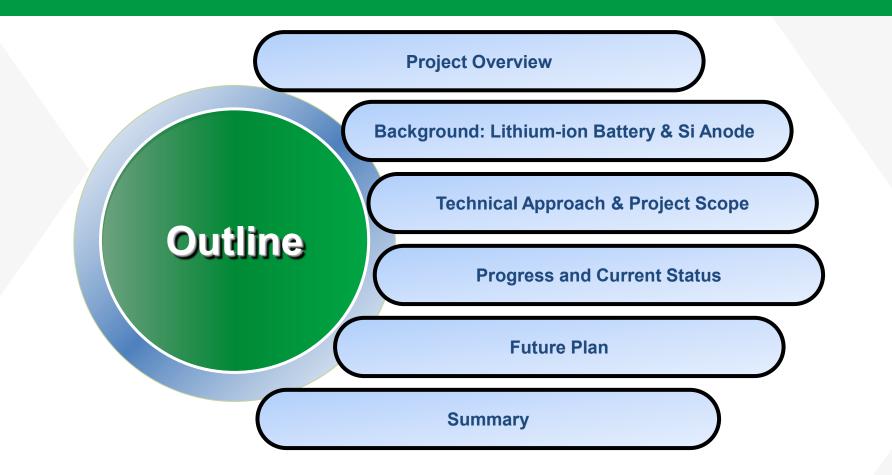
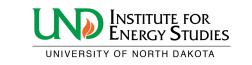
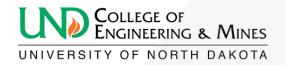
Lignite-Derived Carbon Materials for Lithium-Ion Battery Anodes


DOE NETL Project DE-FE0031984

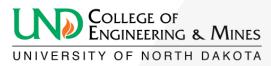

Xiaodong Hou


University of North Dakota – Institute for Energy Studies (IES)

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

- • Funding
 DOE Funds
 Cost Share
 Total Cost


 \$499,815
 \$167,650
 \$667,465

 74.88%
 25.12%
 100%
- Overall Project Performance Dates
 - 1/20/21-1/19/23 (No-cost extension to 9/30/23)
- Goal

ND lignite Si/C Anodes for Li-ion Battery

- Production: Lab-scale (10g) to Bench-scale (1kg)
- Superior battery performance vs Benchmark
- Competitive price: \$20/kg (vs \$20-30 benchmark commercial anode)

Project Overview

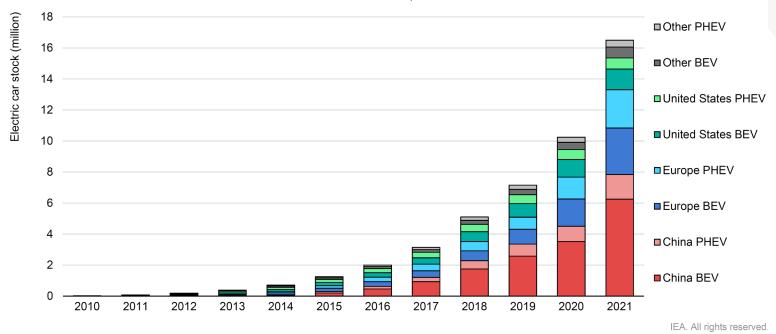
Project lead

Daniel Laudal (PD) & Xiaodong Hou (PI)
 (UND Institute for Energy Studies)

Project Sponsor Representatives

- Michael Fasouletos (DOE NETL)
- Mike Holmes (Lignite Research Council)
- Gerard Goven (North American Coal Corp)
- Yong Hou (Clean Republic LLC)

INSTITUTE FOR ENERGY STUDIES THE UNIVERSITY OF NORTH DAKOTA



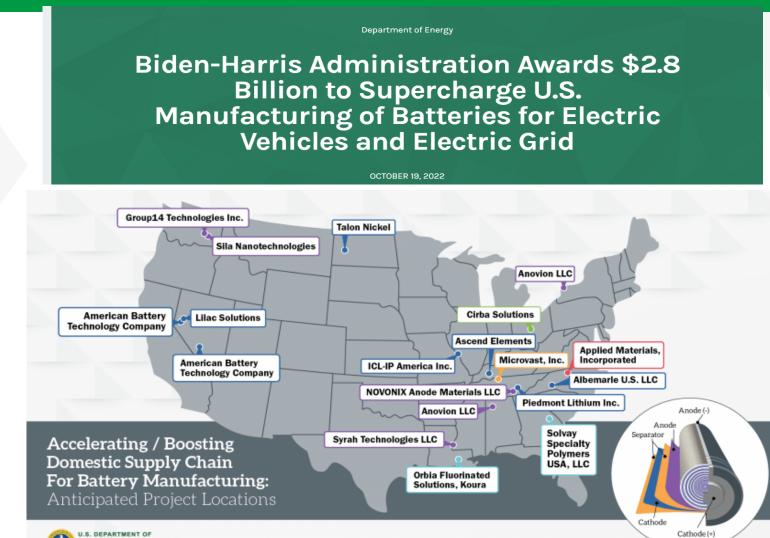
Background: EV & Li-ion Battery

Over 16.5 million electric cars were on the road in 2021, a tripling in just three years

Global electric car stock, 2010-2021

Notes: BEV = battery electric vehicle; PHEV = plug-in hybrid electric vehicle. Electric car stock in this figure refers to passenger light-duty vehicles. "Other" includes Australia, Brazil, Canada, Chile, India, Japan, Korea, Malaysia, Mexico, New Zealand, South Africa and Thailand. Europe in this figure includes the EU27, Norway, Iceland, Switzerland and United Kingdom.

Sources: IEA analysis based on country submissions, complemented by ACEA; CAAM; EAFO; EV Volumes; Marklines.


A turning point - 5% Market Penetration Q1 2022!

Background: Battery Materials Capacity Gap In US

Separator

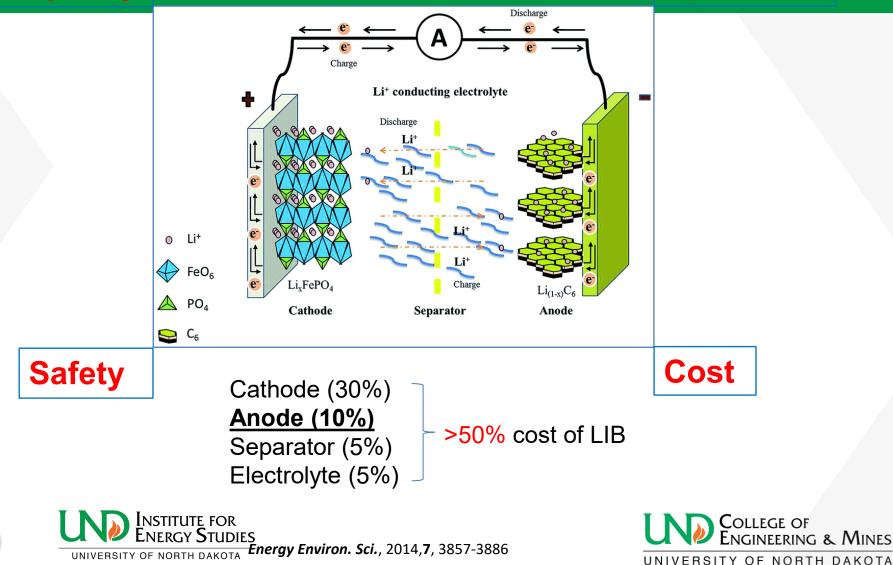
Processing

Recycling

JERC

Cathode

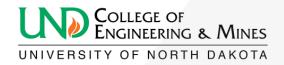
Anode

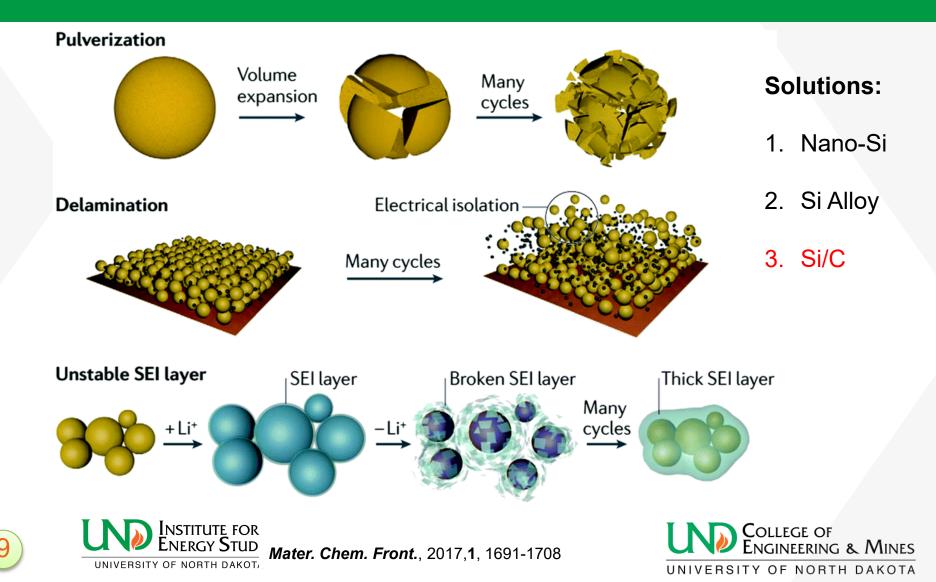

Precursor

G & MINES

Background: Li-ion Battery (LIB)

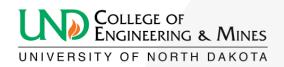
Capacity


Cycle Life


Background: Anodes for LIB

	Graphite	Si
Capacity	372 mAh/g	3600-4200 mAh/g
Cycle life (80% Retention)	>1000	<300
Mechanism	Li + 6C = LiC ₆	$15Li + 4Si = Li_{15}Si_4$ 22Li + 5Si = Li ₂₂ Si ₅
Cost	\$10-15/kg	≥\$65/kg
Other Key Issues	Poor low-T performance & rate capability	Low conductivity & low ICE, >300% volume change

Background: Problems with Si-Anode



Background: Anode Market Size Forecast

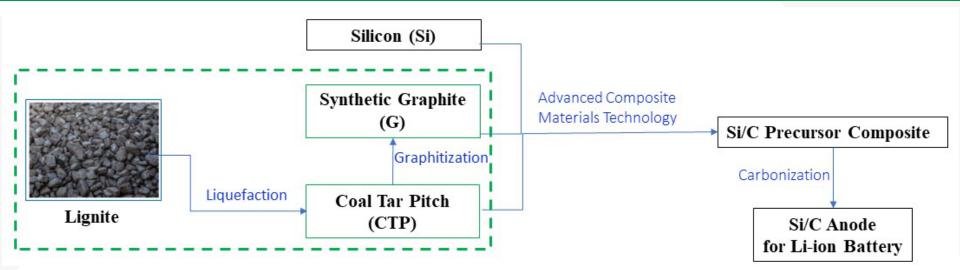
2025 vs (2020)

Solid Products	Market Volume (kilo-ton)	Annual Growth (%)	Market Value (\$Billion)	Coal Utilized (million tons)
Anodes	1500 (400)	40	20	3.5
Synthetic Graphite			6.5	2
Si–C Anodes	es 500 (<20) 33% (<5%) 130		10	1.5

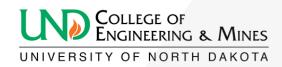
Background: Anode Materials Capacity Gap in US

	Share of Graphite Capacity (tons tpa, % Share)										
	Total Installed	In Construction	Planned New (2030)								
US	4K, <mark>0.3%</mark>	2K, 0.15%	<mark>150K</mark> , 2.9%								
Asia	1.6M, 94.4%	1.4M, 99.4%	4.6M, 91.7%								

One EV needs average 100kg graphite


Biden's goal of 50% EV sales by 2030 needs 15M*50%*0.1=750K (80%)

Technical Approach


Advantages:

- ✓ High performance
 - Reversible capacity
 - Initial Columbic efficiency
 - o Cycling life
- ✓ Low-cost
 - Micro-size Si sources
 - Coal-derived feedstock

Challenges:

- ✓ Homogeneity ?
 - Si evenly distributed in Carbon matrix

Success Criteria

Performance Attribute	Performance Requirement	Reference Materials (S450-2A)
Reversible Capacity (mAh/g)	540	450
Initial Columbic Efficiency (ICE)	>90	90
Cycling Life (@80% capacity retention)	500	300
Cost (\$/ton)	11,060	16,530

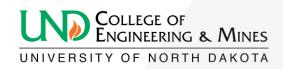
Scope of Work

- Task 1 Project Management and Planning (90% completed)
- Task 2 Analysis of Lignite-derived carbon Feedstock (100% completed)
- Task 3 Development of Si-C anode (100% completed)
 - Subtask 3.1 Preparation of Si/graphite/CTP composite precursor
 - Subtask 3.2 Preparation of Si/C anodes
 - Subtask 3.3 Electrochemical performance Testing
- Task 4 Bench-scale Test (30% completed)
- Task 5 Techno-Economic Analysis of Integrated Process (25% completed)

Progress & Current Status-Feedstock Analysis

Lignite-derived CTP Feedstock

- Softening point (SP)
- o Coking Value
- o Chemical composition & Ash
- o Graphitization Yield


High SP (ND lignite)

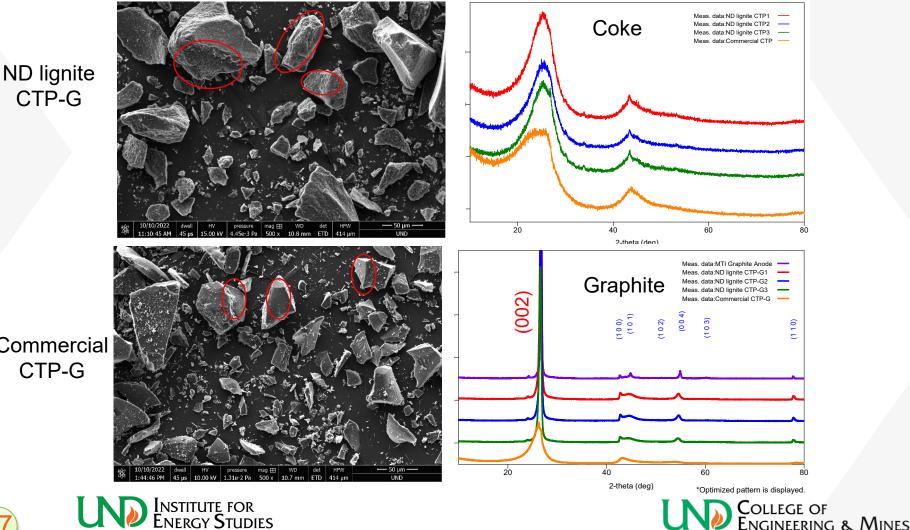
Low SP

Medium SP

UNIVERSITY OF NORTH DAKOTA

Coke samples

Progress & Current Status-Feedstock Analysis


CTP Source	Softening Point (°C)	Coking value %	Graphitiz ation Yield	Ash	С	н	N	S	Ο
Commercial CTP-1	< 75 °C	20.6%		0.64	79.80	6.08	<0.20	<0.01	13.27
CommercialC TP-2	85 °C - 95 °C	27.1%		0.33	81.98	6.59	0.98	0.17	9.95
CommercialC TP-3	> 95 °C	36.8%	93.4%	0.25	68.60	6.33	1.28	0.08	23.47
ND lignite CTP-0	> 95 °C	49.4%		4.38	87.41	4.15	1.18	0.67	2.20
ND lignite CTP-1	102°C	28.1%	92.0%	1.05	88.65	5.61	1.00	0.66	3.03
ND lignite CTP-2	> 95 °C	27.6%	93.7%	1.98	85.40	6.34	0.77	0.51	4.92
ND lignite CTP-3	> 95 °C	30.9%	89.4%						
ND lignite CTP-1-G					>99.3	<0.5	<0.2	<.0.01	<0.01

- Total seven CTP has been analyzed (more are ongoing)
- High C, C/H ratio, very low O
- Slightly high ash, higher S

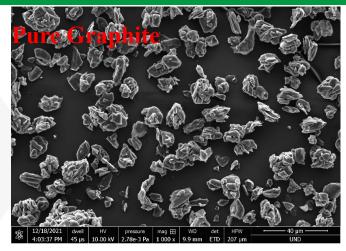
Progress & Current Status-Feedstock Analysis

UNIVERSITY OF NORTH DAKOTA

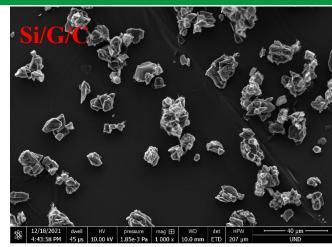
Commercial CTP-G

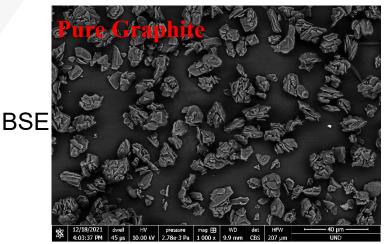
Progress & Current Status- Si/G/CTP Precursor Composite Development

- One typical low SP and high SP CTP with low ash were selected
- Composite preparation approach: wet chemistry + mechanical force

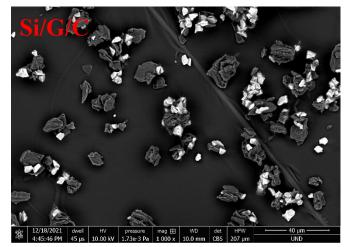

СТР		Secondary Approach
Low SP	Wet chemistry	Mechanical force
High SP	Mechanical force	Wet chemistry

- Intensive Design of Experiment (DoE) optimizing the feedstock and process parameters
- An optimal procedure was developed for each CTP

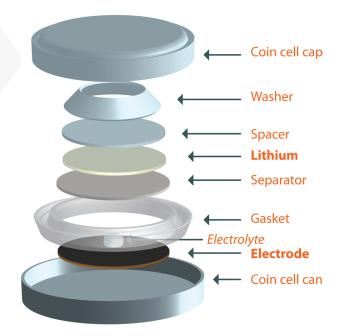




Progress & Current Status- Si/G/C Precursor Composite Development



SE

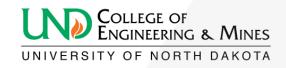


- Si/C: ~20/80
- C: >99% Coalderived
- Si well dispersed
- No graphite agglomeration

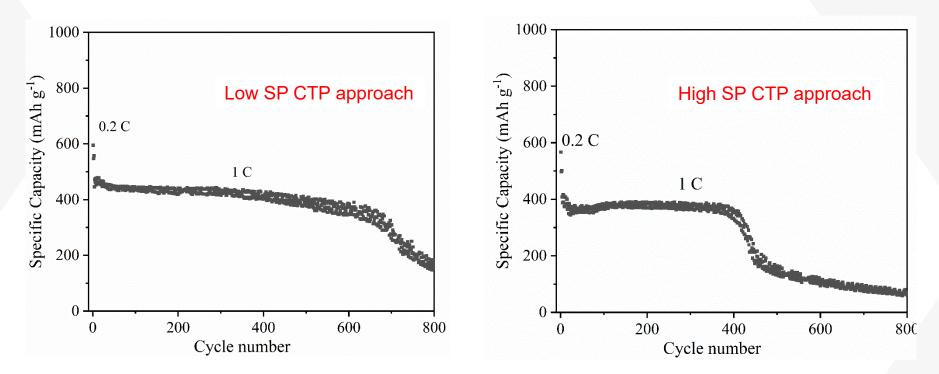
Progress & Current Status- Si/C Anode Development

Li-ion Battery Fabrication and Testing

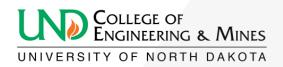
Coin cell configuration



Glove Box

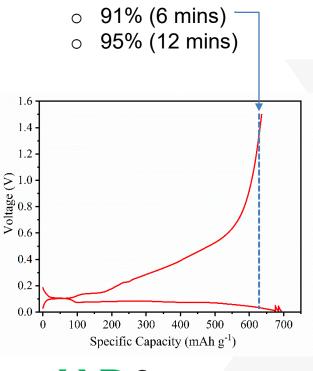


Coin-cell Tester



Progress & Current Status- Si/C Anode Development

Battery Testing Results



Progress & Current Status- Si/C Anode Development

	Performance Attribute	Performance Requirement	Reference Materials (S450-2A)	Low SP CTP Approach	High SP CTP Approach
	Reversible Capacity (mAh/g)	540	450	595	550
	Initial Columbic Efficiency (ICE)	>90	90	82	85
	Cycling Life (@ 80% capacity retention)	500	300	650	410
Cost (\$/ton)		11,060	16,530		

Pre-lithiation to increase
ICE:

UNIVERSITY OF NORTH DAKOTA

Future Plan

- Optimize the pre-lithiation process and complete testing the prelithiated samples
- Continue the bench-scale sample preparation
- Fabricate and test larger cells
- Complete the Tech-economic analysis

Outreach and Workforce Outreach and Workforce Development Efforts or Achievement

Outreach

- IES is helping a ND coal community to cope with the clean energy transition
- Build a strong partnership with NACoal and its partner CTP producer
- Workforce development
 - One postdoc
 - o 3 graduates
 - o 3 under graduates

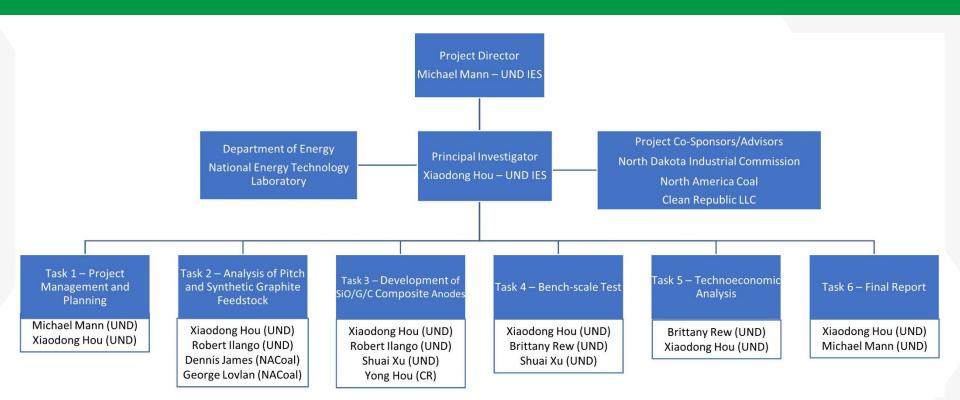
Summary

- Si/C anode was successfully developed using ND lignite CTP feedstock. The synthetic process is SP dependent.
- Coin-cells battery performance results are better than commercial refences, and close to our targets
- The battery performance needs to be tested on larger cells

Acknowledgement

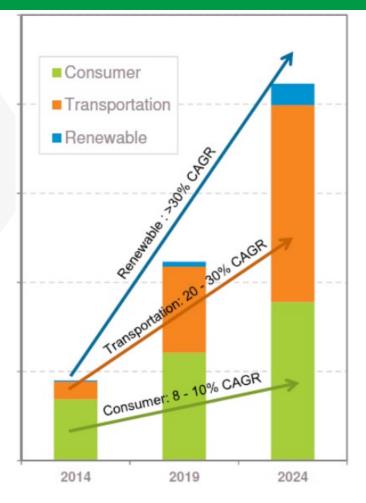
Sponsors

NATIONAL



- Students
 - o Shuai Xu
 - Xin Zhang
 - o Molly Rayhorn

Organizational Chart


Gannt Chart

ID	T 1 Y	Start	E 1		Year 1			Year				2								
ID	Task Name		Finish	1 2	2 3	4				9 10	11 12	2 1	2	3	45	6	7 8	9	10 11	12
1	Task 1 - Project Management and Planning	1/1/21	12/31/22																	
	Subtask 1.1 - Project Management Plan	1/1/21	1/31/21																	
	Milestone A			•																
	Milestone B			•																
	Subtask 1.2 - Technology Maturation Plan	2/1/21	2/28/21																	
	Milestone C			_	•	1														
2	Task 2 - Analysis of Pitch and Synthetic Graphite Feedstock	1/15/21	3/31/21																	
	Milestone D			ļ	•	•								_						
3	Task 3 - Development of SiO/G/C Composite Anodes	4/1/21	3/31/22																	
3.1	Subtask 3.1 - Preparation of SiO/G/CTP Porous Microspheres	4/1/21	9/30/21																	
	Milestone E							_		•		_								
3.2	Subtask 3.2 - Preparation of SiO/G/C Composite Anodes	7/1/21	12/31/21																	
	Milestone F								_			•		_						
3.3	Subtask 3.3 - Electrochemical Performance Testing	8/1/21	3/31/22																	
	Milestone G			1										<u> </u>				_		4
4	Task 4 - Bench-scale Test	4/1/22	9/30/22																	
	Milestone H																	4	<u> </u>	
5	Task 5 - Techno-Economic Analysis	10/1/22	11/30/22															l		
	Milestone I			ļ															•	<u>،</u>
6	Task 6 - Final Report (Milestone G)		12/31/22																	•

Background: Li-ion Battery (LIB)

