Environmentally Friendly Production of High-Quality and Multifunctional Carbon Quantum Dots (CQD) from Coal Project #: DE-FE0031997

Presenter: Maohong Fan Organizations: University of Wyoming University of Utah Date: 10/26/2022

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

- Funding: U.S. Department of Energy (DOE)
- Overall Project Performance Dates: 1/1/2020-12/31/2023
- Project Participants:
 - University of Wyoming Maohong Fan, Dennis N. Coon, Jinke Tang, Zhen Chen, Ramhari Paneru, Ossama Elbanna and Tongtong Wang
 - University of Utah Eric G. Eddings and Alex Prlina

Project objectives and goals

Objectives:

- Developing an innovative, simple, low-temperature, cost-effective, environmentally friendly technology for producing high-value coal-derived quantum dots (CQDs)
- Evaluating the applications of the CQDs in solar cell for clean energy production and photocatalysis for clean air and health protection.

Goals:

- Technically Preparing coal-derived CQDs with
 - Carbon in CQDs: 100% from coal
 - Diameters: 2 -7 nm
 - Purity: >99%
- Environmentally
 - Wastewater discharge: near-zero
 - Air pollution: near-zero (near 100%-purity CO_2 is produced and directly captured)
- Economically
 - The profit: >50% (based on 10,000-ton/year production scale and \$30,000/ton-CQD)

Background

- Conventional coal utilization combustion
 - Generation of huge amount of flue gas containing low concentration of CO₂
 - Capture of the CO_2 is expensive
 - Thus, low carbon emission utilization methods are needed
- Why coal to carbon materials?
 - Carbon materials need C-rich feedstocks
 - Coals are well known C-rich materials, thus are great candidates for carbon materials
 - Economically, the values of coal derived carbon materials > values of coal derived fuels
 - Environmentally, the carbon footprints of coal derived carbon materials < footprints of coal derived fuels
- Why did we propose this project?
 - CQD is a carbon material
 - The proposed coal based CQD production technology has the following advantages
 - Simple

Technical Approach

Figure 1. Schematic diagram of the

experimental setup for the synthesis of the

CQDs production from coal and H_2O_2 .

- Materials: 10 g dried coal, and 1.5 L H₂O₂
 solution were added into a Parr 2526 highpressure reactor. The reactor was purged by
 N₂, and the starting pressure was atmosphere
 pressure. Gas, liquid and solid products were
 collected.
- Reaction temperatures: 60, 70, 80, 90, and 100 °C.
- Reaction times: 2, 4, 6, 8, 10, and 12 hours.
- H₂O₂ concentrations:1.5%, 2.0%, 2.5%, 3.0% and 3.5%. 5

Effect of H₂O₂ concentration

Figure 2. (a) Carbon distribution in the final products (gas, solution, and residual); (b) Gas products and their distributions, resulting from the reactions with different H_2O_2 concentrations (1.5%-3.5%) at 90 °C for 12 hrs.

- (a): In general, the increase in H₂O₂
 concentration leads to the increase in
 carbon in the gas portion but the decreases
 in carbons in residual and solution
 portions.
- (b): In general, H₂O₂ concentration increase leads to the increase in the increase in CO₂ in gas portion.
- (a) And (b) indicated higher H₂O₂
 concentration promoted oxidation.

Effect of H₂O₂ concentration (continued)

- Figure 1 (b) (e): photoluminescence effect increases as the H₂O₂ concentration increases.
- Figure 1 (f): The lower photoluminescence effect of 3.5% H₂O₂ compared to that of 3.0% (e) might be due to the destruction of some aromatic structures as a result of excessive concentration of H₂O₂ [1].
- Figure 2: The increase in the concentration of H₂O₂ leads to the decrease in the absorption wavelength and thus increase in the energy gap between ground state and excited state of CQD molecules.

Figure 1 (upper). Photos (a1 and a2) and fluorescence spectra (b-f) of CQDs-containing solutions obtained with different H_2O_2 concentrations (1.5%-3.5%) at 90 °C for 12 hrs: (a₁) in daylight, (a₂ under 365-nm UV excitation, (b)1.5%, (c) 2.0%, (d) 2.5%, (e) 3.0%, and (f) 3.5%. Figure 2 (left). UV spectra of CQDs-containing solutions from the reactions at different H_2O_2 concentrations (1.5%-3.5%) at 90 °C for 12 hrs. (a₁) in daylight, (a₂ under 365-nm UV excitation, (b)1.5%, (c) 2.0%, (d) 2.5%, (e) 3.0%, and (f) 3.5%. Figure 2 (left). UV spectra of CQDs-containing solutions from the reactions at different H_2O_2 concentrations (1.5%-3.5%) at 90 °C for 12 hours.

Effect of temperatures

Figure 1. (a) Carbon distributions in the final products (gas, solution, and residual); (b) gas products and their distributions, resulting from the reactions at different temperatures (60-100 °C) with 2.5% H_2O_2 for 12 hrs.

- (a): as reaction temperature increased, the carbon in the gas increased, but that in residual decreased.
- (b): as H₂O₂ concentration increased, the product of O₂ CO₂ and CO increased.
- (a) And (b) indicated higher temperature enhanced scission of the chemical bonds in organic compounds of coal undergoing decomposition [2].

Effect of temperatures (continued)

- Figure 1 (b) (e): The higher the reaction temperature, the stronger the photoluminescence effect. This was attributed to the greater CQD concentrations.
- Figure 2: In general, the increase in reaction temperature leads to the decrease in the absorption wavelength and thus increase in the energy gap between ground state and excited state of CQD molecules [3].

Figure 1 (upper). Photos and fluorescence spectra images of CQDscontaining solutions from the reactions at different temperatures (60-100 °C) with 2.5% H_2O_2 for 12 hours: (a1) in daylight, (a2) under 365-nm UV excitation, (b) 60 °C, (c) 70 °C, (d) 80 °C, (e) 90 °C, and (f) 100 °C.

Figure 2 (left). UV spectra of CQDs-containing solutions from the reactions at different temperatures (60-100 °C) with 2.5% H₂O₂ for 12 9 hours.

Effect of reaction time

Figure 8. (a) Carbon distribution in the final products (gas, solution, and residual); (b) Gas products and their distributions, resulting from the reactions at different reaction times (2-12 hr) with 2.5% H₂O₂ at 90 °C.

- (a): As reaction time increased, the carbon in the gas increased, and that in the residual decreased.
- (b): Longer reaction time increased the yield of O₂, CO₂ and CO gases.
- (a) and (b) indicated longer reaction time pronounced the reaction.

Effect of reaction time (continued)

- Figure 1 (b) (g): the longer the reaction time, the higher intensity of the photoluminescence effect.
- Figure 2: as the reaction time increased, the absorption shoulder on the UV-vis shifted towards lower wavelength.
- Figure 1 and 2 indicated that smaller size CQDs were produced when the reaction time was longer.

Figure 1 (upper). Photos (a_1 and a_2) and fluorescence spectra (b-f) of CQDscontaining solutions from the reactions at different reaction times (2-12 hr) with 2.5% H₂O₂ at 90 °C: (a_1) in daylight, (a_2) under 365-nm UV excitation, (b) 2 hr, (c) 4 hr, (d) 6 hr, (e) 8 hr, (f) 10 hr, and (g) 12 hr.

Figure 2 (left): UV spectra images of CQDs-containing solutions from the reactions at different reaction times (2-12 hr) with 2.5% H₂O₂ at 90 °C.

Effect of in-situ Fenton reaction

Figure 1. (a) Carbon distribution in the final products (gas, solution, and residual); (b) Gas products and their distributions, resulting from different raw materials (blank, de-ash coal, de-ash coal + 30 ppm Fe²⁺, and raw coal) at 90 °C with 2.5% H_2O_2 for 12 hours.

- (a): the percentages of carbon in gas were higher when raw coal and deashed coal + ferrous ion was used, compared to blank and when only deashed coal was used.
- (b): when deashed coal + ferrous ion was used, the amount of O₂ in the gas product was higher than when raw coal was used, but the amount of CO plus CO₂ was lower. When only deashed coal was used, the amount of O₂ and CO₂ was the lowest.
- (a) and (b) indicated ferrous ion accelerated H_2O_2 decomposition into O_2 and H_2O , and ferrous ion in raw coal can promote the reaction more efficiently. 12

Study on the catalytic effect of Fe²⁺ in coal on CQD formation

- Figure 1 (e): the photoluminescent effect was the strongest when raw coal was used.
- Figure 2: when raw coal was used, CQD abortion shoulder was at 301 nm, lower than 311 nm when de-ash coal and 30 ppm Fe²⁺ was used. This indicated a smaller size CQDs when raw coal was used.
- In de-ash coal + ferrous ions, ferrous ions were added, but when raw coal was used, ferrous ions were gradually released. The graduate release could more effectively promote Fenton reaction and reduce formation of O₂.

Figure 1 (upper): (a) Photos and fluorescence spectra of CQDs, resulting from different raw materials (blank, de-ash coal, de-ash coal + 30 ppm Fe^{2+} , and raw coal) at 90 °C with 2.5% H_2O_2 for 12 hours. Figure 2 (left): UV spectra of CQDs-containing solutions for different raw materials (blank, de-ash coal, de-ash coal + 30 ppm Fe^{2+} , and raw coal) at 90 °C with 2.5% H_2O_2 for 12 hours.

Transmission electron microscopy (TEM) images of CQDs

- (a): The CQDs are spherical and monodispersive within the solution.
- (b): Based on the statistical analysis of their TEM images, the particle sizes of the CQDs are in the range of 2-5 nm, with an average size of ~3 nm.

Figure 1 - The TEM image and diameter distributions of the CQDs synthesized from raw coal with 2.5% H₂O₂ at 90 °C for 12 h.

Study on the catalytic effect of Fe²⁺ in coal on CQD formation

- Figure 1 (e): the photoluminescent effect is the strongest when raw coal is used.
- Figure 2: when raw coal is used, CQD abortion shoulder is at 301 nm, lower than 311 nm when de-ash coal and 30 ppm Fe²⁺ is used, indicating the formation of smaller-size CQDs when raw coal is used.
- In de-ash coal + ferrous ions, ferrous ions are added, but when raw coal is used, ferrous ions are gradually released. The graduate release could more effectively promote Fenton reaction and reduce formation of O₂.

Figure 1 (upper): Photos and fluorescence spectra images of CQDs-containing solutions from different raw materials (blank, de-ash coal, de-ash coal + 30 ppm Fe²⁺, and raw coal) at 90 °C with 2.5% H_2O_2 for 12 hrs: (a1) in daylight, (a2) under 365-nm UV excitation, (b) blank (H_2O_2), (c) de-ash coal, (d) de-ash coal + 30 ppm Fe²⁺, and (e) raw coal.

Figure 2 (left): UV spectra of CQDs-containing solutions for different raw materials (blank, de-ash coal, de-ash coal + 30 ppm Fe²⁺, and raw coal) at 90 °C with 2.5% H_2O_2 for 12 hours.

Kinetics

where W_{coal} is the concentration (g/mL) of coal in the reaction, $C_{H_2O_2}$ is the concentration (g/mL) of H_2O_2 in the reaction, k is the reaction rate constant, t is the reaction time, a is the reaction order of H_2O_2 , and b is the reaction order of coal, A (s⁻¹) is the Arrhenius preexponential factor for the reaction, E_a (J/g, or J/mol) is the activation energy for the reaction of coal and H_2O_2 , R (J g⁻¹K⁻¹ or J mol⁻¹K⁻¹) is the universal gas constant. T (K) is the absolute temperature of the reaction.

Techno-economical analysis and environmental impacts of coal to CQDs technology

Summary Slide

- The major factors affecting CQDs synthesis with coal have been identified
- How each factor affects CQDs synthesis is understood, and the optimal conditions have been obtained
- Good-quality CQDs have been successfully synthesized with coal via Fenton reaction
- Reaction kinetics of the coal-derived CQDs synthesis has been established
 - Reaction orders
 - Activation energy
- The catalytic effect of Fe²⁺ in coal on CQDs synthesis has been confirmed with experiments
- The application of the CQDs in solar cell has been studied
- Techno-economical analysis is being conducted.

Appendix

These slides will not be discussed during the presentation but are mandatory.

Order of reaction

Figure 17. Concentration vs. time plot to determine the order of reaction with respect to (a) de-ash coal, (c) H_2O_2 reacting with de-ash coal, (b) raw coal, (d) H_2O_2 reacting with raw coal.

(a) and (b): according to the
value of R², it was challenging
to determine the order of
reaction with respect to de-ash
coal and that of H₂O₂.

(c) and (d): when raw coal reacted with H_2O_2 , the order of reaction with respect to raw coal was one, and that of H_2O_2 was zero.

Activation energy

Figure 18. Concentration vs. time plot to determine the order of reaction with respect to (a) de-ash coal, (c) H_2O_2 reacting with de-ash coal, (b) raw coal, (d) H_2O_2 reacting with raw coal.

- The activation energy was studied using excessive H_2O_2 .
- (a): With higher R², order of reaction with respect to de-ash coal was one. According to eq E9, the activation energy was Ea(de-ash coal) = 7507.542 J/g.
- (b): The result corroborated with Figure 17 (d), that the order of reaction with respect to raw coal was one. The activation energy was Ea(raw coal) = 5257.84 J/g.
- With ash in the coal, the activation energy was lower than when there was no ash, this proved that the ash catalyzed the reaction to produce CQDs.

Free on board and bare module costs

Equipment costing was performed for the once-through process according to the Guthrie method described in Seider et. al [7].

Equipment Type	f.o.b. Purchase Cost (\$) CEPCI = 806.9	Bare Module Factor	Bare Module Cost (\$)	
Electric Motors	2,686	3.3	8,865	
Centrifugal Pumps	596,193	3.3	1,967,438	
Shell and Tube Heat Exchangers	270,380	3.17	857,105	
Pressure Vessels	274,394	4.16	836,376	
Trayed Columns	601,673	4.16	2,502,959	
Rotary Drum Vacuum Filters	186,622	2.32	616,152	
Centrifuges	353,339	2.03	717,278	
Batch Tray Driers	26,090	2.06	53,746	
Storage and Mixing Tanks	1,985,681	N/A	1,985,681	
Hoppers	66,226	N/A	66,226	
Agitators	561,687	N/A	561,687	
Forklifts	32,500	N/A	32,500	
Total	4,957,471		12,765,014	

Table 1. Free on board and bare module costs for coal-CQD process equipment

Future work

- Continue to evaluation of the photoelectric performances of CQDs (i.e., application in solar cell) (Task 4)
- Continue to evaluate the performances of CQDs in modifying photocatalyst (Task 5)
- Continue to work on techno-economic analysis (Task 7)
 - Integration of cycle and heat streams
 - Optimizing the whole production process
 - Calculating profitability
- Scale-up CQDs production (not a task of this project)

Organization Chart

(UW: University of Wyoming; UU: University of Utah; GA: graduate assistant)

Gantt Chart

Task Name	Assigned Resource	Year 1			Year 2				Year 3	
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Task 1.0 Project Management and Planning										
Subtask 1.1 Project Management Plan	Fan+UW Eddings+UU									
Subtask 1.2 Technology Maturation Plan	Fan, Coon, Tang, Eddings									
Milestone No. 1	Whole Team	•	•							
Milestone No. 2	Whole Team	•	•							
Milestone No. 3	Whole Team									
Decision point No. 1	Whole Team		1							
Task 2.0 Preparation and characterization of coal and Fenton reagent (including H ₂ O ₂ and Fe ²⁺ in coal)	Fan+UW- GAs+Coon									
Milestone No. 4	Whole Team	•	•							
Task 3.0 Preparation and characterization of CQDs from coal via Fenton reaction.	Fan +UW- GAs+Coon									
Decision point No. 2	Whole Team									
Milestone No. 5	Whole Team									
Task 4.0 Evaluation of the photoelectric performances of CQDs (i.e., application in solar cell)	Fan+UW- GA+Tang									
Milestone No. 6	Whole Team						•			
Task 5.0 Evaluation of the performances of CQDs in modifying photocatalyst	Fan+UW- GA+Tang									
Milestone No. 7	Whole Team									
Task 6.0 Establish thermodynamics and reaction kinetics and understand the reaction mechanism of novel coal to CQDs technology	Eddings+UU- GA + UW-Fan									
Milestone No. 8	Whole Team									
Task 7.0 Assessing the tech - economic as well as environmental impacts of the new coal to CQDs technology.	Eddings+UU- GA + UW- Fan + Coon+ Tang + UW- GAs									
Milestone No. 9	Whole Team								•	
Decision No. point 3	Whole Team								4	7

References

[1] Science Abstracts, London: E. & F.N. Spon, 1919.

- [2] W. Ning, X. Donghai, H. Botian, G. Shuwei, G. Yang and W. Shuzhong, "Chemical reactions of organic compounds in supercritical water gasification and oxidation," Water Research, vol. 190, 2021.
- [3] B. Anusuya, S. Monikankana, D. Tonkeswar, G. Rajib Lochan and S. Binoy K., "Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water," Journal of Photochemistry & Photobiology, B: Biology, vol. 209, 2020.
- [4] S. Arumugam Selva, X. Jing, V. Annavaram and R. Yawen, "Facile preparation of fluorescent carbon quantum dots from denatured sour milk and its multifunctional applications in the fluorometric determination of gold ions, in vitro bioimaging and fluorescent polymer film," Journal of Photochemistry and Photobiology A: Chemistry, vol. 401, 2020.
- [5] S. Monikankana, H. James C., D. Tonkeswar, D. Trisharani and S. Binoy K., "Feasibility study of preparation of carbon quantum dots from Pennsylvania anthracite and Kentucky bituminous coals," Fuel, vol. 243, pp. 433-440, 2019.
- [6] D. Akansha, U. Takashi, M. Toru and T. Masaru, "Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence analysis using Machine Learning," vol. 9, 2019.
- [7] W. e. Seider, Product and Process Design Principles: Synthesis, analysis and Evaluation, 4 ed., 2017.

Thank DOE program managers for their guidance!

Thank you!