Advanced Dry-cooling with Integrated Enhanced Air-Cooled Condenser and Daytime Load-shifting Thermal Energy Storage for Improved Power-Plant Efficiency DE-FOA-0002001

> Raj M. Manglik University of Cincinnati

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

Funding (DOE and Cost Share): Total: \$1,857,330 Federal - \$1,485,086 and Cost Share - \$372,244

Overall Project Performance Period: February 01, 2021 – January 31, 2024

Project Overview (Overall Objectives)

Develop a novel and transformative dry-cooling system that integrates daytime peak air-load shifting thermal energy storage (TES), with an enhanced, highly compact and optimized aircooled condenser (ACC), to significantly increase power plant efficiency. The TES system, a phase-change-material (PCM) based heat exchanger, is integrated in the inlet air-stream of the ACC via an air pre-cooler (ACHX).

3

Technology Background

Integrated PCM-TES in air-flow path of aircooled steam condenser (ACC)

- Reduces T_C operating constraint, and increases
 Rankine cycle output and efficiency.
- ➤ Reduced T_{air, Design} increases ACC's △T_{Im} thereby increasing both q and effectiveness (reliable steady operation) of ACC.

The new Air-Cooled Condenser design with enhanced-fin cores for improvement of air-side heat transfer can yield significant reduction in the surface-area requirement and hence the size of the ACC

Technology Background

Phase-Change Material (PCM) Selection; Salt Hydrates

РСМ	T_{sf} [°C]	$\Delta T_{sc} [^{\circ}C]$	h _{sf} [kJ/kg]	h_{sf} [kJ/m ³]	Comments
Lithium Nitrate Trihydrate	29.2	3.8	273	650	\checkmark
Calcium Chloride Hexahydrate	29.8	5.9	182	311	High Corrosion
Zinc Nitrate Hexahydrate	34.6	3.1	140	290	High T _{sf}
Sodium Sulfate Decahydrate	32.2	25.2	233	341	Unstable

Technology Background

Latent Heat (J/g)

Selection of PCM (LiNO₃·3H₂O) and Stable Thermal-Cycling Performance – thermal capacity of LiNO₃·3H₂O over 1000 heating (melting) and cooling (re-crystalization) cycles

Self-seeded nucleation (or "cold-fingering") and phase-transition stability of $LiNO_3 \cdot 3H_2O$ during thermal cycling

Technical Approach/Project Scope

Technical Approach/Project Scope

- □ Task 1: Project Management and Planning (Y1, Y2, Y3)
- **Task 2**: Design and Performance Evaluation of TES System (Y1, Y2)
- Task 3: Design and Performance Evaluation of Air Pre-cooler (Y1, Y2)
- Task 4: Technology Demonstration (Y3)
- □ Task 5: Techno-Economic Analysis; and Final Report (Y2, Y3)
- > Financial Risk:
 - Inadequate management of funding (Low/Med/Low): Periodic review of the status of the project by the PI with input from the team
- Cost/Schedule Risk:
 - Construction delay (Low/High/Med): Complete optimal design early in the project < < <
 - Failure to obtain accurate data/interpret data (Low/High/Med): Careful assessment of test protocol with expert review as needed
- > Management Planning and Oversight Risk:
 - Personnel unavailability (Med/Med): Team interacts regularly to fill in until replacement can be assigned and trained
- ES & H Risk:
 - Chemical discharge (Low/High/Low): Strictly follow chemical discharge guidelines
- External Factor Risks:
 - Disruptive events (Low/High/Low): Relocate to other test facilities

Stability re-evaluation of PCM (Lithium Nitrate Trihydrate) – Experimental results for 1000 heating/cooling cycles with nucleating agents and self-seeding or cold-fingering

Subcooling, ΔT_s , with and without nucleating agents:

• Results unequivocally <u>establish the efficacy of self-seeding nucleation (or cold finger</u> operation) of PCM, thereby *obviating the need of nucleating agent additives*.

Stability re-evaluation of PCM (Lithium Nitrate Trihydrate) – Experimental results for 1000 heating/cooling cycles with self-seeding or cold-fingering

(T-History Method for cyclic performance evaluation)

- Metal samples were immersed in PCM holders and exposed to thermal cycling between 20°C and 40°C (30 min/cycle), using selfseeding method (or 'cold finger' protocol) for 4000 cycles (86 days).
- Negligible corrosion is observed in all metals. The loss in surface thickness is negligible; substantially less than sea-water-based corrosion or 0.08 µm/yr.
- These results will inform the eventual design and construction of the TES heat exchanger and its components.

New TES design – microchannel finned-duct ultracompact heat exchanger

Water out

Water in

New TES design with 24 FPI – Performance testing results for 100 heating/ cooling cycles with self-seeding of PCM (Lithium Nitrate Trihydrate)

Design and sizing of the air pre-cooler heat exchanger, TES and simulated diurnal air-temperature variation performance test system – Coupled TES and Air Pre-Cooler Heat Exchanger System

Fabricated and Acquired

	HX 1		HX 2		HX 3	
Fluid	$T_i [^{\circ}C]$	$T_{o} [^{\circ}C]$	$T_i [^{\circ}C]$	$T_{o} [^{\circ}C]$	$T_i [°C]$	$T_{o} [^{\circ}C]$
Air	23	25.8	25.8	27	27	27.6
Water	28	27.7	27.7	27.2	27.2	25.9
Capacity	560 W		260 W		120 W	

Air Pre-Cooler – Micro-Channel Heat Exchanger Design

Designed capacity (HX1+HX2+HX3)	560+260+120 = 940 W
Total capacity	850 W
Total cycle time	2 hours
Total capacity	1.2 MJ
Volumetric flow rate of water	6.6 liters/min
Volumetric flow rate of air	602 m ³ /hr
Coil configuration	1 row
Fin density (fins per inch)	24 fpi
Fin type	Louvered fin
Coil face height	203 mm
Coil face width	255 mm

TES Design (24 FPI and 10 FPI) – e-NTU characteristics for microchannel fin-tube HX designs

The experimental data fits the standard phase change e-NTU equation

TES scale-up (10× scale-up; 100 kJ \rightarrow **1.0 MJ**) and performance testing

 Performance with diurnal air-side temperature variations (system-level prototype performance)

Plans for future testing/development/ commercialization

Coupled TES and air pre-cooler heat exchanger performance test system with simulated diurnal temperature variation of inlet air

Outreach and Workforce Development Efforts or Achievements

- Workforce Development
 - Trained and graduate two PhD and one MS students, including one woman PhD engineer.
 - > Current training of two PhD students and one female MS student.

Summary

(Y1 Accomplishments and Completed Milestones)

- Successfully completed stability re-evaluation of PCM (LiNO₃·3H₂O) with results for 1000 heating/cooling cycle
 - Results establish efficacy of self-seeding nucleation of PCM (cold finger operation), thereby obviating need for nucleating agent additives
- Completed experimental evaluation and modeling of "length scale" effects for PCM TES design for stable cyclical operation
- Successfully tested revised new design of TES (10 fpi and 24 fpi fin-tube micro-channel heat exchanger) under cyclical heating and cooling conditions for 100 continuous cycles
 - Stable phase-transition and storage behavior of new TES design.
- The air pre-cooler heat exchanger (coupled to the TES in the complete system) was designed (sized for required heat load) and procured.
- The complete air-cooling system (TES coupled with Air Pre-Cooler HX) is under construction

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Gantt Chart

	Assigned Resource s				Ye	ar 1						Year 2						Year:	3				Task 4 - Technology	UC, EPRI Evapco,													
		Q4	Q1	(Q2	Q	3	Q4	_	Q1	Qź		Q3	Q4	Q	21	Qź	-	Q3	Q4	4 (Q1	Demons tration	Maulbetsc										 			4
ask 1.0 - Project Management and Planning	UC																						Milestone 4 Technology Demonstration	Full Team												·	•
ask 1 - Updated PMP	UC				_											-							Subtask 4.1 Performance modeling and optimization	Full Team													-
Vilestone 1 - Updated PMP	UC	•			-											-							Subtask 4.2 Fabrication of pilot-														
Ailestone 1.1 Data Management Plan	UC	•																					scale components	UC, EPRI													_
Subtask 1.2 Technology Maturation Plan	UC, EPRI				-											+-							Milestone 4.2 Pilot-scale components fabricated	UC, EPRI									•				4
lilestone 1.2 Technology	UC				-																	_	Subtask 4.3 Pilot-level testing	EPRI													-
Maturation Plan																						_	Task 5 - Techno-Economic Analysis (TEA)	EPRI, Maulbetsc													
reformance evaluation of rES system	UC		1																				Subtask 5.1 Power plant integration trade-off evaluation	EPRI	-												
Subtask 2.1 Design of optimal "ES unit	UC, EPRI, Evapco																						Milestone 5.1 Preliminary TEA							•							+
Alleston 2.1 TES Design inalized	UC. Evapco				+		•		_							-						_	Subtask 5.2 CAPEX and OPES estimates	EPRI													
Subtask 2.2 Fabrication of lab-	UC.				-											-						_	Milestone 5.2 Update of TEA	-									•				-
cale TES unit	Evapco				_				_							_						_	Subtask 5.3 Economic analysis	EPRI. UC					-								
Milestone 2.2 Fabricated TES Init	UC								٠														Final Report														
Subtask 2.3 Testing of lab-scale ES unit	UC																								1												
Allestone 2.3 Lab-scale TES performance established															•																						
ask 3 - Design and performance evaluation of air pre- cooler (ACHX)	UC, EPRI, Evapco																																				
Subtask 3.1 Design of en han ced ube-fin ACHX	UC, EPRI, Evapco																																				
Allestone 3.1 Optimized ACHX Jesign	Full Team									•																											
Sublask 5.2 Design optimization	UC, EPRI, Evapco, Maulbetsch																																				
Allestone 3.2 Optimized ACC	Full Team															•																					