Manufacturing Valuable Coal-Derived Products in Southern Appalachia FE0032045

Charles Sims University of Tennessee

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

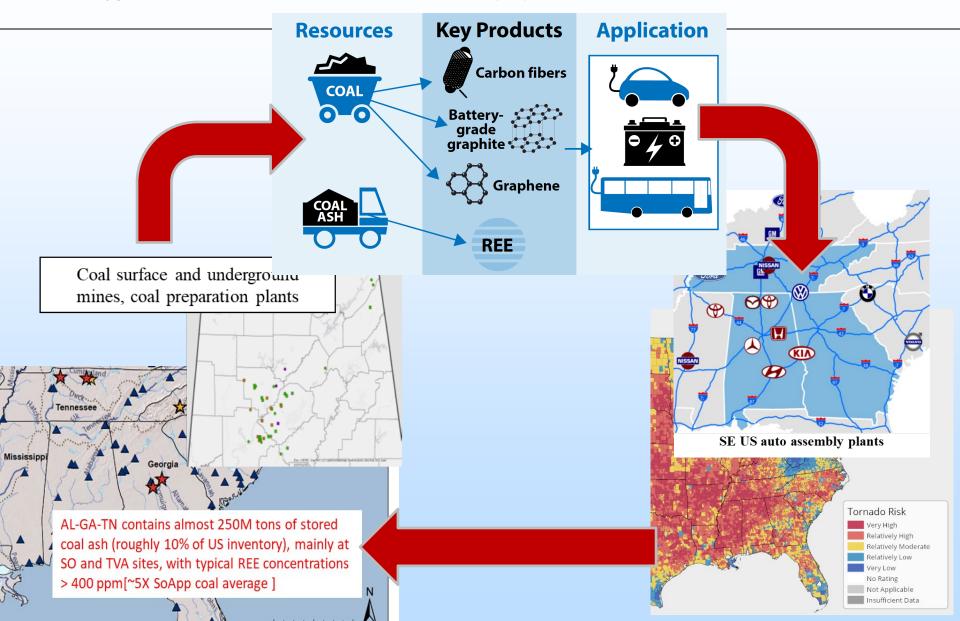
Project Overview

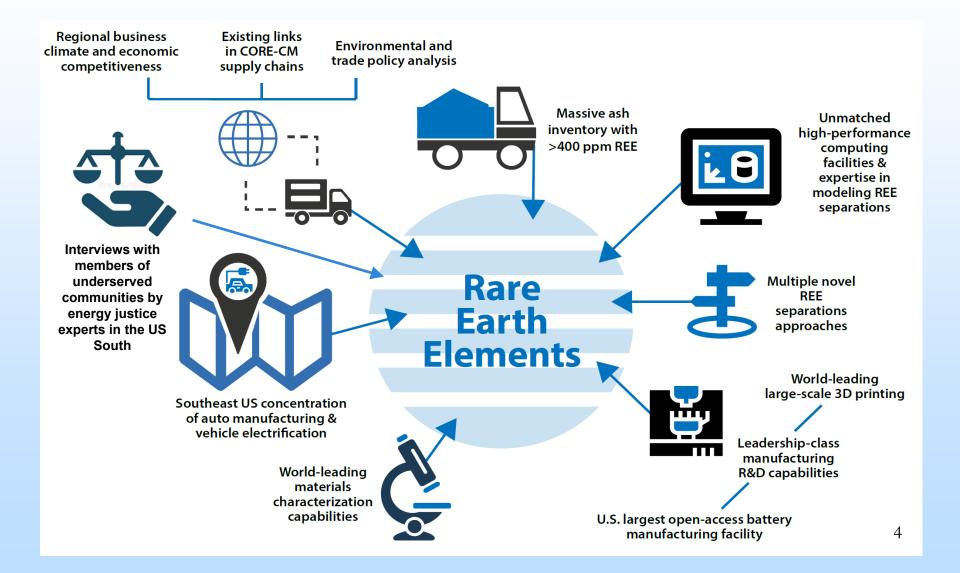

Funding (DOE and Cost Share): \$1,982,746 (DOE \$1,584,997; Cost share \$397,749) **Overall Project Performance Dates:** 9/15/2021 - 9/14/2023

Project Participants: IACMI (Applicant – Managed by Collaborative Composites Solutions Corporation), Geological Survey of Alabama (GSA), Oak Ridge National Laboratory (ORNL), Roane State Community College (RSCC), Southern Company (SO), Tennessee Geological Survey (TGS), University of Alabama-Birmingham (UAB), University of Alabama-Tuscaloosa (UA), University of Tennessee-Knoxville (UTK)

Overall Project Objectives: Develop and deploy new technologies for manufacturing rare earth elements (REE), critical minerals (CM), and valuable non-fuel, carbon-based products (CBP) from coal and/or coal waste in the SoApp Basin

Broader Impacts:


Revitalizing distressed SoApp coal communities Reducing reliance on foreign imports of REE and CM



Unique Resource-to-application Ecosystem

Notable Features of our Approach

Technical Approach/Project Scope

Task 2—Basinal Assessment of CORE-CM Resources

<u>Milestone 2.1</u>: Coal ash sample plan indicating number of samples, ash sources, and data to be acquired. (*M3*)
 <u>Milestone 2.2</u>: Six-month resource assessment progress report with key findings and existing data. (*M6*)
 <u>Milestone 2.3</u>: GIS maps of coal reserves for TN coalfields including acid mine water discharge locations, coal mine refuse locations, and geologic and geochemical data. (*M24*)
 <u>Milestone 2.4</u>: Samples for mineral characterization and analysis delivered to NETL. (*M20*)

Task 3—Basinal Strategies for Reuse of Waste Streams

•<u>Milestone 3.2</u>: Preliminary assessment of beneficial ash use opportunities (M9)

Task 4—Basinal Strategies for Infrastructure, Industries, and Business

•<u>Milestone 4.1</u> Existing business and industry structure with NAICS codes. (M6)

•<u>Milestone 4.2</u> Taxonomy and REE security cost measures. (M9)

•Milestone 4.3 Transportation, electricity, & broadband inf. ability to support CORE-CM businesses (M12)

•Milestone 4.4: Four critical aspects of REE security costs. (M18)

•Milestone 4.5: Report or article on REE security costs submitted for publication. (M24)

Task 5—Technology Assessment, Development, and Field Testing

•<u>Milestone 5.1</u>: Assessment on utilization of high-performance computer modeling of REE separations. (M15)

Task 6—Technology Innovation Centers

•Milestone 6.1: List of existing capabilities at planned Technology Innovation Center sites. (M15)

Task 7—Stakeholder Outreach and Education

•<u>Milestone 7.1:</u> Key stakeholders identified and a list of stakeholders that are critical outreach targets. (*M3*) •<u>Milestone 7.2:</u> AL community college partner(s) selected for local delivery of training in coal communities. (*M15*)

Progress: Resource Knowledge Gaps

- For Alabama, Georgia and Tennessee; 1045, 44 and 20 REE data records were retrieved, respectively, for coal and its associated sediments or wastes
- Evaluation of the compiled data revealed the following:
 - Georgia and Tennessee recorded a very low number of sampled materials
 - bituminous coal is the primary characterized sample type
 - only limited CM-REE data are available for coal-associated sediments and waste materials

Material	Number of Records
Coal	1086
Roof Rock	2
Seat Rock	4
Parting Rock	2
Shale	8
Top Bench	1
Bottom Bench	1
Refuse	5
Underclay	0
AMD (water and sludges)	0
TOTAL	1109

Progress: Resource Characterization

Underclay Samples

- only 4 of the 14 samples qualify as 'ore grade' REE materials (Total REE+Y+Sc ≥300 ppm)
- 4 samples have Li concentrations >300 ppm

Roof rock, AMD water and sludge sample analysis ongoing **Coal ash samples** (NR = Not Reported; NA = Not Applicable)

AL	ABAMA CCP F	ACILITIES											
		REE+Y+Sc											
Plant Barry (N=6)	REE (ppm)	(ppm)	Li (ppm)	Co (ppm)									
AVG	206.5	290.2	NR	NR									
STDEV	42.97	52.24	NA	NA									
Plant Greene (N=16)													
AVG	392.8	499.7	234.6	48.01									
STDEV	43.32	57.40	48.24	7.49									
Plant Gorgas (N=65)													
AVG	411.6	535.2	NR	NR									
STDEV	69.75	90.02	NA	NA									
Plant Miller (N=13)													
AVG	385.1	466.0	235.6	32.70									
STDEV	68.07	77.46	128.0	12.34									
GEORGIA CCP FACILITIES													
REE+Y+Sc													
Plant Bowen (N=21)	REE (ppm)	(ppm)	Li (ppm)	Co (ppm)									
AVG	510.4	631.8	201.8	52.64									
STDEV	117.7	139.4	48.16	12.98									
Plant Hammond (N=10)													
AVG	232.7	314.5	152.8	40.85									
STDEV	65.07	81.93	58.68	9.656									
Plant McDonnough (N=46)													
AVG	94.43	131.0	128.8	33.18									
STDEV	46.92	58.37	30.52	7.210									
Plant Wansley (N=10)				43.01									
AVG	335.1	426.7	26.7 114.8										
STDEV	150.0	185.5	62.1	16.41									

Progress: Ash Resource Assessment

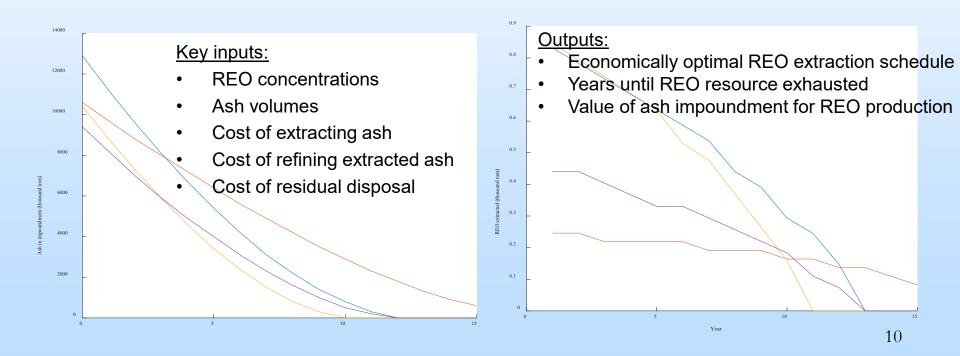
- 219 million cubic yards of coal ash in AL-GA-TN stored in 58 surface impoundments (mostly FA with smaller amounts BA mixed in)
 - Vast majority operated by Southern Company and the TVA
 - Ongoing additions to impoundments represent the small amount of fly ash not sold for beneficial uses.
- 32 (~55%) are closed or the operator has submitted a formal notice that it will stop dumping coal ash into the unit and begin the closure process in the near future ("Notice of Intent to Close").
 - 40 will close the impoundment by leaving the coal ash where it is and "capping" it with a cover (operator must continue post-closure care for at least 30 years)
 - 27 will close the impoundment by excavating the coal ash and transporting it to a different disposal unit for permanent disposal

Progress: Ash Beneficial Use

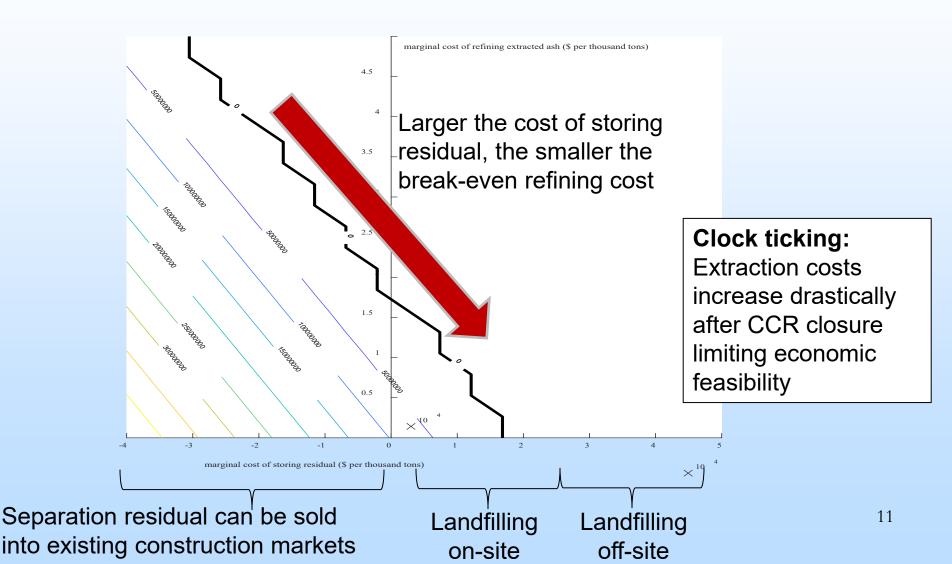
- Near term: Primary current fly ash markets include cement production, concrete production (block, precast, and ready-mix), mine reclamation, and structural and roadway fills.
 - 92 concrete producers in AL-TN; mostly in Alabama.
 - 95 ready mix concrete producers in AL-TN.
 - Concrete/cement producers on average 70 to 115 miles from ash impoundment

• Long term:

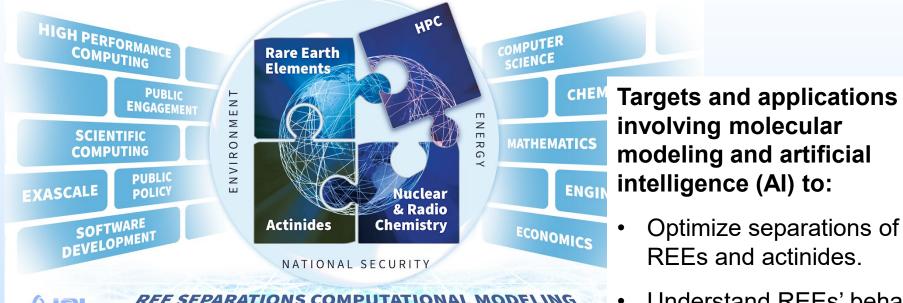
Application	Technology Status	Market Status*	Key Barrier(s)
REE	Developing	None	Technology readiness, needs co-products, imported REO & mined REE cost less
Asphalt		Limited	
Geopolymers (alternative concrete w/o cement)	Mature	Limited in US, used elsewhere esp Australia	Infrastructure, lack of stds, cautious construction industry
Masonry units (bricks, cinder blocks, pavers etc.)	Mature	Limited in US, used elsewhere esp India	Not well understood, merits investigation
Ceramic tiles	Mature	Limited in US, used elsewhere esp China	Not well understood, merits investigation
Furnace/kiln refractory liner	Mature	Limited	Not well understood, merits investigation
Fracking proppants	Promising	In development	Shipping cost, low-cost competing options, oil & gas market volatility
Zeolites (H2O treatment)	Developing	None	Technology readiness
Catalysts (alumina, silica)	Developing	None	Technology readiness O
Polymer fillers	Developing	None	Technology readiness


Table 3. Long-term bottom ash applications

*For products derived from coal ash; all of these markets are mature for products derived from other sources


Progress: Ash Pond Valuation Tool

What are the economic feasibility goalposts?


- Dynamic programming model of profit-maximizing REO extraction from ash impoundments (solved via policy iteration)
- Implemented for all sampled impoundments in GA and AL

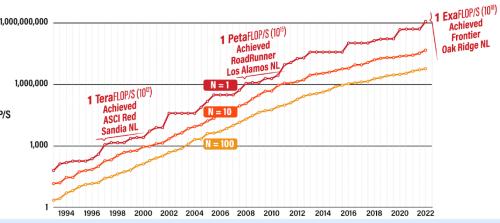
Progress: Ash Pond Valuation Tool

Progress: Evaluations of Exascale enabling capabilities for prediction of REEs and actinides properties

- Understand REEs' behavior to find alternatives to critical materials.
- Provide fast predictions for market analysis, societal, and national security needs relevant to REEs and actinides.

REE SEPARATIONS COMPUTATIONAL MODELING HIGH PERFORMANCE COMPUTING ARTIFICIAL INTELLIGENCE

Figure adapted from Penchoff, et. al. *Rare Earth Elements and Actinides: Progress in Computational Science Applications.* Vol. 1388, Chapter 1, 2021. Graphics designed by David Rogers.


Progress: Evaluations of Exascale enabling capabilities for prediction of REEs and actinides properties

High Performance Computing

- Out-of-balance hardware-software ecosystem.
- Limitations in modeling REEs and FLOP/S actinides.

Exascale-enabled applications

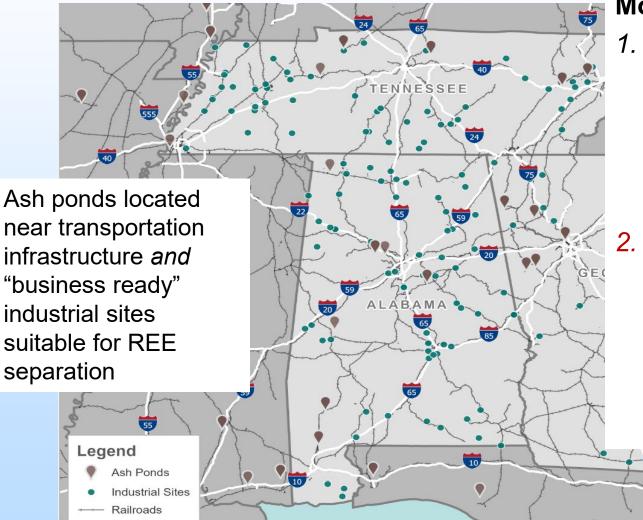
- Artificial intelligence
 - Algorithmic design and methods development.
 - Data set building, design, and bias analysis.
- Multi-disciplinary co-design of software products for Exascale-enabling capabilities.
- Molecular modeling software development to enable high performance and utilization of latest HPC resources.

Modeling targets

- Predictions of binding preferences for selective separations of REEs and actinides.
- Properties analysis and critical materials redesign.

Progress: Existing Business and Industry Structure

Sectors/products using one or more REE, CM and CBP

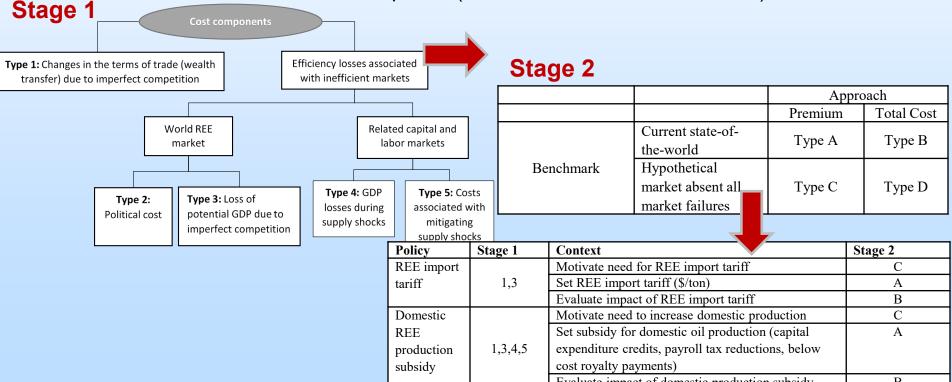

	1	
Product	NAICS Code	
Catalysts	3251	
Geopolymers (alumina, silica)	3271, 3273	
Ceramic tiles	3271	
Furnace/kiln liners	3271	
Fracking poppants	3271, 3279	
Zeolites (alumina, silica)	3271, 3251	
Glass	3272	
Nuclear reactor components	3324	
Lasers	3335, 3345	
Computer hard drives	3341	
Xrays/MRIs/CT scan	3345	
Lighting	3351	
Electric motors	3352, 3363	
Batteries	3359	
Magnets	3359	
Carbon fiber, fiber optics	3359	
Granhita	3359, 3369,	
Graphite	3362, 3311	
Graphene	3359	

2020 Employment by NAICS and state

			Alaba	ma		Georgia			Tennessee		-GA-TN Reg	gion		U.S.	
				Percent		Pe	rcent		Perce	nt	Pe	ercent		Perce	ent
NAICS		NAICS Description En	nployment	of Total	Emplo	oyment of	Total	Emplo	yment of To	tal Empl	oyment of	Total	Emplo	oyment of To	tal
2121	Coal min	ing	2,663	0.13	9	0	0.000		55 0.	002	2,718	0.030)	40,109 0.	029
32 32 32 32	20	20 Establishn	nen	Its	by	/ N/	41	CS	S an	d s	stat	е			
327				Alabama	1	Ge	orgia		Tennes	ee	AL-GA-	TN Reg	ion	U.S	
331					Percent		Pe	ercent		Percent		P	Percent		Perce
3:	NAICS	NAICS Description	Establi	shments	of Total	Establishme	ents of	f Total	Establishments	of Total	Establishme	ents d	of Total	Establishment	s of To
3:	2121	Coal mining		49	0.037		0	0.000	7	0.004		56	0.009	82	
	3251	Basic chemical manufacturing		78	0.059		92	0.030	94	0.055		264	0.043	3,38	4 0
		Clay product and refractory manufacturing		34	0.026	i	57	0.018	45	0.026	i	136	0.022	1,39	9 0
	_12	Glass and glass product manufacturing		19	0.014	ļ	51	0.016	48	0.028		118	0.019	1,89	5 0
21	3273	Concrete and concrete product manufacturing		227	0.172		290	0.094	187	0.108		704	0.115	9,05	3 0
3:	3279	Other nonmetallic mineral product manufacturing		91	0.069		217	0.070	122	0.071		430	0.070	4,01	0 0
3: +	3311	Iron and steel mills and ferroalloy manufacturing		27	0.020		26	0.008	31	0.018		84	0.014	90	3 0.
334	3312	Steel works, blast furnaces and rolling mills		32	0.024		18	0.006	35	0.020		85	0.014	1,19	4 0.
335	3324	Boiler, tank, and shipping container manufacturing		46	0.035		55	0.018	44	0.026		145	0.024	1,98	5 0.
335	3335	Machine tool manufacturing		64	0.048		124	0.040	199	0.115		387	0.063	8,02	2 0.
335	3336	Engine, turbine and power equipment manufacturi	ng	27	0.020		34	0.011	22	0.013		83	0.014	1,29	2 0.
335	3341	Computer and peripheral equipment manufacturing	g	25	0.019		63	0.020	20	0.012		108	0.018	1,89	0. 0
336	3342	Telephone apparatus manufacturing (not cell phone	es)	36	0.027		69	0.022	35	0.020		140	0.023	2,44	3 0.
336	3344	Semiconductor and other electronic component mf	g	60	0.045		88	0.028	55	0.032		203	0.033	5,99	1 0.
336	3345	Electromedical and electrotherapeutic apparatus m	fg	95	0.072		208	0.067	171	0.099		474	0.077	9,12	D 0.
336	3351	Electric lighting equipment manufacturing		12	0.009		55	0.018	33	0.019		100	0.016	1,69	5 0.
	3352	Household appliance manufacturing		7	0.005		20	0.006	40	0.023		67	0.011	57	5 0.
	3353	Electrical equipment manufacturing		45	0.034		116	0.037	76	0.044		237	0.039	2,88	4 0.
	3359	Other electrical equipment and component mfg		36	0.027		70	0.023	62	0.036		168	0.027	3,28	Ə 0.
	3362	Motor vehicle body and trailer manufacturing		55	0.042		83	0.027	62	0.036		200	0.033	2,26	4 0.
	3363	Motor vehicle parts manufacturing		203	0.154		154	0.050	273	0.158		630	0.103	5,76	5 0.
	3364	Aerospace product and parts manufacturing		87	0.066		109	0.035	38	0.022		234	0.038	3,51) 0.
	3369	Other transportation equipment manufacturing		13	0.010		39	0.013	26.000	0.015		78	0.013	1,09	5 0.
		Total for Selected NAICS		1.368	1.035	2,	038	0.658	1.725	1.000	5	.131	0.835	74,47) O.

- AL, GA, and TN has a greater relative presence of industry sectors using or potentially using rare inputs than the nation.
- Region has the opportunity to be a major user of rare inputs, supporting industrial production and job creation and reducing
 14 dependence on rare input imports

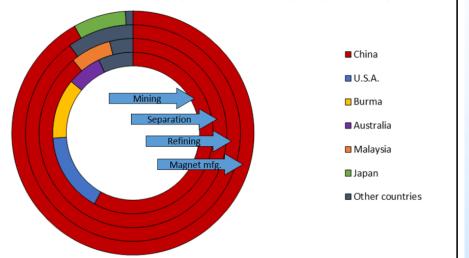
Progress: Essential Infrastructure



Models

- <u>hub and spoke model:</u>
 move encapsulated
 ash from individual
 ponds or other storage
 sites to a central hub
 processing facility
- <u>on-site processing and</u>
 <u>separation facility:</u> a
 mobile technology that
 could move from site
 to site on rail or truck
 beds

Progress: REE Security Costs


- Costs (>expenditures) that arise when prices are an imperfect signal of the true cost of imported REE (cost savings from policies that diversify supply)
 - 1. Price sensitivity of demand in the short and long run
 - 2. Supply responsiveness of non-Chinese producers who do not actively coordinate to exert market power (Brazil, Vietnam, India, Australia)

Progress: Global REE Market Analysis

- Create market power index from dominant firm-competitive fringe model
- Bilateral trade flow data (UN Com Trade; Rare earth metals: HS 280530) and USGS REO production data

Geographical concentration of supply chain stages for sintered NdFeB magnets From center: rare earth mining, oxide separation, metal refining, and magnet manufacturing

	Oil ¹	Rare earth metals ²	Rare earth oxides ³
Market power index (=1 monopoly; =0 perfect competition)	0.66	0.85	0

- 1 based on oil prices between 1986-2016
- 2 UN Com Trade data 2006-2019; Rare earth metals; HS 280530
- 3 USGS country-level production data 1994-2021

Outreach and Workforce Development Efforts or Achievements

- EJ Screening tools used to identify disadvantaged communities proximate to coal ash impoundments John Sevier, Kingston, Widow's Creek (TVA); Gadsden, Gaston, Miller, Gorgas (Alabama Power); Bowen (Georgia Power)
 - On-site interviews with these communities ongoing
 - <u>Initial reaction</u>: genuinely excited about this possibility of coal ash reuse both for rare earth and cement but with concerns
- Op-Eds in regional newspapers on REE Global Markets and U.S. Import Reliance
- Public speaker series on REE markets and separations technologies at the Baker Center for Public Policy
- Private ash beneficial use workshop with regional utilities
- Workforce Development (IACMI)
 - Advanced Composites Career Pathways Program (ACCP) for technician training
 - SkillCrafters STEM program
 - ACE CNC Machining Tool program AR/VR integration
 - Online learning modules

Summary from Southern Appalachia

Resource characterization

limited CM-REE data are available for coal-associated sediments and waste materials

'ore grade' REE materials (Total REE+Y+Sc ≥300 ppm) in 6 out of 8 ash impoundments sampled

Markets and Economics

Refining and residual storage cost goalposts for economic viability of ash impoundments as REO source

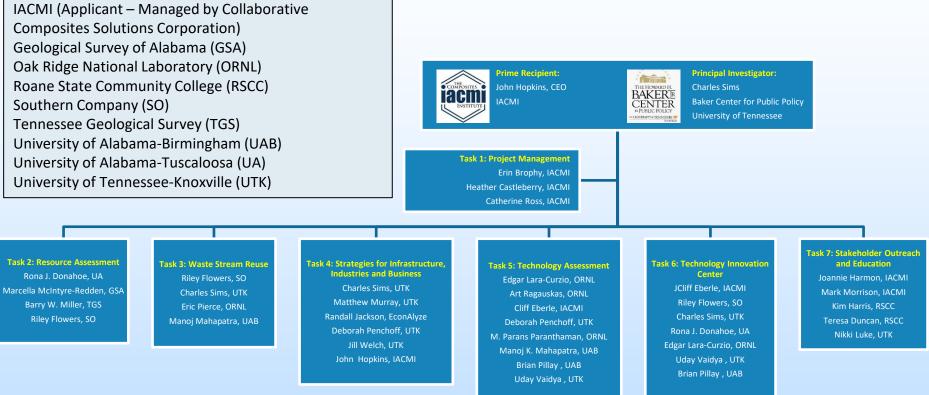
Analysis of global markets to reveal cost savings to US economy from domestic supply chains

Infrastructure and separations

Mobile separation technologies promising due to cost of transporting ash

Limitations in modeling REEs and actinides due to outof-balance hardware-software ecosystem

Energy Justice and Stakeholder Outreach


On-site interviews at under-served communities near legacy sites

Initial excitement about possibilities

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Supporting organizations

Alabama Abandoned Mine Land Reclamation Program	Gadsden State Community College (GSCC)
Alabama Power Company (APCo)	Microbeam Technologies Inc. (MTI)
Alabama Surface Mining Commission (ASMC)	Nth Cycle
American Coal Ash Association (ACAA)	TN Dept of Environment and Conservation (TDEC)
American Renewable Metals (ARM)	Tennessee Valley Authority (TVA)
Drummond Company	University of Utah
East Tennessee Development District (ETDD)	Wallace State Community College (WSCC)
Energy Technologies Inc. (ETI)	

21

Gantt Chart

Start date October 1, 2021

						2022							2023									
e		Q3		0	Q4 N I		Q1	M	Q2		Q3		Q4	D	Q1		Q2		Q3			Q4
e : BASINAL RESOURCE ASSESSMENT		A	S	0	N L	DJ	F	M A	М	1 1	A	S C	N	DJ	1	M	A M	J	A	S	0 1	ND
stone 2.1: Preliminary coal ash sampling plan completed.	-																					
	-					Ľ.,		▲ 3/3	21													
stone 2.2.1 Six-month resource assessment progress report.	-							• J/.	,													
stone 2.3.1 Southern Tennessee GIS maps of coal reserves.	-											L									-	
stone 2.3.2 Northern Tennessee GIS maps of coal reserves.	-																	_			L	
stone 2.4: Samples for minteral characterization and analysis delivered to DOE.	_																	E .				
: Basinal Strategies for Re-use of Waste Streams	_									I.												
stone 3.2: Summary of preliminary assessment of beneficial ash use opportunities.										E												
BASINAL STRATEGIES FOR INFRASTRUCTURE, INDUSTRIES, AND BUSINESS																						
stone 4.1: Preliminary assessment of existing business and industry structure.								3/3	31													
stone 4.2: Preliminary assessment of REE security cost measures.										6/3	30											
stone 4.3: Preliminary assessment of infrastructure ability to support CORE-CM businesses.												9	/30									
stone 4.4: Preliminary estimates of 4 critical aspects of REE security costs.																• 3	8/31					
stone 4.5: Publish report or article on REE security costs.																					9/30	
: TECHNOLOGY ASSESSMENT, DEVELOPMENT, AND FIELD TESTING PLAN				<u> </u>																- i		
stone 5.1 Preliminary assessment on utiliazation of high performance computer modeling of REE														🔶 12	/31							
irations.																						
: TECHNOLOGY INNOVATION CENTER PLAN				ſ																		
stone 6.1 Preliminary list of existing capabilities at planned Technology Innovation Center sites.														🔶 12	/31							
: STAKEHOLDER OUTREACH AND EDUCATION PLAN																						
stone 7.1 Compile list of primary stakeholders that are critical outreach targets.	1					12,	/31															
stone 7.2 Alabama community collete partner(s) selected.														12	/31							