Monitoring Fracture Dynamics with a Contrast Agent-Assisted Electromagnetic Method

DE-FE0031785

PI: Mohsen Ahmadian Bureau of Economic Geology at The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory October 26, 2022 Annual Review Meeting Pittsburg

Acknowledgements

NETL/DOE

- Scott Beautz
- Gary Covatch

The University of Texas- at Austin

- Mahdi Haddad
- Darwin Mohajeri

Duke University

- Liangze Cui
- Qing Huo Liu

University of North Carolina

- Alfred Kleinhammes
- Patrick Doyle
- Yue Wu

DIT

Jeffrey Chen

Project Overview

- Funding (DOE and Cost Share)
 - NETL Funded Project \$1.7M DOE and \$430K Cost Share
- Overall Project Performance Dates
 - September 2019 to December 2022 (15 months extension due to the pandemic)
- Project Participants (see acknowledgments)
 - UT Austin Bureau of Economic Geology: Prime recipient, hydro-geomechanical and seismic modeling, and coordinator of field activities
 - UNC: EM Lab studies
 - Duke: EM Modeling
 - Deep imaging technologies (DIT): CSEM vendor

Background and Overall Project Objectives

To demonstrate a real-time surfacedeployed electromagnetic (EM) method for monitoring fractured network dynamics at TRL of 5 using pressure-responsive electrically active proppants (EAPs)

Monitoring subsurface flow for a safe and sustainable resource recovery

Technical Approach/Project Timelines

Technical Approach/Project Scope

BP1 Milestones:

- \checkmark 1. Obtaining the required permit for injection into the DFPS
- ✓ 2. Verification that pressure and salinity change can yield at least 1-5% change in electrical conductivity of 100% EAP pack.
- ✓ 3. Verification by EM forward modeling that a change in electrical conductivity of a propped fracture leads to a measurable change in under survey conditions.

Success Criteria:

 Conduct field test to demonstrate that monitoring fracture dynamics with a contrast agent-assisted EM method is possible in real time

Monitoring subsurface flow for a safe and sustainable resource recovery

Impact of Pressure and Flow Rate on Frac Models

- Dilation due to stepwise injections changes the conductivity of the EAP pack
- This supports the capability of EM methods to detect flow within EAP

Progress - Electrical Measurements in the Lab: Pressure

- Relative change in conductivity is large when hydraulic pressure is applied to the CA pack in a confined space.
- Sand does not respond to pressure as much as the CA

Impact of Salinity on Frac Models

Columns were Initially equilibrated with 1000 ppm NaCl solution. Then, tap water and 6000 ppm NaCl (1S/m) solution were injected sequentially.

Two frac models:

• Two frac models: a) consisting of sand only and b) system with a stratified EAP-alternate-sand fracture were studied.

- Large dielectric response
 difference between these
 two scenarios highlights
 the importance of EAP
- Increase in salinity leads to a reduction of the imaginary part of the impedance

Field Study Plan-A hypothesis for the Expected Results

Used High Sampling Rate Surface-Based Controlled Source EM Geophysics Technology from DIT

- 1. Transmitters installed on surface and electrical current is transmitted into the ground creating an EM field
- 2. A swath of receivers are turned on over the area being monitored and record a baseline measurement before injection commences.
- 3. Voltage changes are measured at <u>50 K</u> <u>samples per second</u> during the injection
- 4. Signals are processed for data quality
- 5. The baseline signal is subtracted from recorded signal each time step (32 seconds)
- 6. The differences are imaged

Field Testing - Infrastructure

Planned and Executed Ten Injection Cycles at DFPS in 2022

Injection Cycle No.	Date (day/month/y ear)	Injection Scenario	Injection Slug	Refilling start time (hour: minute)	Refilling finish time (hour: minute)	Shut-in time (hour: minute)	Injected Volume (US Gallons)
1	1/21/2022	Repeating 9/20/2020	Freshwater	9:28	10:48	15:14	1126.02
2	1/23/2022	Flow-rate Test	Freshwater	11:31	11:41	16:50	603.38
3	1/24/2022	Freshwater Injection	Freshwater	12:00		16:35	952.1
4	1/26/2022	Freshwater+C hase Freshwater Injection	Freshwater	12:00	12:03	17:56	1200.2 (freshwater)
5	1/27/2022	Saltwater+Cha se Freshwater Injection	Small Saltwater Slug+Large Freshwater Slug	12:00	12:06	18:06	215.6 (saltwater); 990 (freshwater)
6	1/28/2022	Saltwater+Cha se Freshwater Injection	Large Saltwater Slug+Small Freshwater Slug	14:15	12:08	20:09	1000 (saltwater) 200.1 (freshwater)
7	1/29/2022	Freshwater Injection	Freshwater	11:20	14:25	23:07	2149.5
8	1/31/2022	Freshwater Injection	Freshwater	11:23	11:25	18:33	729
9	2/1/2022	Freshwater Injection	Freshwater	8:15	11:31	18:28	3485.4
10	2/2/2022	Freshwater Injection	Freshwater	8:51	8:16	13:00	1262.4

Proposed Study Leverages the Existing Infrastructure at the UT/BEG's Devine Test Site

Well ID	Distance to Inj well (ft)	Total Depth (ft)	Screen /Perf Depth (ft)	Completion Type- Equipment					
Inj well	0	267	175	Steel/4"/Perf					
DMW1	10	267	170-77	PVC/2°-ERT					
DMW2	20	190	170-180	PVC/2*					

- Injection via the existing injection well
- Fluid migration and pressure will be validated by downhole Pressure/Salinity transducers in DMWs 1 and 2 and 9

13

For this presentation we will focus mainly on Jan 26 and 27 data:

- 1. January 26, 1200 gal freshwater
- 2. On January 27, repeated the January 26 injection

with 200 gal freshwater, 200 gal 2500 ppm saltwater, and 800 gal freshwater

Exemplary Animated Data - January 26 Injection

Collected surface-recorded scattered electric field |E(t)|-|E(0)|, together with flow-rate and bottomhole pressure and salinity changes.

Observed:

- Rapid response in the first 10 min into the injection
- Signal grows much more prominently mid to end of high flow rate times, and decreases after the shut in.

Freshwater vs. Saltwater Injection at <u>High Flow Rate</u> <u>and During Shut-in</u>

- Signal strength and trend appear the same after flowrate reaches 4 gpm on both days
- Signal grows during injection and subsides during shut-in
- Effect of 2500 ppm saltwater is minimal on magnitude of E field

Scattered E Field at a Representative Receiver

Freshwater - January 26

Saltwater - January 27

Focusing on Low Flow Rate

Salt effect is dominated by Flow rate

Interval 1/2:

- Change in E trace is first detected with minimal injection volume,
 - Syphon effect with opening of wellhead valve

Interval 2/3:

- Signal drops and rises on but more noticeable on 1/27,
 - possibly due to channeling after multiple rounds of injections before 1/27
 - compare max injection well BHP for two days

Forward Modeling of the Observed E Fields

EM Forward Modeling: Mismatch at T1, T2, and T3

Energy

Geomechanical Model and Post-Shut-in Pressure Transient Analyses

Used injection test data to calibrate the hydromechanical properties of the formation through history matching and to develop tools for design of the future injection scenarios at the DFPS.

Post-Shut-in Pressure Transient Analyses and Geomechanical Modeling of Jan. 2022 Injections

2. Geomechanical models for Jan. 2022 injections: upgraded model to include propped and unpropped frac. permeabilities

Summary Slide

- A large pressure change within an EAP pack can be detected in lab and field
- A strong correlation between flow rate, fracture dilation, EAP pack compaction, and electric potential was observed using Real-time CSEM
- The fracture dilation/flow rate effect dominates the contribution of low salinity changes
- Our EM models based on only conductivity changes led to a large data mismatch especially at early times
- We are currently investigating the reason for this mismatch

Plans for future testing/development/commercialization

During the remainder of this project:

- Complete data analysis
 - Constrain inversions using salinity and DAS data and geomechanical model outcomes
 - Reduce mismatch in the models
- After this project
 - Compare sand and EAP in a parallel field study at DFPS
 - Couple geomechanical and EM models
- Scale-up potential
 - Scale-up is low risk because we used commercial equipment
 - CSEM signal at reservoir scale are routinely detected by the DIT during fracturing

Outreach and Workforce Development Efforts/Achievements

- Graduated 5 students and 3 PDs
- Promoted one PD to RA, 2 PDs found jobs in industry
- Four students interned in various companies
- Collaborated with DIT on developing a commercial surveys and analysis tool
- DFPS suitable for future work in fluid flow monitoring area
- Prepared 3 conference manuscripts and 2 journal articles so far (next slide)

Benefit to the Program

- The developed methods in this study lead to a better understanding of the extent of SRV, formation stress states, leakoff and invasion, helping with resource recovery and sustainability.
- Monitoring fluid flow is important in CCS, water management, solution mining of CE, P&A, E&P, and for a environmentally friendly resource use

Synergies to other works presented on Tuesday

- HFTS-1 Liner Refrac Project Update (FE0024292)
- Monitoring Well-to-Well Communication to Reduce Environmental Impacts (FWP-1022415)
- Fully Distributed Acoustic and Magnetic Field Monitoring Via a Single Fiber Line for Optimized Production of Unconventional Resource Plays (FE0031786)
- Novel 'Smart Microchip Proppants' Technology for Precision Diagnostics of Hydraulic Fracture Networks (FE0031784)

Bibliography update

- Haddad, M., Ahmadian, M., J. Ge, S. Hosseini, J.-P. Nicot, and W. Ambrose (2021). <u>Hydrogeological</u> <u>and Geomechanical Evaluation of the Devine Fracture Pilot Site, Medina County, Texas.</u> Presented at the 55th American Rock Mechanics/Geomechanics Symposium, 20–23 June, Online.
- Zhang, R., Sun, Q., Mao, Y., Cui, L., Jia, Y., Huang, W.F., Ahmadian, M. and Liu, Q.H., (2022). <u>Accelerating Hydraulic Fracture Imaging by Deep Transfer Learning</u>. IEEE Transactions on Antennas and Propagation. vol. 70, no. 7, pp. 6117-6121, doi: 10.1109/TAP.2022.3161325.
- Haddad, M., Ahmadian, M., J. Ge, J.-P. Nicot, and W. Ambrose (2023). Geomechanical and <u>Hydrogeological Evaluation of a Shallow Hydraulic Fracture at the Devine Fracture Pilot Site, Medina</u> <u>County, Texas.</u> Rock Mechanic and Rock Engineering (accepted 11 October 2022).
- Haddad, M. and Ahmadian, M. (2023). <u>Pressure Transient Analyses and Poroelastic Modeling of</u> <u>Hydraulic Fracture Dilation for Multiple Injection Cycles at The Devine Fracture Pilot Site</u>. Presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 31 January-2 February. SPE-212362-MS.
- Ahmadian, M., Haddad, M., Cui, L. et al. (2023). <u>Real-Time Monitoring of Fracture Dynamics with a</u> <u>Contrast-Agent-Assisted Electromagnetic Method.</u> Presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 31 January-2 February 2023. SPE-212376-MS.

Q&A/Collaboration Contact Info:

Mohsen Ahmadian <u>Mohsen.Ahmadian@beg.utexas.edu</u> 512-296-9699

Acknowledgements

NETL/DOE

- Scott Beautz
- Gary Covatch

The University of Texas- at Austin

- Mahdi Haddad
- Darwin Mohajeri

Duke University

- Liangze Cui
- Qing Huo Liu

University of North Carolina

- Alfred Kleinhammes
- Patrick Doyle
- Yue Wu

DIT

Jeffrey Chen

Appendix and backup

Organization Chart

Technical Approach/Project Timelines

Gantt Chart

														_	
Tasks		Leader/Backup	Q1 Y1	Q2 Y1	Q3 Y1	Q4 Y1	Q1 Y2	Q2 Y2	Q3 Y2	Q4 Y2	Q5 Y2	Q6 Y2	Q7 Y2	Q8 Y2	Q9 Y2
TASK 1: PROJECT MANAGEMENT AND PLANNING		Ahmadian & Co-Pls													
1.1 PROJECT COORDINATION AND COMMUNICATION		Ahmadian	А	А	А	А	A/B	А	А	А	A	A	A	A	A
1.2	PERMITTING & COORDINATION OF PILOT TEST ACTIVITIES	Ahmadian				с									
1.3	REPORTING	All	D	D	D	D	D	D	D	D	D	D	D	D	D
TASK 2: WORKFORCE READINESS FOR TECHNOLOGY DEPLOYMENT		Ahmedian, All					E								
TASK 3: EM RESPONSE OF LABORATORY FRACTURE MODELS AND INCORPORATION OF MIXING RULES		Kleinhammes, Ambrose													
3,1	ELECTRICAL MEASUREMENTS	Kleinhammes				F1									F2
3.2	ROCK CHARACTERIZATION	Ambrose				6									
TASK 4: AI	PPLICATION OF EXISITING SEISMIC AND EM S TOOLS TO DEVINE	Liu, Fomel													
4.1	VSP/SEISMIC RTM VALIDATION	Liu, Fomel			н										
4.2	JOINT VSP/SEISMIC AND EM INVERSION	Liu				i.									
TASK 5.0: DESIGN OF FIELD EXPERIMENT/SENSITIVITY ANALYSIS		Liu. Hosseini. Fomel													
5.1	FLUID FLOW MODELING	Hosseini, Nicot				J.									
5.2	EM SENSITIVITY ANALYSIS	Liu				к									
5.3	VSP/SEISMIC SENSITIVITY ANALYSES	Liu, Fomel									L				
5.4	MULTISCALE/MULTIPHYSICS FORWARD	Liu					м								

							_								
Tas k s		Leader/Backup	Q1 Y1	Q2 Y1	Q3 Y1	Q4 Y1	Q1 Y2	Q2 Y2	Q3 Y2	Q4 Y2	Q5 Y2	Q6 Y2	Q7 Y2	Q8 Y2	Q9 Y2
TASK 1: PROJECT MANAGEMENT AND PLANNING		Ahmadian & Co-Pls													
TASK 6: FIELD CONSTRUCTION/FIELD SURVEY STUDIES/DATA GATHERING		DIT, Hosseini, Ogiesoba													
6.1 FORMATION PULSE TESTING		Hosseini, Ahmadian				N					N				
6.2	VSP/SEISMIC SURVEYS	Ogiesoba, DeAngelo										0			
6.3	DEVELOPMENT OF STRATEGIES FOR REAL-TIME MONITORING	ъп				o						o			
6.4	SMART PROPPANT TEST 1: IN-SITU REMOTE PRESSURE TEST	рπ				o						o			
6.5	SMART PROPPANT 2: IN SITU REMOTE SALINITY TESTS	рπ										0			
6.6	TRACING FLUID BREAKTHROUGH	Nicot										0			
TASK7: DA	TA PROCESSING AND INTERPRETATION	Liu, Fornel, DIT													
7.1	EM INVERSION OF FIELD DATA	Liu, DIT													9
7.2	VSP/SEISMIC IMAGING AND MIGRATION	Liu, Fomel													Q
7.3	HISTORY MATCHING OF FLUID FLOW MODELS FOR TRACER	Hosseini, Nicot													R
7.4	JOINT VSP/SEISMIC AND EM INVERSION	Liu, Fornel													s

Back ups