate (kg/hr)	113.5
Capable Daily REO Production (kg/day)	0.44
Capable Annual REO Production (kg/yr)	110

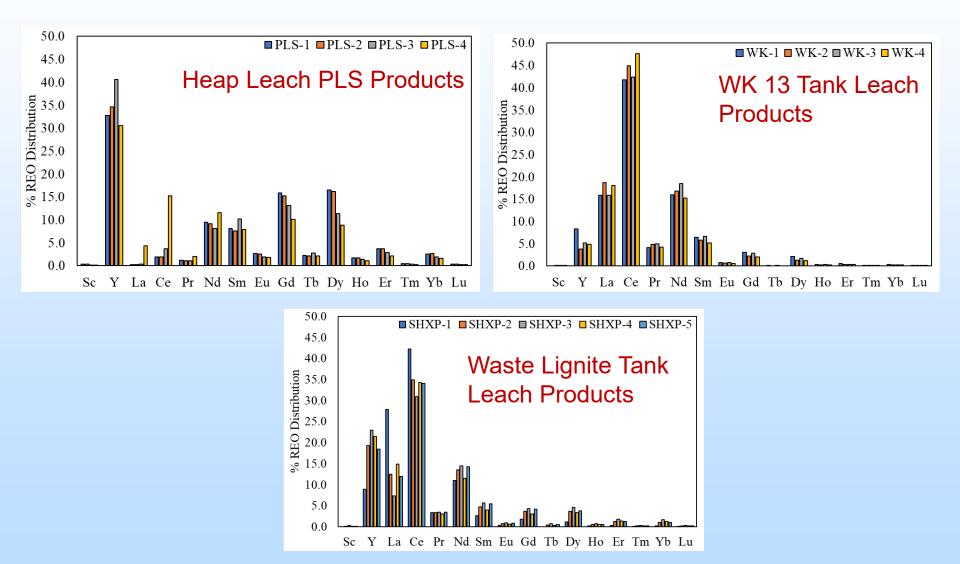
Technical Progress Heap Leaching: Pregnant Leach Solution

- Staged precipitation can effectively remove Fe³⁺ and Al while concentrating REEs and other critical metals.
- The natural heap PLS contains a significant amount of Fe²⁺ which starts precipitating at pH 5.5 thereby requiring a step to oxidize ferrous to ferric potentially by biooxidixation.

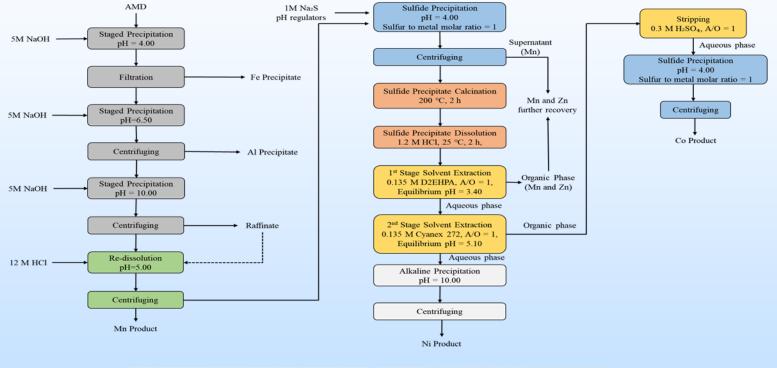
Technical Progress High Purity REO Production

Technical Progress High Purity REO Production

Rare earth oxides concentrations generated through testing of various feedstocks under different circuit arrangements.


Test Type-Number % REO % Heavy REO Heap Leach PLS / Acid Mine Drainage PLS-1 60.81 36.61 PLS-2 61.16 37.81 PLS-3 87.02 53.57 PLS-3 87.02 53.57 PLS-4 82.31 38.58 Coal Refuse-Western Kentucky No.13 WK-1 95.45 11.52 WK-2 88.19 5.37 WK-1 95.45 11.52 WK-2 88.19 5.37 WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 5.37 WK-4 49.82 3.46 SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11 SHXP-5 77.71 20.01 50.51 50.51			
PLS-1 60.81 36.61 PLS-2 61.16 37.81 PLS-3 87.02 53.57 PLS-4 82.31 38.58 Coal Refuse-Western Kentucky No.13 WK-1 95.45 11.52 WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 Secondary Source-Shakespeare SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	Test Type-Number	% REO	%Heavy REO
PLS-2 61.16 37.81 PLS-3 87.02 53.57 PLS-4 82.31 38.58 Coal Refuse-Western Kentucky No.13 WK-1 95.45 11.52 WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 Secondary Source-Shakespeare SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	Heap Lea	ch PLS / Acid Min	e Drainage
PLS-3 87.02 53.57 PLS-4 82.31 38.58 Coal Refuse-Western Kentucky No.13 WK-1 95.45 11.52 WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	PLS-1	60.81	36.61
PLS-4 82.31 38.58 Coal Refuse-Western Kentucky No.13 WK-1 95.45 11.52 WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 Secondary Source-Shakespeare SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	PLS-2	61.16	37.81
Coal Refuse-Western Kentucky No.13 WK-1 95.45 11.52 WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 Secondary Source-Shakespeare SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	PLS-3	87.02	53.57
WK-1 95.45 11.52 WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 Secondary Source-Shakespeare SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	PLS-4	82.31	38.58
WK-2 88.19 5.37 WK-3 40.90 3.27 WK-4 49.82 3.46 Secondary Source-Shakespeare SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	Coal Refu	1se-Western Kentu	cky No.13
WK-3 40.90 3.27 WK-4 49.82 3.46 Secondary Source-Shakespeare 7.02 SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	WK-1	95.45	11.52
WK-4 49.82 3.46 Secondary Source-Shakespeare 7.02 SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	WK-2	88.19	5.37
Secondary Source-ShakespeareSHXP-165.397.02SHXP-236.199.60SHXP-397.1031.82SHXP-480.5223.11	WK-3	40.90	3.27
SHXP-1 65.39 7.02 SHXP-2 36.19 9.60 SHXP-3 97.10 31.82 SHXP-4 80.52 23.11	WK-4	49.82	3.46
SHXP-236.199.60SHXP-397.1031.82SHXP-480.5223.11	Secon	dary Source-Shake	speare
SHXP-397.1031.82SHXP-480.5223.11	SHXP-1	65.39	7.02
SHXP-4 80.52 23.11	SHXP-2	36.19	9.60
	SHXP-3	97.10	31.82
SHXP-5 77.71 20.01	SHXP-4	80.52	23.11
51111 5 77.71 20.01	SHXP-5	77.71	20.01

Heap Leach PLS from WK #13 coarse refuse

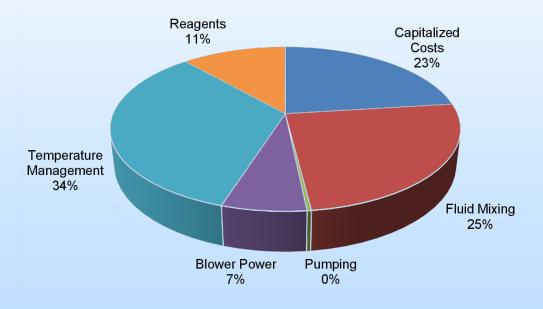

Direct Tank Leach of WK #13 coarse refuse

Lignite coal from a waste product of construction sand production

Technical Progress High Purity REO Production

Technical Progress High Purity Co/Ni/Mn Production

NiO = 96.2%

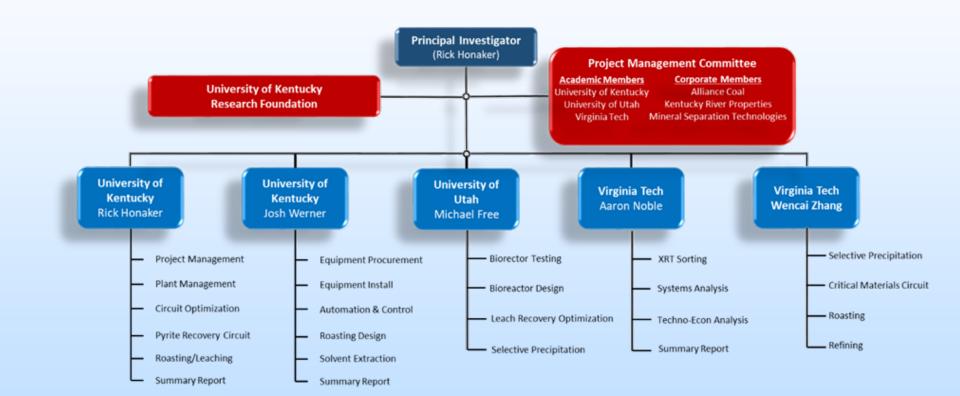


CoS = 98.0%

Techno-Economic Analysis Biooxidation Cost Analysis

- The biooxidation unit is a large cost component, but it shows notable cost advantages over conventional acid leaching.
- Largest cost components = mixing, temperature management, and capital (~81% of total).

Total cost = \$0.05 / kg H₂SO₄ equivalent


Summary

- REE mineralization in high rank coals presents an economic challenge.
- Bioreactors have been tested at large scale and successfully produced 0.5 M sulfuric acid solutions having 0.75 pH from coal pyrite.
- REEs and CMs effectively recovered from various coal-based sources at an expanded scale.
- □ REO purity levels higher than 90% REO mix achieved.
- Co and Ni greater than 98% have been produced as well as a MnOH product.
- Heap leaching presents economic challenges due PLS contaminants and geotechnical issues.

Questions

Rick Honaker rick.honaker@uky.edu

Organization Chart

Gantt Chart (Phase 1)

			Project Month											
ID	Task		019						20				20	
		0	ND)]	FN	1 A	Μ	J	J	A S	0	N D	JF	M
	DOE Required Tasks			1 1	2/						-			_
1	Project Management & Planning*		Ŷ	Ϋ́	4									
2	Finanical Plan for Commercialization*				4									
3	Techno-Economic Assessment*													
4	Provide Split Samples*													
5	Feasibility Study*													V
	Laboratory Support Tasks					-	-							
6	Optimization of Physical Separaitons (crush, grind, sort, calicte float))	x	х							
7	Optimization of Acid Generation (pyrite recovery, bioreduction))	x	х							5
8	Optimizaton of Roasting & Leaching)	x	х							6
9	Optimization of REE Recovery (selective precip and/or SX))	x	х							\mathbb{V}
10	Optimization of CM Recovery (Co/Mn/Sc Precip or SX))	x	х							8
	Pilot-Scale Tasks	_						_						
11	Environmental Monitoring and Management													
12	Pilot Plant Upgrades and Modification (Design, Bidding, procurement, fabrication, installation)													
13	Feedstock Collection and Preparation													Ψ.
14	Pilot Plant System Shakedown													1
15	Pilot Plant Operation and Continuous Improvement													Ą
16	Operational Cost Analysis, Refinement and Optimization													
17	Secondary Feedstock Testing													
18	Decommissioning and Disposition													
	* = DOE Required Task X = one month delay in activity due to COVID issues $\frac{1}{2}$ = milestone completion													

Gantt Chart (Phase 2)

					Project Month 21 2022																
ID	Task					202	_	0		-		-					_				D
	DOS De surfre d'Encle	A		J	J	A	5	0	N	D	J	-	MA	4	IVI	J	JA	4 2	s c	N N	
1	DOE Required Tasks																				
1	Project Management & Planning*																			╞	-
2	Finanical Plan for Commercialization*							_												1	16/
3	Techno-Economic Assessment*	_																_	17/		
4	Provide Split Samples*																		Ý	Ļ	
5	Feasibility Study*																			1	
	Laboratory Support Tasks																			İ.	
6	Optimization of Physical Separaitons (crush, grind, sort, calicte float)																				
7	Optimization of Acid Generation (pyrite recovery, bioreduction)																			i.	
8	Optimizaton of Roasting & Leaching																			1	
9	Optimization of REE Recovery (selective precip and/or SX)																				
10	Optimization of CM Recovery (Co/Mn/Sc Precip or SX)																			!	
	Pilot-Scale Tasks																				
11	Environmental Monitoring and Management																				
12	Pilot Plant Upgrades and Modification																				
13	Feedstock Collection and Preparation																			i.	
14	Pilot Plant System Shakedown																				
15	Pilot Plant Operation and Continuous Improvement																14			i.	
16	Operational Cost Analysis, Refinement and Optimization																			!	
17	Secondary Feedstock Testing																15				
18	Decommissioning and Disposition																				
	* = DOE Required Task																				
7	$\frac{1}{1}$ = milestone completion																			i I	