Unlocking the Tight Oil Reservoirs of the Powder River Basin, Wyoming DE-FE0031779

Dr. Eric Robertson, P.E. Enhanced Oil Recovery Institute, University of Wyoming

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Funding and Dates

- Project Funding: Total of \$14,898,759 for 4-year project
 - \$7,833,908 in Federal
 - \$7,064,850 in Industry cost share (47.42%)
- Important Project Dates
 - Project kicked-off in October 2019
 - 1-yr, no-cost technical extension granted in July 2020
 - Projected completion of the project is September 2024

Project Objectives and Participants

- Overall Project Objectives
 - Establish field laboratory to study emerging PRB plays
 - Shale plays: Mowry, Niobrara
 - Tight sands: Turner/Frontier
 - Create basin-wide development strategy plan
- Project Participants

Size of the Prize – Southern Powder Tight Reservoirs

- Mowry has expelled roughly 11.9 billion barrels of oil
- Mean estimates of technically recoverable undiscovered continuous resource
 - Mowry: 198 million bbl, 198 Bcf, and 11.9 million bbl NGL*
 - Niobrara: 227 million bbl, 227 Bcf, and 13.6 million bbl NGL*

^{*} Lawrence O. Anna and Troy A. Cook, 2008, "Assessment of the Mowry Shale and Niobrara Formation as Continuous Hydrocarbon Systems, Powder River Basin, Montana and Wyoming,"

Background – Well Completion Trends

- Crude oil production from the Powder River Basin's tight oil formations has grown rapidly.
 - From 3,000 B/D to over 80,000 B/D in 2019/2020.
 - Turner Formation 67,000 B/D (2019)
 - Frontier Formation 10,000 B/D (2019)
 - Mowry Shale 3,000 B/D (2019)
- From 2006 2019, completion and production trends in the PRB indicate increases in average lateral length and proppant per lateral foot which impacts best 6 months production.

Well Completions Progression through Time

- Group wells based on geologic partitions
- Mowry completions highlight evolving completion practices
- Compare results from early and later wells
 from partition #1 Mowry wells

			Well Comp	letion	Well Performance								
Mowry Partition #1	No. of Wells	Lateral Length	No. of Stages	Prop Concer	pant itration	Oil EUR	Hydrocarbon EUR	Oil EUR/ 1,000'					
		(ft)	(#)	(tons)	(lbs/ft)	(MB)	(MBOE)	(MB)					
Early HZs (2012 – 2015)	9	4,840	30	3.4	1,420	210	430	37					
Late HZs (2018 – 2019)	8	9,330	52	11.7	2,500	410	920	44					

Well Completions Database

- Parameters tracked include data from over 750 wells
- The database contains summarized data about each well within the study
 API # Header GeoMech
 - Multi-Variate Analysis (MVA) performed on *initial data* from well completions database
 - Minitab statistical software was used for MVA
- Results: no viable statistical correlations were found between input data and well productivity
 - Conclusion: Need to refine the data

PI #	Header	GeoMech		Proppant Per Perforated Foc									
ntity ID	Data	Spacing		Total Slurry Volume (Bbls)									
Vell/Lease Name	Data	OOIP		Avg ISIP (pisa)									
Vell Number		Azimuth	Completion	Avg FG									
ease Number		Spud Date	Data	Avg Treating Pressure (psia)									
eservoir		TVD (ft)		Avg Rate (bbl/min)									
ounty/Parish		Completion Da	ate	Max Prop Conc (Ibm									
ield		Lateral Length		proppant/gal)									
perator (Legacy)		First Perforatio	n	First Prod Date									
perator (Reported	d)	Last Perforatio	n	Last Prod Date									
urface Latitude (V	VGS84)	Perforated Len	gth (ft)	Producing Status									
urface Longitude	(WGS84)	Service Compa	iny	Oil Gravity									
H LAT		# of Stages		Cum Gas									
H LONG		Avg Frac Stage	Length (ft)	Cum Oil (Bbls)									
ection		Type of Treatm	nent	Cum Water (Bbls)									
ownship		Major Proppar	nt Type	SPF									
ange		Major Proppar	nt Size	Perf Clusters									
ay 🛛 🛛 🔒	eservoir	Major Proppar	nt Mass (<u>lbs</u>)	# Shots/Cluster									
orosity	Data	Secondary Pro	ppant	# Clusters/Stage									
o 🗆		Proppant Size		Cluster Spacing									
ос		Proppant Mass	s (2nd)	Frac Type									
ressure		Total Proppant	Mass (<u>lbs</u>)	Comments 7 9									

Establishing a Field Laboratory – Core and Geologic Model

- Collect well logs and cores
 - Oxy donated 210 ft of Turner core
 - Collected 191 ft of Mowry core from vertical pilot hole drilled in Dec 2021 through Jan 2022

Pilot Well – Mowry Coring Operations

- Core point: 11,704 ft (30 ft above top of Mowry)
- Core to 11,743 ft, jammed, TOOH
 - Core 1: recovered 39 ft
- Core to target depth of 11,895 ft, TOOH
 - Core 2: recovered 152 ft
- Total core recovery: 191 ft
 - 35 ft from Belle Fourche
 - 135 ft from Mowry
 - 18 ft from Shell Creek
 - 3 ft from Muddy
- Five 1-ft samples preserved at well site at
 - 11,752 ft
 - 11,775 ft
 - 11,799 ft
 - 11,820 ft
 - 11,850 ft

Mowry Core and Geologic Model

- Described the Mowry core
- Assign geologic facies to each foot of core
 - Defined 5 different facies

Facies #	Facies Name	Average Bioturbation Level	Frequency (ft)
1	Subtidal sheet, oxic	0	0
2	Subtidal sheet, suboxic	2.3	3
3	Subtidal sheet, dysoxic	1.3	28
4	Subital sheet, anoxic	0.3	111
5	Bentonite	0.0	5

Turner Core and Geologic Model

- Described the Turner core
- Assign geologic facies to each foot of core
 - Defined 11 different facies
 - Facies 11 (the clean sandstone) correlates with the interval with higher porosity and higher oil saturation

Facies #	Facies Name	Average Bioturbation Level	Frequency (ft)
1	Massive to faintly bedded mudstone	1.6	7
2	Sandy/Silty Mudstone	1.9	16
3	Calcareous Sandy/Silty Mudstone (Limestone)	3.7	16
4	Calcareous Laminated Mudstone, Siltstone, Sandstone (Limestone)	1.9	8
5	Laminated Mudstone, Siltstone, Sandstone	1.7	20
6	Bioturbated Heterolithic Silty/Sandy Mudstone	2.8	27
7	Burrow Mottled Heterolithic Mudstone	3.7	7
8	Bioturbated Heterolithic Calcareous Silty/Sandy Mudstone (Limestone)	3.1	14
9	Bioturbated Argillaceous Sandstone	3.6	8
10	Burrow Mottled Argillaceous Sandstone	3.8	70
11	Clean Sandstone	3.4	14

Completions Data Collection

- Fiber optic cable to be permanently placed in 10,000-ft Niobrara lateral for detailed monitoring of and data from individual stages
- Design of Experiments (DoE) to optimize stage parameters

Courtesy of Schlumberger

Permanent Fiber – Pros and Cons

Advantages

- Fiber optic cable can measure pressure, temperature, and flow rate at each stage along the length of the well
- Able to collect results at the stage level as opposed to the well level
- Allows DoE on single well
 - Completion can be optimized using multiple experimental frac stages in one well versus multiple experimental wells

Disadvantages

- More expensive than other data collection methods
- Placement of fiber in two-milelong horizontal well is difficult (no rotating pipe to toe)
- Turner formation has challenging drilling environment and not a good candidate for fiber

Project Steps and Work Plan

- Completed
 - Current state of the art analysis
 - Drill pilot hole and collect vertical core
- Ongoing
 - Refine geologic and numerical models (ongoing)
 - Laboratory testing on Mowry core (ongoing)
 - Perm changes with pressure
 - Mechanical properties
 - Fluid flow properties (matrix and propped fractures)
- Future
 - Complete horizontal wells (future work)
 - Drill and install fiber optic cable
 - Complete well according to the DoE and collect production data
 - Reduce and analyze data to optimize future completions
 - Extrapolate optimized completions model to whole area based on geologic model and core learnings (future work)
 - Deliver final report on best practices for well completions in these formations (future work)

Key Milestones

- Nov 2019 Project kickoff
- Sep 2020 Baseline geology, state of the art, completions database
- Nov 2021 Oxy joins project
- Jan 2022 Pilot well completed and Mowry core retrieved
- Jun 2023 Horizontal wells completed and stimulation data logged
- Dec 2023 Production monitoring and completions optimized
- Sep 2024 Project ends with best practices identified and final report submitted

Success Criteria and Risks/Mitigation

- Project success criteria
 - BP1: Selection of the Field Laboratory Site
 - BP2: Collect Logs/Core from Pilot Hole
 - BP3: Completion of Field Lab Horizontal Production Well(s) and the Field Laboratory Geologic Model
 - BP4: PRB Development Strategy Plan and Upload all data to EDX
- Project risks and mitigation strategies
 - Failure to place the optical fiber is a risk
 - Mitigated by drilling multiple HZs with redundant—although not as precise data collection methods (microseismic)

Summary

- Lessons learned
 - Quality control data; bad data results in strange results
 - Expect setbacks and be ready to pivot, if needed
- Future plans
 - Finish drilling and completing horizontal wells
 - Collect production data, complete core investigations, geologic modeling, and DoE and MVA analysis
 - Share results
- "Take-away" message
 - Although expensive, permanent fiber may offer a cheaper, faster way to optimize horizontal well completions
 - Regional geologic modeling combined with well completion optimization offers methodology to apply learnings to the whole southern Powder River Basin

Thank You!

- Thanks to all the partners on this project, but especially to:
 - Occidental Petroleum
 - Advanced Resources International
 - Our awesome Project Manager, Rick Baker
- Time for questions or comments
- Contact:
 - Dr. Eric Robertson, Project P.I.
 - eric.robertson@uwyo.edu

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Simplified Project Gantt Chart

	Ye	ear	2019 202		20		20	21			202	22			202	3		20)24				
Task Number	Task Name Quar	ter 1	12	3	4	1	2	3 4	1 1	2	3	4	1	2	3	4	1	2	3 4	1 1	2	3	4
1	Project Management & Planning																						
2	Workforce Readiness Plan																						
3	Baseline Data Gathering and Models																						
	Deliverable: PRB SOTA and Field Laboratory Site Selection																						
4	Develop Work Plans for Field Laboratory																						
	Deliverable: Pilot Hole Work Plan																						
	Go/No-Go Decision Point											4											
	Deliverable: Field Laboratory Work Plan											4											
5	Pilot Hole Well Drilling and Data Acquisition																						
	Deliverable: Pilot Hole Data Collection Summary												4										
6	Laboratory Core Work																						
	Deliverable: Laboratory and Core Analysis Results																						
7	Feedback Loop - Geologic and Fracture Mechanics Results																						
	Deliverable: Site-specific Design Plan Update																						
8	Production well Drilling, Completion, Stimulation, and Monitoring Results																						
	Deliverable: Final Well Completion																						
9	Feedback Loop - Production Data and Advanced Core Analysis																						
	Deliverable: Final Well Completion and Stimulation Evaluation																						
10	PRB Development Strategy Plan																						
	Deliverable: PRB Development Strategy Plan																						
								1-yr extension															
								of pr	oject	due													
								to	covi	d												1	1