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Overall Project Objectives

Long-Term (Strategic)

» development of commercial
supply chains

* |dentify “value-added”
technologies

* |dentify domestic supply chain
gaps

 technology transfer,
commercialization and
deployment

Near-Term (Tactical)

* resource assessments

* |dentify resource
production technologies

* |dentify key infrastructure
resources and gaps

* Engage in-basin
industrial/commercial
partners
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Next Generation Coal Value Chain
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MAPP-CORE Vision

WISCOMEIM MEW YOHK
- T
MICHIG AM s

E
dLd
—

! L AMIA
ILLIMCH & IR DA & [ I'."F'EN'HE""'

U

Lo,
VIRGIMNIA
7)

Gounty Economic Levels

- [Hetressed (B1)
[ mRisk (113)
|:| Transiticnal (205)
|:| Competitive (14)
I teineent (1)

WIRGIMNIA

MORTH CARCLIMNA

S0OUTH
CaROLIMNA

MISSISSIFRI

Ettective October 1, 2048

Created by the Appalachian Ragional Commission, August 2018
through September 30, 2018

Dyl Sourpes;

Unermployment data: LS. Bureau of Labor Stalistics, LALS, 2014=2018
Imcome data: LLS. Buresu of Economic Analysis, REIS, 2016

Powverty dats: LS. Census Burasy, Amarican Comrmunity Survey, 2012-2016

« MA
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PP-CORE addresses

upstream production

midstream refining and
processing

downstream manufacturing of
high value products

PP-CORE will identify

key barriers and opportunities in
connecting raw materials and
resources to end users and
manufacturers

technical, workforce and
economic considerations.

Directlx addresses social justice
through economic development

Directly addresses
environmental justice concerns
through focus on mine waste
cleanup and site reclamation
opportunities.

Specific projects will require
additional analysis (toutS|de the
scope of this project)



Success Criteria

« Quantify resource

base

— Refuse

— Coal ash

— Acid mine drainage
— Drill cuttings, shale

« Technology options

— Handling, sorting
— Remining, reprocessing
— AMD treatment options

« Assess processing
strategies
— REE/CM enrichment
— Carbon products
upgrading
 Economic
development
— Workforce
— Markets
— Supply chain
— Infrastructure



Resource Assessment

Focused on Economically Significant
Coal Beds

» Current resource volumes for major
coal seams

« REE/CM Ratios are similar across the
basin.

* Total Waste Volumes can be
estimated using consistent loadings
and historic waste fractions.

« Significant Differences in Mineral
Content and Loading Between
Waste Streams

* Coal Refuse — Gob/Overburden vs.
Prep Plant Wastes
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Fill Total Avg. Total Total
ID Area Depth Volume Mass

(ft2) (ft) (MM ft3) (MM tons)*
A 6,162,281 83.7 515.78 32.24




Resource Assessment

Powerplant Wastes
» Estimates for mass are critical

* Heavy dependence on GIS techniques to
estimate volumes/mass

Acid Mine Drainage

» Major sources have been identified and in many
cases quantified

» Perhaps the most “mature” resource assessment

Shale Wastes

« Shale waste discussion is likely to be dominated
by new production.

« Black shales also have similar loadings across
the basin

* “Production” will be a function of future gas
development (hydrogen?)



\ Ghent Generating Station

#= « Largest coal-fired power
plant in Kentucky, with a net
generation capacity of 1,919
MW.

* Four 515 MW furnaces, all
equipped with wet limestone
FGD (scrubbers). Three are
equipped with SCR.

» Average coal consumption =
15,000 tons/day.

* Average ash production =
1,500 tons/day

8 = FGD gypsum byproduct is

il partially used to manufacture

wall board. Unused gypsum

Fill Total Total Total
ID Area Depth Volume Mass
(ft2) (ft) (MM ft3) (MM tons)*

A 5,058,351 39.7 200.82 12.55
B 1,910,257 26.3 50.24 3.14
C 7,104,673 44.4 315.45 3.51
D 4,440,612 471 209.12 13.07

... Estimate based on a fill weight of 125 Ibs/fte -



Organic-Rich Black Shale Units in the Central Appalachian Basin
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Waste Stream Processing

Construction

/\
\

Upstream Construction \

Downstream Construction /@\‘-
Centerline Construction ?\\

c)

Rapid Dewatering Systems Example

Is a continuous process, not a batch

process.

Removes particles down to the 7 to 14
Angstrom range. |

Can be located away from the site,
requiring no pits, ponds or return
channels.

Has a small foot print.

Requires no exposed pond bottoms or [
heavy construction equipment.

Simultaneously recycles all recovered
water back to the source, leaving
behind dried sediment.

Significant Challenges in Waste
Stream Processing

* Deconstruction of
Impoundments

 Prep Plant and Coal Ash
Impoundments

 Significant geotechnical
difficulty in deconstructing these
structures safely

* Permitting of
reprocessing/remining has
significant liability
considerations



Waste Stream
Processing

Significant Challenges in Waste
Stream Processing

 Gob Piles Are Often Burned Out

» Spontaneous combustion

« What is ultimate fate of
re-mined/reprocessed wastes?

 Significant mass/volume remain
after REE/CM extraction.
Physical space and disposal is a
concern

* AMD processing provides bright
spot
* Non-hazardous wastes
» Benign materials handling



REE/CM Production Technologies

United States Patent
Ziemkiewicz et al .

Patent No .: US 10,954,582 B2
Date of Patent: Mar. 23, 2021

pH Control

sludge disposal GeoTube GeoTube
REE/CM REE/CM

PondB




Remote
site AMD
treatment
/| REE/CM

capture




Summary:
Feedstocks/processing

Feedstock Processing Economic viability
Refuse Physical beneficiation low low recovery
Chemical extraction Low high acid consumption
Pre leach calcination Higher  higherrecovery/kinetics
Fly ash Physical beneficiation Low Low Recovery
Chemical extraction Low High acid consumption multi stage recovery
Alkaline thermal extraction [Higher  Relative to Physical and Chemical methods
AMD Multi stage AMD treatment |High High recovery, low CapX, OpX




Challenges with carbon fiber from coal

* Ash — plug spinnerets, stops mesophase
coalescences, results in rough fiber surfaces, and
acts as point failure defect

» Sulfur — puffs during oxidation
* Too low or too high softening poin ;J\ P,
» Cost of producing synthetic pitch e
« Cost of thermal treatments \

 Ash
 Ash
 Ash




Most REE/CM is in the mineral fraction

Total REY + Sc (ppm*) Total REY + Sc (ppm**)

M o 200 400 600 800 1000 1200 1400 O 200 400 600 800

0.00 : 1 - - ' '

5.04 Avg. | 507.54 Avg. |385.84
Max. 932.81 Max. | 681.24

6.04 Min. 188.22 Min. 88.80

12.04

18.04

24.04 Avg. | 751.57 Avg. | 48.25
Max. |[1340.22 Max. | 66.47

30.04 503.60 Min. | 26.50

34.84

37.84

40.24

Carb. Shale
41.56
Flint Clay
46.84
Seat
52.84 L Rock

Fire Clay coal — Blackhawk Mine 81_2 * Ash Basis **Whole Coal / Rock Basis



Refuse piles A+B contain ~6,700 t REE

Leatherwood Preparation Facility Fill Areas
Perry County, Kentucky

Fill Total Total Total Mass Coal mine preparation plant
ID Area (ft?) Volume (ft}) (MM tons)* refuse areas, commonly

A 2,596,147 184,694,400 11.54 referred to as slurry ponds
B 1,776,015 122,624,100 7.66 or impoundments, are a

C 3,704,785 fillin progress n/a common feature in eastern

/' * Estimate based on a fill weight of 125 Ibs/t®. B Hentucky _where more than
i i Dy : : 100 permits are currently

i active.

Digital elevation models
(DEM) were first used to
document the existing

{ elevation of the fills on a 30
| ft cell basis. Cells were then
projected onto the original
topographic contour map
(Leatherwood 7.5-minute
quadrangle map). The
difference in elevation for
each 30 ft cell was
calculated with the sum of
elevation differences being
ol : used to calculate the
Total Avg. I N impoundment volumes.

Location Cells Depth (ft)  Volume (ft3)
Fill Site A 205216 184,694,400

Fill Site B 2425 | 136249 7kl 122,624,100

e

825 m




Key Early Findings

Basin Reuse

« Deconstruction of impoundments(prep waste or powerplant ash) has
significant risk

« Construction type is an early screening tool — if known
« Permitting of these operations is likely to be challenging
« Economics will favor largest sources and favorable siting (ARQ is an
example — but unclear how many sites have this set of conditions)
» Materials Handling and Sorting Issues
« Prep Wastes are predominantly carbon (mass).

» Powerplant wastes are extremely challenging

« Permitting and financing will be difficult due to actual and perceived
difficulties in handling

» Challenge to processing — what to do with “new” waste from a
proposed process
At 10,000 ppm loading = 99% reject

Example — Project would need to reject ~31.9MM tons of material
(estimate 400+ acres)
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DREAM
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&

Pre-Law Site — Note
Revegetation

Significant (Potentially Critical)
Xhallenges Exist in Each Technical
rea

Fundamental Issues of Ownership
and Liability Follow All Of These Sites

Resource Quantification

+ Significant data ﬁ/laios exist to
evaluate REE/CM loading in waste
Impoundments

« Gob/Overburden wastes are likely
not a significant source (Burnout)

. §hale Waste”s Are Not As
Condensed” as coal wastes
« Wastes have historically been non-
hazardous landfilled

« Pre-law sites can be very difficult to
locate (and thus to assess)



Future Plans

Technology Development
« REE/CM

+ ldentify potential technologies to
refine waste materials
(powerplant ash; coal prep
waste) to products

Future work

 |dentify cFotential research areas
for “hard to manage” sources.
(Powerplant Waste)

 Carbon Products

» Seek to expand feedstock
suitability for existing
processeés/products

* Impoundments are not uniform
in characteristics

Future Work

* |dentify potential sectors for
substifution of carbon materials

* Volume/Mass mismatch
between waste source =
potentials and grod_ucts is big —
except for combustion.

High
Market
Attractiveness

*  Market size
*  Market Growth Rate
* Attributes

Med

REEs

Graphene

Soil Amendment

Life Saences

~%

DCL Cheicals

Gasification Chemicals

Beneficiation .

DCL Fuels

Carbon Black i

Electrodes,
Synthetic Graphite

'

Carbon Fiber

/. Projected Growth
(25 Year)

Current Market

Activated Carbon

CCR Building Products
& Coal Construction
Products

Met Coal Extractive Metallurgy

Low Med

Competitive Strength

* Relative market share

High

+ Ability to compete on price & quality
+ Competitive strengths & weaknesses

BENEFICIATION

Indirect Coal
Liquefaction (ICL)

GASIFICATION

Direct Coal
Liquefaction (DCL)
HYDROGENATION

High Temperature

COKING

Mild Temperature
PYROLYSIS

ELECTRIC ARC

METHANATION
MTO
METHANOL MTA
MTG
FISCHER -
TROPSCH
SYNTHESIS

» AROMATICS &
LIGHT OIL

COALTAR
PITCH & COKE

CHAR

» Upgraded Coal (size/sulfur/ash reduced)
* Upgraded Coal (dried/heat treated)
4

» Synthetic Natural Gas (SNG)

» Polyolefins, polyethylene, polypropylene

» Aromatics

» Gasoline, naphtha

: Diesel, naphtha, gasoline

» Electrode materials, needle coke, binder
» Synthetic graphite, battery materials
. Carbon fibers, graphite foam

»  Activated Carbon

Carbide, acetylene




Summary Slide: Next Steps

1. Resource Classification/Inventory

1. Refuse
2. Ash
3. AMD

2. REE/CM vs. Carbon Products

3. Extraction Technology Evaluation
1. Practicality, Access, Safety, Regulations
2. Cost relative to value

4. First Sort: Feasible/non-Feasible

5. For example:

25



Technology Assessment Worksheet

Technology Short Name: Preconcentration via Staged Precipitation Date: 0/14/2022
Conducted By: Noble

Applicable Feedstocks: Acid Mine Drainage

Applicable Products: Rare Earths, Co, Mn, Li, Ni, and others

Estimated TRL

Any Application: 9 Core-CM Applications: 6
Brief Explanations |Staged precipitation is a mature technology in the field of Fully integrated process has been testing using realistic
(if needed)- hydrometallugical processing. feedstock in a 1:20 scale prototype unit.

Technical Description

Raw acid mine drainage (AMD) is treated while simultaneously recovering a high-grade rare earth preconcentrate (nominally 1% to 5% TREE
grade) suitable for downstream extraction and recovery. While conventional AMD treatment raises the pH to a suitable endpoint in a single step,

this technology prescribes two steps, where the first removes most of the contaminant elements, while the second produces a REE/CM
preconcentrate.

Critical Economic, Environmental, Social, and Legal Considerations

Technology has received patent protection [1], and economic assessments have shown favorable outcomes when implementing a regional
network sourcing strategy [2]. Technology would incentivize AMD treatment, particularly from abandoned mines, which would support positive

environmental and social outcomes. Technology does not create new or additional wastes beyond what is currently produced in conventional
AMD treatment.




Research, Development, and Demonstration Needs

The first commercial prototype is currently being installed and commissioned under DE-FE0031834. Future RD&D needs include additional
onsite demonstrations and broader commercial uptake.

Up to Five Relevant References (if available)

Drainage Task Force Symposium: Morgantown, WV, USA.

1. |Ziemkiewicz, P., Moble, A, & Vass, C. (2021). U.5. Patent Mo. 10,954 582. Washington, DC: U.5. Patent and Trademark Office.

2. |Larochelle, T., Noble, A_, Ziemkiewicz, P., Hoffman, D., & Constant, J. (2021). A Fundamental Economic Assessment of Recovering Rare Earth
Elements and Critical Minerals from Acid Mine Drainage Using a Metwork Sourcing Strategy. Minerals, 11(11), 1298.

3. |Wass, C. R, Moble, A, & Ziemkiewicz, P. F. (2019). The occurrence and concentration of rare earth elements in acid mine drainage and treatment by-
products: Part 1—Initial survey of the Northern Appalachian Coal Basin. Mining, Metallurgy & Exploration, 36(5), 903-916.

4. |Vass, C. R., Moble, A, & Ziemkiewicz, P. F. {2018). The occurrence and concentration of rare earth elements in acid mine drainage and treatment
byproducts. Part 2: Regional survey of northern and central Appalachian coal basins. Mining, Metallurgy & Exploration, 36(5), 917-929.

5. |Ziemkiewicz, P, He, T_, Noble, A., & Liu, X_ (2016, March). Recovery of rare earth elements (REEs) from coal mine drainage. In West Virginia Mine

Graphical Abstract, Picture, or Additional Data (if available)

Raw
AMD

MNPIES
Dizcharge

Sludge Disposal
RED Preconcentrate

Schematic of staged precipifation process

Typical REE distribution of product




Screening matrix:
Reserve/recovery strategies

REE/CM
Refuse Coal ash AMD

Reserve tons
Grade %

Recovery TRL
Processing TRL

Carbon Products
Refuse Coal ash AMD

Reserve tons
Grade %
Recovery TRL

Processing TRL
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Organization Chart

MAPP CORE Organizational Chart
CORE-CM Initiative for U.S. Basins DE-FOA-0002364
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Pathways to products

MAIN PATHWAY
VT one-pot synthesis of GO from purified coal

» mild oxidation (only one acid is used without additional oxidant). Patent App No. 17/415,445

» more cost-effective and simpler process than Hummer’s method PCT/US2019/ Q66941 _
- preservation and extraction of graphitic domains in the coal sOOD- L. Mahajan and Seul-Yi
ee
conventional 2-step method of producing graphene oxide
* graphite to graphite oxide
* graphite oxide to graphene oxide
one-pot method
» straight from coal to graphene oxide
+ eliminating additional mechanical exfoliation and multiple washing
Coal to Graphene Oxide (b) crystallln e, e
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