Austin Chalk/Eagle Ford Field Laboratory DOE Award No. DE-FE0031579

Texas A&M University Lawrence Berkeley National Laboratory Stanford University SM Energy

TEXAS A&M UNIVERSITY Harold Vance Department of Petroleum Engineering

SM ENERGY

Austin Chalk/Eagle Ford Field Laboratory (ACEFFL)

BenchPad

3

Doe Layered Science Program: Data Capture Scope

*All diagnostics, well spacings, and landing zones are tentative

Microseismic Star Array

Gun Barrel View

Fracture Network Characterization with Integrated Monitoring Technologies

- 1. DAS and DTS measurements for interpreting flow allocation
- 2. Low-frequency DAS monitoring for frac-hit detection
- 3. Sealed wellbore pressure response
- 4. Downhole pressure gauges
- 5. Downhole video for perforation erosion monitoring
- 6. Tracers
- 7. Microseismic mapping
- 8. Active seismic monitoring from SOV source to map fracture network
- 9. Production logging

History of Field Activities at ACEFFL

Year	2021				2022				
Month	9	10	11	12	1	2	3	4	10
SOV	Installation	Testing		Active Monitoring					
Well 1				Fracturing			Production		
Well 2 (Fiber)			DFIT	Fracturing					
Well 3 (Fiber)			DFIT	Fracturing					
Well 4				Fracturing					
Well 5				Fracturing					
Well 6				Fracturing					

Surface Orbital Vibrator (SOV) + Distributed Acoustic Sensing (DAS)

Conventional campaign-based systems

SOV-DAS permanent monitoring system

Why using SOV-DAS?

- Cost-effective solution for long-term seismic monitoring
- Remote, on-demand seismic acquisition
- Enables real-time data processing and analysis, leading to fast decision making
- High temporal sampling enables the detection of small changes

SOV/DAS Survey Design

Flow Monitoring by DAS and DTS

Fluid Volume Distribution by DAS and DTS

Perforation Erosion Observation

Not eroded

Eroded

Experimental Investigation of Low-Frequency DAS

- (a) Radial fracture propagation highlighting the initial flaw filled with fracture fluid
- (b & c) Fracture propagating in the epoxy toward the fibers
- (d) Fracture intersecting the fibers
- (e & f) Fracture growth beyond the fibers

- (a) Comparison of measured and modeled strains at a single time before the fracture hit and
- (b) finite-element model domain with a red line indicating the location of the fiber. (Leggett et al., 2022)

Experimental Investigation of Low-Frequency DAS

Strain and strain-rate waterfall plots from a fracture experiment

(Leggett et al., 2022)

Field Application of the Zero-Strain Location Method

- LF-DAS strain-rate (top) and strain (bottom) waterfall plots, with the fracture hit location D_{hit} marked.
- (a) Zero-strain locations D_0 extracted from the strain waterfall plot
- (b) Estimated distance to the fracture front.

Far-field Strain Rate to Estimate Fracture Front

Waterfall plot with 5 frac hits exhibiting the characteristic cone-shaped convergence of the strain rate pattern.

Cross plots comparing fracture propagation rates to various completion parameters.

Rate/perf (BPM)

(Leggett et al., 2022)

Sealed Wellbore Pressure Monitoring (SWPM)

Schematic of the simulation domain

(Haustveit et al., 2020)

SWPM Simulated Result

Supporting Experimental Study: Fracture Conductivity

Supporting Experimental Study: Fracture Conductivity

Supporting Modeling Work for Fracture Characterization

- **1. Reservoir simulation** with field input from microseismic, fiber optic sensor measurements and geologic models
- **2.Geomechanical modeling** for near-well fracture propagation complex
- **3. Rock mechanical modeling and DFIT analysis** for rock mechanical property distribution and their impact on fracture propagation

Reservoir Simulation: Evolution of Drainage Volume and Well Interference

- Fast Marching Based Drainage Volume Visualization
- Strong interactions observed between wells by 50 days leading to a multi-well problem

Geomechanical Modeling: Near-Wellbore Fracture Initiation Optimization

A short perforation tunnel length significantly increases the fracture tortuosity and leads to the initiation of a longitudinal fracture.

Geomechanical Modeling: Near-Wellbore Fracture Initiation Optimization

 $D_{perf} = 0.15 in$

 $D_{perf} = 0.8 in$

- A small perforation diameter (left) leads to (a) significant stress shadowing within a cluster and (b) initiation of a single fracture.
- A large perforation diameter (right) reduces the near-wellbore fracture complexity.

Characterizing the state of stress and modeling hydraulic fracture propagation at ACEFFL

Adapted from Lund Snee & Zoback (2018)

Austin Chalk/Eagle Ford Field Laboratory DOE Award No. DE-FE0031579 angtry Mbr. **Texas A&M University** Lawrence Berkeley National Laboratory **Stanford University SM Energy** Antonio Creek Mbr.

Special thanks to Joe Renk, Project manager, NETL

TEXAS A&M UNIVERSITY Harold Vance Department of Petroleum Engineering

Fossil Enera