Carbon Ore Processing Program

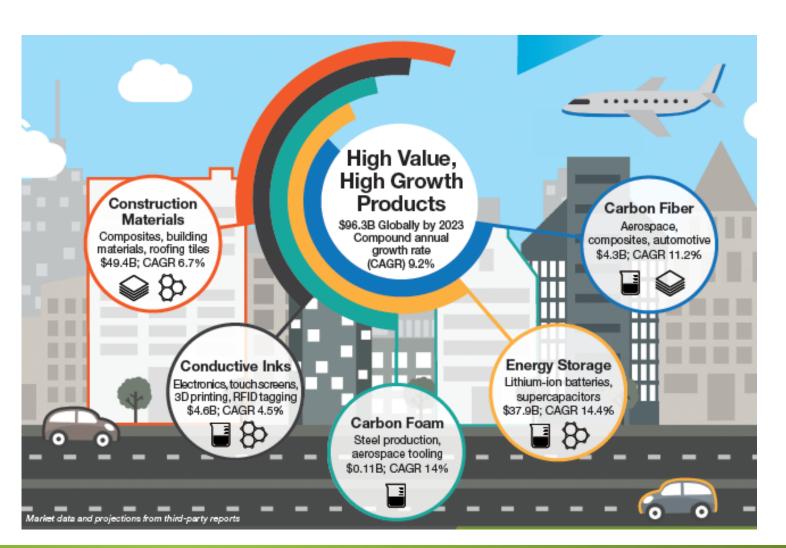
Joseph Stoffa, PhD Technology Manager, R&D Program Planning

NETL's Carbon Ore Processing Program

Program Initiated 2018

Program Goals

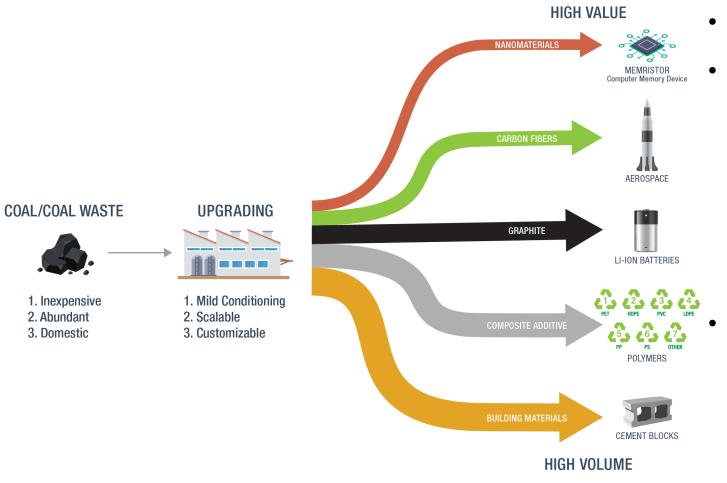
- Expand beyond traditional thermal and metallurgical applications
 - Covers high-volume through high-value
- Products from domestic coal and coal wastes
 - Remediation of legacy wastes is a benefit
- Advance laboratory and pilot-scale technologies
 - Must test processes at relevant scale
 - Must test product at relevant scale
 - "Prototypes are easy, production is hard"


3

Product and Application Market Potential

Carbon Ore Processing Program

- Program is focusing on high-value and highgrowth products
- Current products and applications
 - \$96.3B global market value by 2023
 - CAGR of 9.2%
- Tremendous potential for coal waste remediation


U.S. DEPARTMENT OF

Expanding the Coal Value Chain

NETL's Carbon Ore Processing Program

- Expand use of coal wastes
- Advantages over other carbonbased feedstocks
 - Abundant and low cost
 - High-carbon density
 - Enables low cost, high-volume production of carbon materials

Challenges

- Optimizing product and process
 performance
- Coal contains the periodic table

Coal Ore Processing Budget History

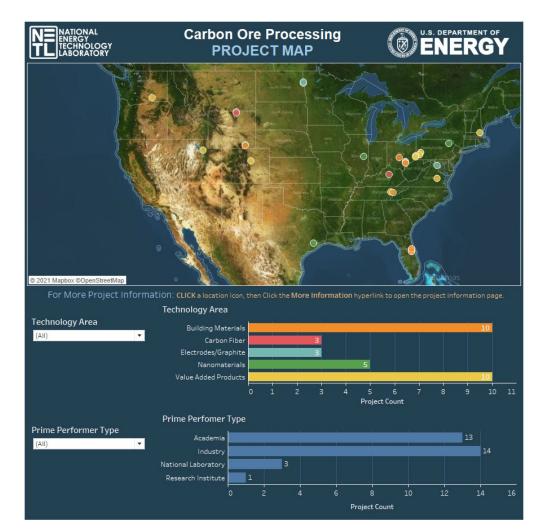
Funding Opportunity History

Funding Opportunity	Issue Date
FOA-0002185: Coal-derived materials for building, infrastructure, and other applications	4/10/2020
FOA-0002438: Design, R&D, Validation, and Fabrication of a Prototype Carbon-Based Building	12/11/2020
FOA-0002405: Advanced Coal Waste Processing: Production of Coal-Enhanced Filaments or Resins for Advanced Manufacturing and Research and Development of Coal-Derived Graphite	4/16/2021
FOA-0002620: Carbon Ore Processing	07/29/2022

FOA 2405: Selected Projects

Advanced Coal Waste Processing: Production of Coal-Enhanced Filaments or Resins for Advanced Manufacturing and Research and Development of Coal-Derived Graphite

- AOI 1: Coal-Enhanced Filaments/Resins for Additive Manufacturing
 - Ohio University
 - Baker Hughes Technology
 - Semplastics
 - University of Delaware
- AOI 2: Supporting R&D of Coal-Derived Graphite
 - University of North Dakota
 - Ohio University
 - Touchstone Research Laboratory



Current R&D Portfolio

Active Projects

- Program has ~40 active projects
- Carbon Products Include:
 - High Value
 - Graphene, quantum dots, conductive inks, battery anodes, synthetic graphite, and supercapacitor materials, carbon fibers
 - High Volume
 - Building materials, carbon foam, composites, roofing materials.

- To qualify for a tax credit of \$3,750, the IRA requires that the "percentage of the value" of the applicable battery critical minerals extracted or processed in the US or a US free-trade partner or recycled in North America, be more than 40% prior to 2024 (rises to 80% by 2027).
- An additional tax credit of \$3,750 is available if at least 50 percent of the battery's components are manufactured or assembled in North America prior to 2024 (increasing to 100 percent by 2029).
- Beginning in 2025 a vehicle will not qualify for a tax credit if it contains any critical minerals that were "extracted, processed, or recycled by a foreign entity of concern"
- Beginning in 2024, a vehicle will not qualify for a tax credit if any "components" contained in its battery are "manufactured or assembled by a foreign entity of concern".

DOE to issue proposed guidance by 12/31/22

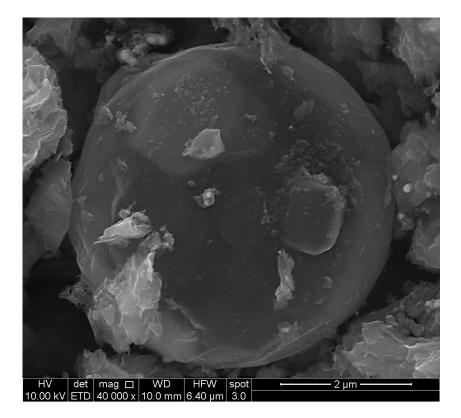
Mineral	Component	Amount in Battery (kg)	% of Total
Graphite	Anode	52	28 .1%
Aluminum	Cathode, Casing, Current Collectors	35	18.9%
Nickel	Cathode	29	15.7%
Copper	Current Collectors	20	10.8%
Steel	Casing	20	10.8%
Manganese	Cathode	10	5.4%
Cobalt	Cathode	8	4.3%
Lithium	Cathode	6	3.2%
Iron	Cathode	5	2.8%
Total	n/a	185	100.0%

https://elements.visualcapitalist.com/the-key-minerals-in-an-ev-battery/

Low-temperature Catalytic Graphitization

Improved Graphite Manufacturing from Waste Carbons and their Blends

Key Benefits


- Reduces Environmental Impacts Catalytic and microwave processes reduce manufacturing temperatures and process time
- Lowers Manufacturing Costs Polygeneration of graphite
 and other carbon products uses low-cost feedstocks
- Expands Domestic Graphite Supply Chains Converts lowcost, domestically-sourced waste coal, waste plastic, & biomass to graphite
- Produces Battery Grade Graphite

Low Process Intensity:

- Temperature ~ 1500 C
- Time ~ 3 hours

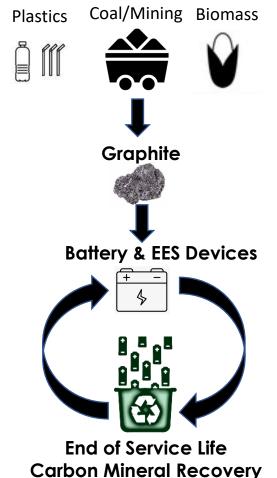
Degree of Graphitization > 90%

NETL's Low Temperature Graphitization Process

Coal-Derived Graphite

NATIONAL ENERGY TECHNOLOGY LABORATORY

Game-Changing Source of Graphite for Lithium-Ion Batteries


Key Benefits

- **Reduces U.S. dependence on foreign sources** –Virtually all battery-grade graphite currently used in U.S. electric vehicle production is imported
- Provides superior properties and/or economics Current research indicates coal-derived graphite can result in higher quality synthetic graphite using lower cost resources
- **Remediates legacy wastes** Using coal wastes provides economic and environmental justice benefits
- Creates prevailing wage jobs Utilizing coal wastes provides jobs typically located in economically distressed mining communities

Annual demand for graphite in lithium-ion batteries for domestically-produced electric vehicles could exceed 325,000 tons in 2030*

*Current U.S. EV production uses about 39,000 tons of graphite per year

Carbon Waste & Blends

Coal-Derived Graphite

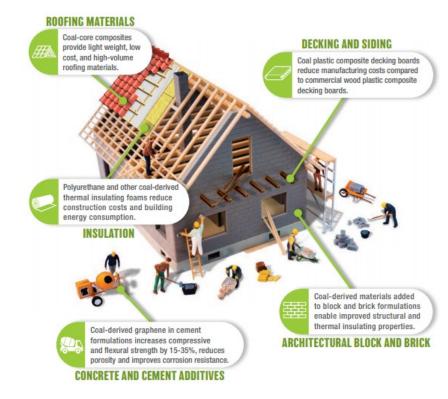
Anodes for Lithium-ion Batteries from Domestic Coal Waste

- Viable SiOC coal composite anodes
- Half coin cell (vs Li, 0.005-3V) specific reversible capacities of >700 mAh/g.
- Single Layer Pouch Cells(vs NMC 532, 2.5-4.2V) surpassed 500 cycles above relative capacity of 80%.

Currently testing in 50 mAh Pouch

Scaling up to 3-5Ah 18650 Cells by End of Project

Coal-Derived Building Materials


High-performance, energy-efficient, low-cost, sustainable building materials

Key Benefits

. DEPARTMENT OF

- Increase product performance Coal-derived materials in blocks and bricks improve structural and thermal insulating properties
- Increase building energy efficiency Coal-derived insulating foams reduce building energy consumption
- Reduce product cost Coal/plastic composite decking boards
 reduce manufacturing costs
- **Provide high-volume use for coal wastes** –Markets include carbon foam, roofing tiles, siding, decking, insulation, joists/studs, sheathing, tiles and carpet, and architectural block

Global demand for building materials can't be met with traditional biomass resources alone. Estimated needs could exceed 1100 gigatonnes over the next two decades.* *Current demand is about 1,100 gigatonnes, about equal to living biomass

Coal-Derived Building Materials

Success with CPC Materials for Decking Applications

- Meets or exceeds ASTM and IBC requirements
- Equivalent or greater strength
- Greater resistance to oxidation
- Lower flammability
- Better price point
- Lower embodied energy and emissions

In the past 3 years, Ohio University and industrial partners have successfully matured technology from TRL4 to TRL8

Deck Constructed with CPC Boards

CPC Pricing with Commercial Products

Manufacturer	Product	End User Pricing (\$/linear ft)
DE-FE0031809	CPC	1.29
Trex	WPC	1.75-5.78
Choicedek	WPC	3.67
TimberTech	WPC	4.48-6.68

Coal-Derived Building Materials

XMAT Coal Derived Building Materials

Coal Derived Building Materials (CDBM) including X-BLOX, X-BRIX, X-PANEL, X-MATRIX, and X-TILES exhibit exciting highperformance characteristics:

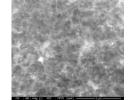
- Five times the flexure strength of the best commercial brick
- Over twice the compressive strength of construction-grade concrete block
- Lower density than comparable material,
- Improved mechanical durability and abrasion resistance,
- Very high temperature stability, and
- Resistance to chemicals, acids, salts, and water.

Coal-Derived Nano-Materials

Additive Manufacturing and Carbon-Metal Composites are Focus Areas

Key Benefits

- Leverage high carbon content of coal Coal wastes can ٠ produce a variety of carbon materials
- **Lower production costs** Coal-derived nano-materials can have ٠ lower raw material costs
- **Provide materials for additive manufacturing** Utilizes coal-• enhanced filaments or resins for 3D printing
- **Provide superior properties and/or economics** –Atomically thin ٠ carbon dielectric film improves performance, facilitates miniaturization and outperforms metal oxides used in commercial devices
- **Allows multi-material printing** Filaments or resins based on unique aspects of coal chemistry enable multi-material printing •

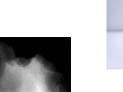

3-inch prototype memristor computer memory devices are routinely manufactured and are scalable for large industrial production runs

Novel Carbon Materials

Graphite

ATIONAL

TECHNOLOGY


Porous

Carbons

Graphene Nanoflakes

Carbon Quantum Dots

Coal to Carbon Fibers

Producing High-Performance Materials from Coal

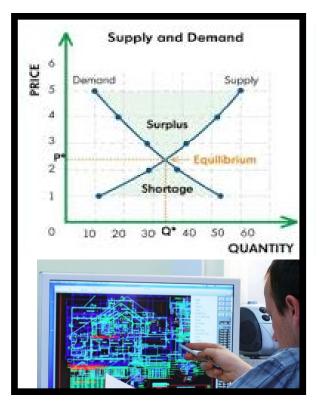
Key Benefits

- Lowers production costs High carbon content, lower cost of coal tar pitch enable lower cost production
- **Produces a range of fibers** Extends from short chopped fibers for low-cost applications to graphitizable fibers for demanding aerospace applications
- Offers varying elastic modulus, strength, and conductivity - can be tailored depending on fiber processing and heat treatment conditions

Aerospace Enerav CARBON **FIBERS Sporting Goods** Automotive \mathbf{O} **Medical & Specialty** Marine

R&D is improving manufacturing processes to address variability of source coal, pitch composition, and precise process control requirements

NETL-RIC's Coal to Products Research



NETL's Research Innovation Center

Materials Discovery & Design

Market, Process, & Environmental Analysis

Takeaways

- Exciting opportunities exist to create jobs and support R&D of coalderived products that could address legacy coal wastes
- Supports R&D of both high volume and high value applications
 - Coal based building materials may beat BAU in terms of carbon emissions
 - We don't have enough biomass for future construction
 - Coal-derived materials can offer unique properties at a competitive price point
- Lab scale through bench-scale development
- Most funding supports R&D of coal-derived products
 - Outside of traditional thermal and metallurgical markets
 - Mostly avoids support for R&D to produce commodities

Contacts

https://netl.doe.gov/Advanced_Coal_Processing

Joseph Stoffa Technology Manager Joseph.Stoffa@netl.doe.gov

Evan Granite HQ Program Manager Evan.Granite@hq.doe.gov

