Modular System for Direct Conversion of Methane into Methanol via Photocatalysis DE-FE-0031867

Gang Wan, Eddie Sun Stanford University

Arun Majumdar (PI), Raghubir Gupta (Co-PI), Chenlu Xie, Vasudev Haribal, Jian Zheng

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

Title	A Modular System for Direct Conversion of Methane into Methanol via Photocatalysis							
Award No.	DE-FE0031867							
Period of Performance	10/01/2020 - 09/30/2023							
Project Funding	DOE: \$1,300,000	Cost-Share: \$325,000						
Overall Project Goal	Develop a liquid phase photocatalytic process for direct conversion of methane in flare gas into methanol							
Project Participants	Stanford University, Susteon Inc., Casale SA							
DOE/NETL Project Manager	Bruce Brown							
Principal Investigator	Dr. Arun Majumdar							

Technology Background: Methane Flaring

Current Industrial Methanol Production from CH₄

C. G. Morales-Guio et.al., Joule, 2019, 3, 2589-2593

Fundamental Challenges in Direct Methane to Methanol (M2M)

- Intrinsic inertness of the C-H bond in CH₄
- Ease of overoxidation of CH₃OH to CO₂

Catalyst Design Requirement

Simultaneously activate methane AND mitigate methanol over-oxidation

90 V_O_/SIO_ 0 MoO_/SiO Δ 80 Methanol selectivity (%) FePO/MCM-41 Fe-NaZSM-5 70 b Cu/ZSM5 60 Electrolytic copper Fe-sodalite 50 Cu/MoO Co/MoO 40 Ga/MoO, Ga_O_/MoO, FeCu-pyrophosphate 30 FePO. Fe/MoO 💎 🗖 20 FePO/SiO 10 VO /MCM-41 Ö VO /SBA-15 0 🙋 6 8 12 10 Methane conversion (%)

X. Bao, *et.al.*, *Chem*, **2019**, 5, 2296–2325
J. A. van Bokhoven, *et al.*, *Angew. Chem. Int. Ed.* **2017**, *56*, 16464 – 16483

Selectivity-Conversion Trade-off

Motivation for *Photocatalytic* Direct M2M

Room temperature photoactivation of methane like methane monooxygenase

hv

"Solvation Cage"

Project Schedule

Task/Subtask	k/Subtask Key Milestone			
Task 1	Kickoff meeting and submission of revised project management plan (PMP), technology maturation plan and techno-economic analysis	04/01/2020		
Task 2	Successful demonstration of the ability to incorporate the co-catalyst clusters and molecular complexes with the semiconductor catalyst while controlling co-catalyst loading and proximity to semiconductor sites.	01/31/2021		
Task 3	Successful optimization of semiconductor material and synthesis conditions for maximizing hydroxyl radical production.	01/31/2021		
Task 4	Successful optimization of a bifunction photocatalyst with a capable of converting methane into methanol with high selectivity and yield.	09/30/2021		
GO/NO-GO Decision	Test results show approaching 7-10% methane conversion with 80-90% methanol selectivity under commercially reasonable operating conditions.	09/30/2021		
Task 5	Complete one final iteration for optimizing bifunctional catalyst for methane to methanol conversion and potential for future catalyst scaleup and large-scale production.	03/31/2022		
Task 6	Obtain key operating catalyst performance data under realistic conditions with simulated natural gas for commercial application.	06/30/2022		
Task 7	Identification of effective reactor configuration to optimize methane transfer onto the catalyst surface across the aqueous media.	09/30/2022		
Task 8	Demonstrate production of photocatalytic methane to methanol conversion using H_2O as reagent for hydroxyl radical production	09/30/2022		
Task 9	Demonstration of activation of methane or CO_2 in a mixture with other gases	07/30/2023		
Task 10	Pilot plant design for modular operation	09/30/2023		

TiO₂-based designed photocatalyst

w/o oxide: 53%; w/ oxide: 94.5%

and selectivity

10

Comparison with Other Catalysts in Literature Reports

¹ JACS, **2019**, 141, 20507–20515 ² ACS Catal. **2020**, 10, 14318–14326 ³ Nat. Sustain. **2021**, 4, 509–515; ⁴ Nat. Commun. **2021**, 12, 1218 ⁵Science, **2017**, 358, 223–227

* Reaction time 3h ** Reaction time 2h *** Reaction time 1h

Stable catalyst and reproducible product yield

No observed changes in catalyst after 5 runs

Increasing methane conversion by increasing UV flux and oxide layer thickness

Extension to other alkane oxidation and H₂O₂ systems

w/o oxide layer: 48% w/ oxide layer: 85%

Liquid product selectivity:

w/o oxide: 30%

w/ oxide: 95%

Selective Methane Oxidation to Formaldehyde (HCHO)

Initial Process Model (in AspenPlusTM)

Initial Techno-Economic Analysis

Initial Techno-Economic Analysis

Cost Contribution	Unit Cost (\$/t MeOH)	Contribution
Capital	455	43%
Feedstocks/Consumables	269	26%
Power & Utilities	199	19%
O&M	128	12%
Formaldehyde credit	-400	
Adjusted Total	650	

Current market price: **\$500-700/t MeOH**

23

Plans for future testing/development/ commercialization

□ Increasing methane conversion and methanol selectivity (>5% and \ge 90 % resp.)

Developing preliminary basic engineering design package for a pilot test unit

Leveraging photoactivated radicals for GHG-reducing chemical transformations

Take-Away Message

- Successfully developed a modular photocatalytic system that has achieved both high methane conversion (>1%) and high liquid product selectivity (>90 %)
- Conducted the initial process design for the photocatalytic methane conversion

Appendix

Organization Chart

Integrating Catalyst Development, Separation, Scale-up and Reactor Design

Arun Majumdar

Principal Investigator

Raghubir Gupta

CO-PI (Susteon President)

Gang Wan (Postdoc)

Eddie Sun Chenlu Xie (Grad Student) (Former Postdoc)

Jian Zheng (Susteon)

Vasudev Haribal (Susteon)

Ermanno Filippi Michal Bialkowski (Casale) (Casale)

Pierdomenico Biasi (Casale)

Gantt Chart

Project Timeline		Budget Period 1 10/1/2020-09/30/2021					Budget Period 2 10/1/2021-09/30/2023														
	Assigned Resources	1	2 3	4 5	6	78	9 10) 11 12	2 13 14	15 16	5 17 18	19 20	21 22	23 24	25 2	26 27	28 2	9 30 3	31 32	33 34	35 36
Task 1. Project Management and Planning	Stanford																				
Subtask 1.1 Project Management Plan																					
Subtask 1.2 Technology Maturation Plan																					
Subtask 1.3 Techno-Economic Analysis																					
Task 2: Catalyst Synthesis	Stanford																				
Subtask 2.1: Semiconductor catalyst synthesis																					
Subtask 2.2: Co-catalyst synthesis																					
Subtask 2.3: Integration of semiconductor and co-catalyst into bifunctional catalysts <u>Milestone 2</u> : Successful demonstration of the ability to incorporate the co-catalyst clusters and molecular complexes with the semiconductor catalyst while controlling co-catalyst loading and proximity to semiconductor sites.							*														
Task 3. Multiplex Fluorescence Array High-Throughput Screening	Stanford																				
Milestone 3: Successful optimization of semiconductor material and synthesis conditions for maximizing hydroxyl radical production.							*														
Task 4: Bifunctional Catalyst Testing																					
<u>Milestone 4</u> : Successful optimization of a bifunction photocatalyst with a capable of converting methane into methanol with high selectivity and yield.								•*	•												
Go/No-Go Decision Milestone: Test results show approaching 7-10% methane conversion with 80- 90% methanol selectivity under commercially reasonable operating conditions.	09/30/2021							*	r												
Task 5: Study of Structure-Property Relationships Milestone 5: Complete one final iteration for optimizing bifunctional catalyst for methane to methanol	Stanford																				
conversion and potential for future catalyst scaleup and large-scale production.											*										
Task 6: Experimental Identification of Optimal Operating Window	Stanford																				
<u>Milestone 6</u> : Obtain key operating catalyst performance data under realistic conditions with simulated natural gas for commercial application.													*								
Task 7: Evaluation of Reactor Design	Stanford & Susteon																				
<u>Milestone 7</u> : Identification of effective reactor configuration to optimize methane transfer onto the catalyst surface across the aqueous media.														· ; ·							
Task 8: Evaluation of Water as Hydroxyl Radical Source	Stanford																				
Milestone 8: Demonstrate production of photocatalytic methane to methanol conversion using H2O as reagent for hydroxyl radical production.														*							
Task 9: Activation of CH4 or CO2 in a mixture of other gases	Stanford																				
<u>Milestone 9</u> : Demonstration of activation of methane or carbon dioxide in a mixture with other gases Task 10: Pilot plant design for modular operation	Susteon																			*	
Milestone 10: Design pilot plant for the modular operation																					*