Pipeline Materials Technologies for Mitigating Corrosion, Methane Emissions, and Hydrogen Embrittlement

Ömer Doğan, Zineb Belarbi, Kaimiao Liu, Fangming Xiang, Lucas Teeter, Kyle Rozman

Acknowledgements

This work is performed in support of the U.S. Department of Energy's Fossil Energy and Carbon Management's Methane Mitigation Technologies program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center's Natural Gas infrastructure FWP (FWP#1022424).

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Natural Gas Infrastructure - Challenges

Justman, Rose & Bauer, NETL, 2017. Data analyzed from U.S. DOT PHMSA incident data

https://www.news.ucsb.edu/2014/013953/americas-leaky-natural-gas-system-needs-fix

- Methane emissions
- Internal corrosion

 Cost-effective refurbishment of inservice pipes

- Hydrogen compatibility
- Remote monitoring

Mitigation – NETL Approach

Metallic Coatings

Multilayer **Organic Coatings** 1 bilayer (BL) 1-month m -60

Composite Liners

Sacrificial (and Self-healing) Metallic Coatings

- Sacrificial coatings are used for corrosion protection.
- Zinc is a common sacrificial coating.
- However, Zn corrodes too fast in NG pipeline conditions.
- Can we slow Zn corrosion inside NG pipelines?
- Can we form *micro galvanic cells* to control Zn corrosion?

Cold Spray Coating Technology

Coatings	Thickness	Gas Temperature	Gas Pressure	Porosity
	(µm)	(°C)	(PSI)	(%)
ZnNb	428 ± 5.1	300	450	$\approx 0.32 \pm 0.13$
ZnCr	304 ± 7.0	300	450	$\approx 0.5 \pm 0.28$

Electrochemical Results: Cold Spray Coatings Immersed In a CO₂ Saturated NaCl Solution

Corrosion Mechanism of ZnNb

13:14

ATIONAL

HNOLOGY

Field Test at NW Natural Gas Storage Facility

Metallic Coating Technology Maturation

Performance Attributes	03/2022	03/2023	03/2024	Timeline and Steps to TRL 7&8
Corrosion rate mm/y	<0.025 mm/y	<0.01 mm/y	<0.01 mm/y	Lab and field tests
Adhesion of coating on steel substrate				ASTM C633 – Adhesion bond bar testing and / or MIL-J-24445A Lug shear test , Field test
Hydrogen permeation rate	Calculated (<10 ⁻¹⁴ mols/m Pa ^{0.5} s)	<10 ⁻¹⁴ mols/m Pa ^{0.5} s	<10 ⁻¹⁴ mols/m Pa ^{0.5} s	Laboratory test
Application method – Robotic cold spray	TRL 4	TRL 4	TRL 5	Developed at ULC Technologies
Cost including robotic deposition	<\$1M per mile	<\$1M per mile	<\$1M per mile	Cost analysis
Summary	TRL 5	TRL 6	TRL 7	3/31/2026

Multilayer Organic Coatings

Different layers serve different purposes

After testing multiple configurations, a multilayer design was chosen.

How was the multilayer coating made?

LbL (layer-by-layer) assembly is ideal for combining different materials together.

Typically, <u>positively charged components</u> and <u>negatively charged components</u> are alternately deposited one layer at a time.

Process

Decher G. Science 1997, 277, 1232.

Hagen D. A. *RSC Advances* **2014**, *4*, 18354.

- Thin and light Reduce material cost
- Customizable

Avoid using toxic component

• **Structural control** Fine tuning at nanoscale

Surface morphology

The microscopically rough surface allows *hydrophobic* material to form a *superhydrophobic* surface.

Surface

rough surface with 60 and 600 nm SiNPs **Cross-section**

thickness ~16 μm

mix&matched SiNPs

ATIONAL

ECHNOLOGY Aboratory

Anti-corrosion performance in CO₂+NaCl+H₂O

The corrosion rate was analyzed using linear polarization resistance.

short term test long term test uncoated carbon steel Corrosion rate (mm/year) Corrosion rate (mm/year) **10**⁰ **10**⁰ stabilized at ~ 0.8 mm/year milestone target **10**⁻¹ **10**⁻¹ coated carbon steel 10-2 **10**⁻² stabilized at ~ 0.025 mm/year increased to ~ 0.008 mm/year **10**⁻³ **10**⁻³ **10**⁻⁴ 10-4 15 20 25 30 0 5 10 80 120 160 200 40 Time (hour) Time (hour)

Achieving a corrosion rate lower than the milestone target of 0.1 mm/year

.S. DEPARTMENT OF

ENERGY

Mechanical test

NATIONAL ENERGY TECHNOLOGY LABORATORY

The durability of coating was tested according to ASTM D3359 (scratch and then peel with adhesive tape).

the coating remained superhydrophobic

before

after

Multilayer Organic Coatings – Technology Maturation

(top) superhydrophobic coating blocks CO₂ and NaCl

(bottom) primer layer blocks water vapor

- Improve the corrosion resistance by incorporating gas barrier layers.
- Enhance the applicability by reducing the number of layers and by adopting spray coating.
- Reduce the environmental impact by switching to a nonfluorinated silane.

Performance Attributes	Performance Results By 03/30/2022	EY22	EY23	Timeline and Steps to TRL 7&8
Hydrophobocity	-	>165°	>165°	Lab test
Corrosion rate	0.1 mm/y - Lab	0.025 mm/y - Lab	Field test - coupon	Lab and field tests
Durability	-	Passed ASTM D3359	Field test - coupon	ASTM D3359 and field test
Lifetime				Lab/field tests
Cost	Estimate <\$0.5M per mile			Cost Analysis
Summary	TRL 3	TRL 4	TRL 5	03/30/2026
	•	•		•

Corrosion protective composite liners

Continuous metal layer barrier for methane and hydrogen leak.

- Composite liner: internal polymer layer, metal foil layer, external polymer layer.
- Internal polymer layer—provide protection from natural gas corrosion
- Metal foil layer—significantly reduce gas (methane, hydrogen) leak.
- External polymer layer—provide mechanical strength.

Pipeline shaped liner prototype: foil layer

NATIONAL G

HNOLOGY

Pipeline shaped liner prototype: foil + inner polymer

Inner polymer layer material

2. Oceanit Coating

3. Layer by layer organic coating developed by NETL

- Fusion bonded epoxy
- Preliminary results show promising bonding between coating and foil substrate
- Preliminary peel test confirms the durability of the coating
- Coating on the steel substrate survived with pigging process
- Successfully applied onto thicker aluminum coupons
- Passed preliminary peel test
- Coupons ready for in-house corrosion test

Plan: Perform adhesion and corrosion tests of all three coatings and down select.

Proposed outer layer solution

Overwrapping with polymer or fiber reinforced polymer

Overwrapped braided composite over metal substrate

Steps:

- 1. Insert the rod into Aluminum foil layer.
- 2. Overwrap the composite layer over the foil layer.
- 3. Coil the wrapped liner structure on a spool.
- 4. Transport the wrapped liner structure to site.

Performance tests

NATIONAL ENERGY TECHNOLOGY LABORATORY

Pressure test

Able to detect He gas leak and locate the leak location

Corrosion test

- Environment: CO₂ Saturated 3.5% NaCl, simulated natural gas environment.
- Tests: Open circuit potential (OCP)

 Linear polarization resistance (LPR)
 Electrochemical Impedance Spectroscopy (EIS).

Gas permeation test

Liner Technology Maturation

Performance Attributes	03/2022	03/2023	03/2024	Timeline and Steps to TRL 7&8
Corrosion rate mm/y	-	<0.01 mm/y	<0.001 mm/y	Lab and field tests
Application thickness	Calculated (<5 mm), not	<5 mm	<5 mm	Lab and field tests
	demonstrated			
Hydrogen permeation rate	Calculated (<10 ⁻¹⁴ mols/m Pa ^{0.5} s)	<10 ⁻¹⁴ mols/m Pa ^{0.5} s	<10 ⁻¹⁴ mols/m Pa ^{0.5} s	Laboratory test
Spoolable	-	-	Yes	Lab and field demo
Lifetime (based on	-	5 years	>50 years	Lab/field tests
corrosion rate)				
Cost including installation	\$0.73M per mile /\$0.41M per mile	-	-	Cost analysis
Summary	TRL 3	TRL 4	TRL 5-6	3/31/2026

Materials for Mitigating Internal Corrosion, Methane Emissions, and Hydrogen Embrittlement

Metallic Coatings

Electrolyte

Multilayer

1-month

Composite Liners

ATIONAL

Pipeline Materials Technologies for Mitigating Corrosion, Methane **Emissions**, and Hydrogen **Embrittlement**

VISIT US AT: www.NETL.DOE.gov

@NETL DOE

@NETL DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Ömer Doğan, Pl omer.dogan@netl.doe.gov **Ruishu Wright, TPL** ruishu.wright@netl.doe.gov

