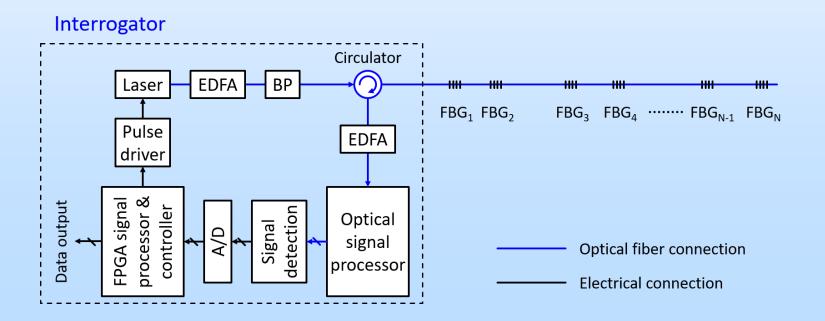
Fully Distributed Acoustic and Magnetic Field Monitoring via a Single Fiber Line for Optimized Production of Unconventional Resource Plays FE-0031786

Daniel Homa, Gary Pickrell, Eileen Martin Virginia Tech

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview (1-2 Slides)

- <u>Goals and Objectives</u>: Develop a fiber-optic sensing system capable of real-time simultaneous and distributed magnetic field and acoustic measurements via a single sensing fiber
- <u>Benefits</u>: Provide operators with a tool with unprecedented sensing density for high resolution subsurface imaging
- <u>DOE Funding</u>: \$1,500,000 Cost Share:\$375,000
- Project Duration: 10/1/2019 9/30/2023
- Project Participants: Virginia Tech, Sentek Instrument

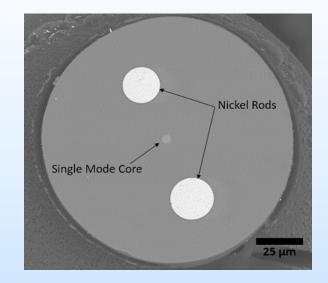

Technology Background

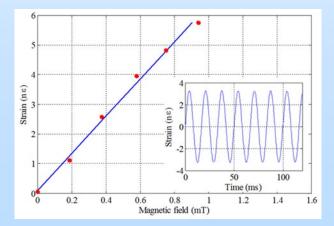
• Describe how the technology is envisioned to work in operation, including a simple schematic labeled with preferred operating conditions (e.g., pressures and temperatures), and any other requirements

Technical Approach

picoDASTM Fiber Optic Sensing Technology

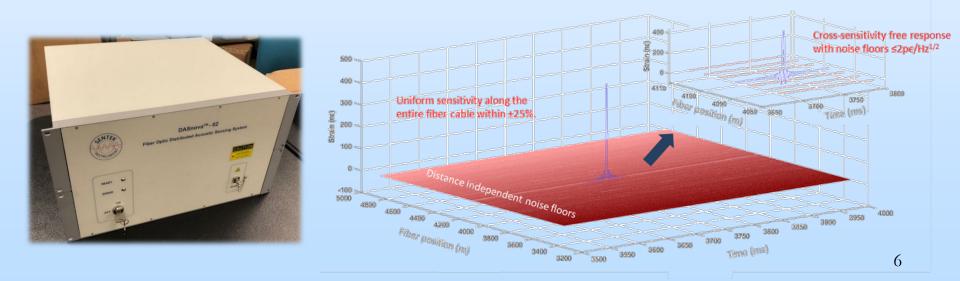
- Relies on an elegant marriage between a special type of FBG device and a time-division-multiplexing (TDM) signal processing scheme
- Superior performance
 - 100 times more sensitive than traditional DAS systems
 - Uniform sensitivity distribution across entire sensing range
 - Capable of multi-parameter measurements.

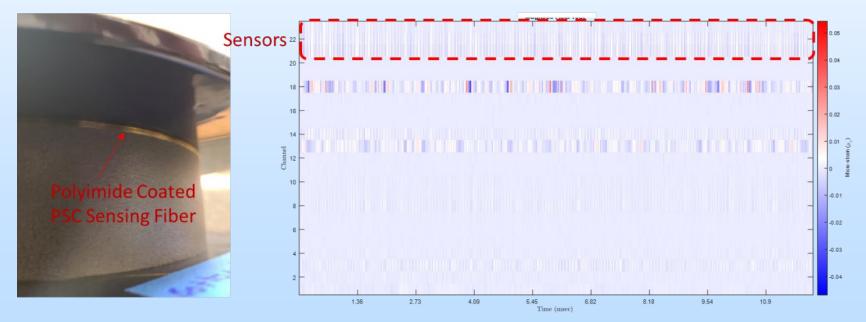



4

Research Approach

Multi-Material Magnetic Sensing Fiber


- Single mode optical fiber core with a magnetostrictive material in the cladding
 - The magnetostrictive material expands or contracts upon exposure to a magnetic field causing fiber vibration which is sensed via the FBG based interferometers
 - Stack-and-draw technique utilized to incorporate dissimilar materials in the fiber via optical fiber draw
- Magnetostrictive materials
 - Metglas 2605®, Nickel, Cobalt
- Other sensing schemes require bonding of the magnetostrictive material to the fiber, including it in the coating, and/or utilizing other post-processing schemes
 - Challenges related to reliability and performance

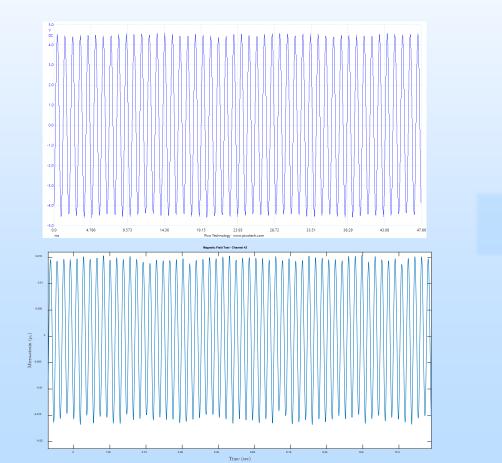

Distributed Acoustic Sensing

- Systematically tested and evaluated Sentek picoDAS systems
 - Demonstrated measurement resolution of 0.2 nanostrain as defined by 3σ
 - Demonstrated spatial resolutions of 2 m and 5 m
- Successfully met milestones/success criteria
- Excellent partnership between VT and Sentek
 - Systems always available for testing
 - Sentek has and continues to fabricate sensors for testing

High Temperature/Hydrogen Tolerant Acoustic Sensing

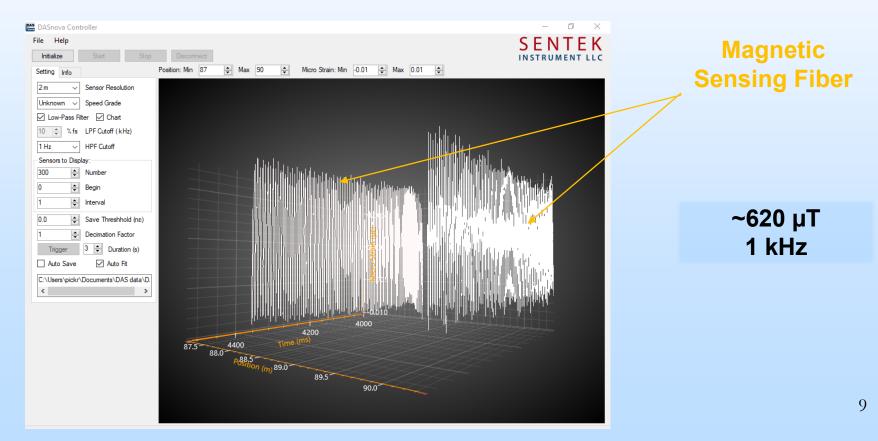
- Successfully demonstrated the ability to fabricate sensors in polyimide coated pure silica core optical fiber
 - "DrakaElite[™] Fluorine-doped Super RadHard single mode fiber
 - Sensors with 2 meter gauge length interrogated with Sentek picoDAS system


Magnetic Field Sensing

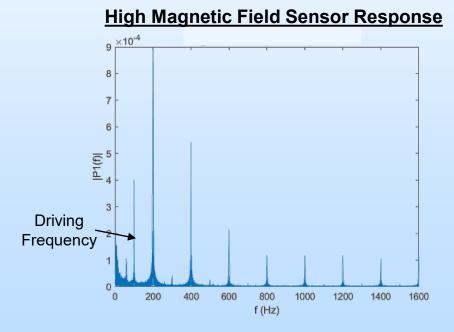

- Routinely demonstrate magnetic field measurements on one sensing fiber
 - Sensors fibers with nickel, cobalt, Galfenol, Metglas™, Permalloy cladding wires
 - Response demonstrated in transverse and longitudinal magnetic fields

B-dot AC Magnetic Sensor (Reference)

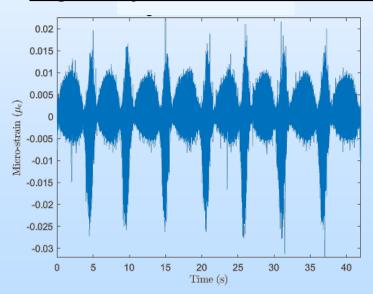
Magnetic Sensing Fiber (2Ni)



∼430 µT 1 kHz

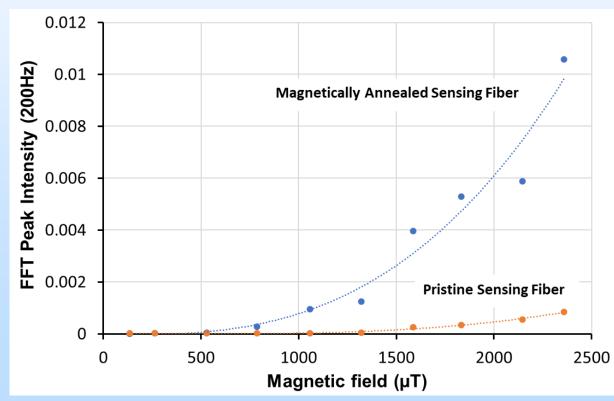

Distributed Magnetic Field Sensing

- Demonstrated multiple magnetic field measurements on one sensing fiber
 - Sensors inscribed in optical fiber with Metglas[™] cladding wires
 - Performance testing in air-core solenoid

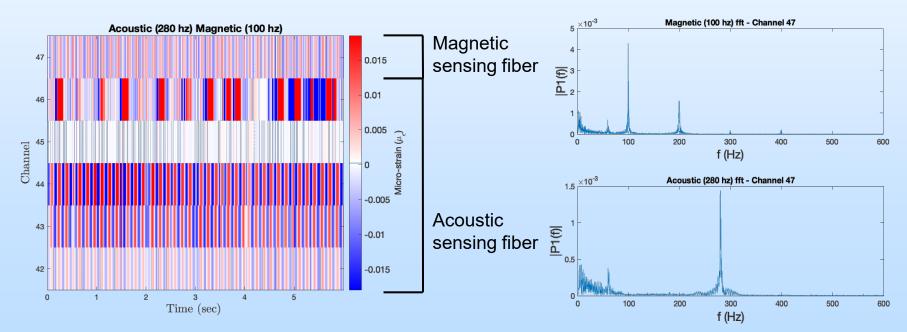


Complex Sensor Response

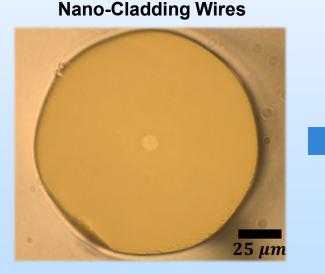
- Complex magnetic field sensor response will provide opportunities for enhanced function and material/process optimization
 - Driving frequency, frequency doubling, harmonics, resonance
 - Polarization control via magnetic field exposure



Magnetically Induced Polarization Effects


Enhanced Magnetic Field Sensing

- Demonstrated order of magnitude improvement in sensor response
- Magnetic annealing at elevated temperatures (~300°C − 400°C)
 - Readily scale-able for sensor manufacture polyimide coated sensing fibers
- Plan to demonstrated nano/pico Tesla sensitivity

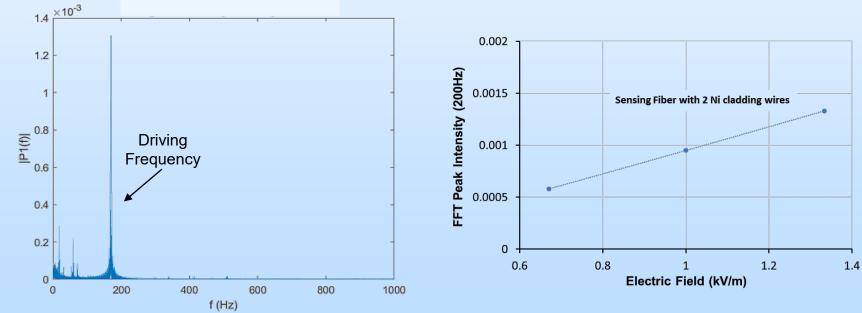

Signal Separation

- Independent Component Analysis (ICA)
 - Efficiently and automatically determine which separated signals correspond to the same individual source signal
 - Post-processing of array coherence

Field Deployable Magnetic Sensors

- Successfully developed sensing fibers with nano-nickel cladding wires
 - Readily splice-able to commercial single mode fiber (SMF-28)
 - "Visually" undistinguishable from traditional optical fibers

Spliced to SMF28



Magnetic Field Sensing

Distributed Electric Field Sensing

- Demonstrated distributed electric field sensor ($\sim kV/m$)
 - Sensing fibers with/without magnetostrictive cladding wires
- Currently evaluating PVDF buffered sensing fiber ($\leq mV/m$)
 - Sensors fabricated in Prysmian single mode fiber
 - Demonstrated fibers with BaTiO₃ cladding wires

Future Testing and Development

- Project Testing and Development
 - Develop thermal magnetic annealing techniques and "unique" sensor designs to enhance sensor response to lower magnetic flux (nT/pT)
 - Conduct simulated environmental testing
 - Develop electric field sensor for complete electromagnetic field sensing
 - Publish results in peer reviewed journals (4-8)
 - Prepare for field trial testing (cable design/installation techniques)
- Phase II Program
 - Develop technology for field trial testing
 - Demonstrate distributed downhole fiber optic sensing for the first time
- Commercialization
 - Sentek's picoDAS system is currently commercially available
 - Magnetic sensing fiber design and manufacturing process is extremely scale-able; technology transfer

Synergistic Opportunities

- Real-time information for optimized drilling and production
- "Turnkey" system to create a geophysical (Electromagnetic Methods) monitoring network for carbon storage site characterization and/or carbon storage
- Provide experimental options to validate theoretical feasibility studies of the design and use of an electromagnetic sensing optical fiber for geophysical applications
 - Alumbaugh, David L., Evan Schankee Um, G. Michael Hoversten, and Kerry Key.
 "Distributed electric field sensing using fibre optics in borehole environments." Geophysical Prospecting 70, no. 1 (2021): 210-221.
- Electrical power line/transformer continuous health monitoring
- Wireless sensing capabilities
- Energy harvesting/spintronic/quantum sensing applications
- Monitoring heart and brain activity
- Monitoring of nuclear power plants/reactors via RadHard fibers

Project Summary

Accomplishments

- Successfully demonstrated distributed magnetic field sensing
- Implemented acoustic/magnetic signal separation algorithms
- Preliminary demonstration of distributed electric field sensors
- Successfully demonstrated splice-ability of multi-materials sensing fiber to commercial single mode fiber
- Demonstrated enhanced sensor response upon thermal magnetic annealing
- Demonstrated polyimide coated/hydrogen tolerant acoustic sensors for high temperature dowhole deployment
- Successfully demonstrated sensing fiber with nano-cladding wires
- Lessons Learned
 - Magnetic sensor response is complex and requires further study to understand harmonics, resonance, etc..

Acknowledgements

Department of Energy

National Energy Technology Laboratory Project Manager: Gary L. Covatch

<u>Halliburton</u>

Industrial Support: Dorothy Wang, Ph.D.

Prysmian Group

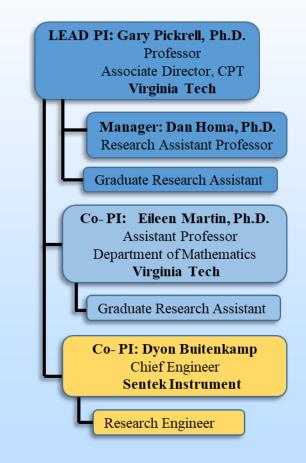
Industrial Support: Brian Risch, Ph.D.

Linking the Future

Weatherford

Industrial Support: Zhuang Wang, Ph.D.

Appendix


- Organizational Chart
- Gantt Chart

Organization Chart

- Lead PI : Dr. Gary Pickrell
 - Provide executive management for all phases of the project, and oversee the selection,

fabrication, and characterization of the fibers.

- Co-PI : Dr. Eileen Martin
 - Support all phases of the project and provide expertise in all technical aspects of the project and efforts pertaining to the testing and analysis of the selected optical fibers.
- Co-PI: Dyon Buitenkamp
 - Development and characterization of the picoDAS system to include sensor fabrication.
- Technical Manager: Dr. Daniel Homa
 - Daily project management, to include technical insights, under the guidance of the PI and Co-PI.

Gantt Chart

	GANTT CHART	Project Year 1				Project Year 2				Project Year 3				Project Year 4			
Task #	Task Name	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Project Management and Planning																
M1	MILESTONE 1		<u>/</u>														
2	Workforce Readiness Plan																
3	Data Management Plan																
4	Technology Maturation Plan																
5	Theoretical Modeling and Analyses																
M2/D1	MILESTONE 2 / DECISION POINT 1					1											
6	Construction of the Simulated Subsurface Test Facilities																
M3/D1	M3/D1 MILESTONE 3 / DECISION POINT 1																
7	Multi-Parameter Sensing Fiber																
7.1	Preform and Fiber Fabrication																
7.2	Fiber Grating Array Fabrication																
M4/D2	MILESTONE 4/ DECISION POINT 2																
8	Demonstration of Distributed Sensing System					-											
8.1	Interrogation Design and Implementation																
8.2	Distributed Sensing System Construction and Demonstration with Commercial Fibers																
M5/D3	MILESTONE 5 / DECISION POINT 2																
9	Fabrication of High Temperature DAS Fiber																
10	Integration of Distributed Sensing Fiber and System																
10.1	Fabrication of Distributed Magnetic Sensing Fiber																
10.2	Development of the Simulated Subsurface Test Facilities									•							
10.3	Demonstrate Distributed Sensing with Magnetic Sensing Fiber																
10.4	Perform Sensor Calibration and Verification																
M6	MILESTONE 6													/			
11	Prototype Sensing System Testing																
11.1	Fabrication of Prototype Distributed Magnetic Sensing Fiber																
M7	MILESTONE 6																
11.2	Construct Multi-Parameter Sensing System																
11.3	Test Sensing System and Evaluate Performance																
M8	MILESTONE 8																