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Project Overview

Funding (DOE and Cost Share): Total: $1,857,330
Federal - $1,485,086 and Cost Share - $372,244

Overall Project Performance Period:
February 01, 2021 — January 31, 2024
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Project Overview (Overall Objectives)
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Technology Background

Ty — Steam Generator
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Coupled with Compact Air-Cooled

Enhanced Thermal Condenser (ACC) with Advanced

Energy Storage Unit

air-side Enhancement

The new Air-Cooled Condenser
design with enhanced-fin cores
for improvement of air-side heat
transfer can yield significant
reduction in the surface-area
requirement and hence the size
of the ACC

Integrated PCM-TES in air-flow path of air-
C——= cooled steam condenser (ACC)

Reduces T operating constraint, and increases
Rankine cycle output and efficiency.

Reduced T, pesign increases ACC'’s AT,
thereby increasing both q and effectiveness
(reliable steady operation) of ACC.
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Technology Background

Phase-Change Material (PCM) Selection; Salt Hydrates

PCM T, [°C] | AT, [°C] | hy,lkI/kg] | h,[kJ/m’] | Comments
Lithium Nitrate

v
- 29.2 3.8 273 650
Calcium Chloride High
Hexahydrate 298 > 182 311 Corrosion
Zinc Nitrate :
Hloeiiinie 34.6 3.1 140 290 High T,
Sodium Suttates a5 5 55 233 341 Unstable
Decahydrate




Technology Background

Selection of PCM (LINO,-3H,0)
and Stable Thermal-Cycling
Performance — thermal capacity
of LINO4-3H,0 over 1000
heating (melting) and cooling
(re-crystalization) cycles

Cold Finger Cycling Data
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Self-seeded nucleation (or “cold-
fingering”) and phase-transition
stability of LiNO5-3H,0 during
thermal cycling



Technical Approach/Project Scope
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Technical Approach/Project Scope

Task 1: Project Management and Planning (Y1, Y2, Y3)

Task 2: Design and Performance Evaluation of TES System (Y1, Y2)
Task 3: Design and Performance Evaluation of Air Pre-cooler (Y1, Y2)
Task 4: Technology Demonstration (Y3)

Task 5: Techno-Economic Analysis; and Final Report (Y2, Y3)

U000 D

Financial Risk:

= Inadequate management of funding (Low/Med/Low): Periodic review of the status of the project by
the PI with input from the team

Cost/Schedule Risk:
Construction delay (Low/High/Med): Complete optimal design early in the project € € €

= Failure to obtain accurate data/interpret data (Low/High/Med): Careful assessment of test protocol
with expert review as needed

Management Planning and Oversight Risk:

= Personnel unavailability (Med/Med/Med): Team interacts regularly to fill in until replacement can be
assigned and trained

ES & H Risk:

= Chemical discharge (Low/High/Low): Strictly follow chemical discharge guidelines
External Factor Risks:

= Disruptive events (Low/High/Low): Relocate to other test facilities



Progress and Current Status of Project

Stability re-evaluation of PCM (Lithium Nitrate Trihydrate) — Experimental
results for 1000 heating/cooling cycles with nucleating agents and self-
seeding or cold-fingering
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Subcooling, AT, with and without nucleating agents:
» Results unequivocally establish the efficacy of self-seeding nucleation (or cold finger
operation) of PCM, thereby obviating the need of nucleating agent additives.




Progress and Current Status of Project
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Progress and Current Status of Project
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Metal samples were immersed in
PCM holders and exposed to
thermal cycling between 20°C and
40°C (30 min/cycle), using self-
seeding method (or ‘cold finger’
protocol) for 4000 cycles (86 days).

Negligible corrosion is observed in
all metals. The loss in surface
thickness is negligible; substantially
less than sea-water-based corrosion
or 0.08 um/yr.

These results will inform the
eventual design and construction of
the TES heat exchanger and its
components.
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Progress and Current Status of Project

TUBES New TES design — micro-

FINS channel finned-duct ultra-
compact heat exchanger
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Progress and Current Status of Project

Temperature [°C]

New TES design with 24 FPI — Performance testing results for 100
heating/ cooling cycles with self-seeding of PCM (Lithium Nitrate Trihydrate)

PCM 10% PCM 30% PCM 50% PCM 70% PCM 90%
Tin Tout
Cycles 20 - 25
30
20
Water Inlet Temperature
Flow Rate
Cycles 55 - 60 -
40 Lk Time
i 25 -30°C
30 k : — 155 ml/min
A ~ 30 min
20 1 1 1 1 1 1 30 _ 41 oC
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Progress and Current Status of Project

Design and sizing of the air pre-cooler heat exchanger, TES and simulated diurnal
air-temperature variation performance test system — Coupled TES and Air Pre-
Cooler Heat Exchanger System

Blower Suction

Under Construction

3 Heat Ex.

Coolant in

Coolant Out

Electric

Heater 14



Progress and Current Status of Project

Fabricated and Acquired

Air Pre-Cooler — Micro-Channel
Heat Exchanger Design

1 | I
" .
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Heater | Exchanger l o
i : L
Air flow ] ° °
TW’ - ) - %

control S Fluid ~ T,[°)C] T,[°C] T[°C] T,[°C] T[’C] T,[°C]

Air 23 25.8 25.8 27 27 27.6

Water 28 277 277 272 272 259

Capacity 560 W 260 W 120 W
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Progress and Current Status of Project

Air Pre-Cooler — Micro-Channel Heat Exchanger Design

Coil face width 255 mm
Coil face height 203 mm
Fin type Louvered fin

Fin density (fins per inch) 24 fpi
203 Coil configuration 1 row
Volumetric flow rate of air 602 m3/hr

Volumetric flow rate of water 6.6 liters/min

Total capacity 1.2MJ

Total cycle time 2 hours
220

Total capacity 850 W

Designed capacity 560+260+120 = 940 W

(HX1+HX2+HX3)

16



Progress and Current Status of Project

TES Design (24 FPIl and 10 FPI) — e-NTU characteristics
for microchannel fin-tube HX designs
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Plans for future testing/development/
commercialization

Coupled TES and air pre-cooler heat exchanger performance test
system with simulated diurnal temperature variation of inlet air
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Outreach and Workforce Development
Efforts or Achievements

* Workforce Development —

» Trained and graduate two PhD and one MS students, including one
woman PhD engineer.

» Current training of two PhD students and one female MS student.
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Summary
(Y1 Accomplishments and Completed Milestones)

» Successfully completed stability re-evaluation of PCM (LiINO5-3H,0) with

results for 1000 heating/cooling cycle
> Results establish efficacy of self-seeding nucleation of PCM (cold finger
operation), thereby obviating need for nucleating agent additives

+ Completed experimental evaluation and modeling of “length scale”
effects for PCM TES design for stable cyclical operation

+ Successfully tested revised new design of TES (10 fpi and 24 fpi fin-tube
micro-channel heat exchanger) under cyclical heating and cooling

conditions for 100 continuous cycles
> Stable phase-transition and storage behavior of new TES design.

+ The air pre-cooler heat exchanger (coupled to the TES in the complete
system) was designed (sized for required heat load) and procured.

+ The complete air-cooling system (TES coupled with Air Pre-Cooler HX) is
under construction
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Appendix

— These slides will not be discussed during the presentation but
are mandatory.
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Organization Chart

University of Cincinnati (UC) —
Primary Investigators &
Project Lead

Thermal-Fluids & Thermal Processing

Laboratory, College of Engineering, UC

— Laboratory-scale system design and
performance testing

Electric Power Research
Evapco, Inc. — Industry Institute (EPRI) — Field
Design Consultant Partner Demonstrator Testing and
TEA Collaborator

Maulbetsch Consulting
— Industry Consultant
Partner
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Gantt Chart

Task Name

Task 1.0 - Project
Management and Planning

Task1 - Updated PMP
Milestone 1 - Updated PMP

Milestone 1.1 Data Management
Plan

Subtask 1.2 Technology
Maturation Plan

Milestone 1.2 Technology
Maturation Plan

Task 2.0 Design and
performance evaluation of

TES system

Subtask 2.1 Design of optimal
TES unit

Mileston 2.1 TES Design
finalized

Subtask 2.2 Fabrication of lab-
scale TES unit

Milestone 2 2 Fabricated TES
unit

Subtask 2.3 Testing of lab-scale
TES unit

Milestone 2 3 Lab-scale TES
performance established

Task3 - Design and

performance evaluation of air pre-

cooler (ACHX)

Assigned
Resource
s

uc

uc

uc

uc
UC.EPRI

uc

uc
UC,EPRI,
Evapco

uc.
Evapco

uc,
Evapco

uc

uc

UC, EPRI,
Evapco

Subtask 3.1 Design of enhanced UC, EPRI,

tube-fin ACHX
Milestone 3.1 Optimized ACHX
design

Subtask 3.2 Design o ptimization
of enhanced advanced ACC

Milestone 3.2 Optimized ACC
design

Evapco

Full Team

UC, EPRI,
Evapco,

Maulbetsch

Full Team

Q4

Year 1 Year 2 Year 3
al Qz Q3 Q4 al Q2 Q3 Q4 al Qz2 Q3 Q4
*
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*

=
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Task 4 - Technology
Demons tration

Milestone 4 Technology
Demonstration

Subtask 4.1 Performance
modeling and optimization

Subtask 4 2 Fabrication of pilot-
scale components

Milestone 4.2 Pilot-scale
components fabricated

Subtask 4 3 Pilot-level testing

Task 5 - Techno-Economic
Analysis (TEA)

Subtask 5.1 Power plant
integration trade-off evaluation

Milestone 5.1 Preliminary TEA

Subtask 5.2 CAPEX and OPES
estimates

Milestone 5 2 Update of TEA
Subtask 5.3 Economic analysis

Final Report

UC. EPRI,
Evapco,
Maulbetscl

Full Team

Full Team

UC.EPRI

UC,EPRI

EPRI

EPRI,
Maulbetsch

EPRI

EPRI

EPRI, UC
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