

Water Electrodialysis Reversal Pilot DE-FE0032066

Matthew Heermann, PE (IL)
Sargent & Lundy, Water Treatment Consultant

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Agenda

- Project Overview
- Technology Background
- Technical Approach/Project Scope
- Progress and Current Status of Project
- Plans for Future Testing, Development, and Commercialization
- Project Summary

- Technology Background
- Technical Approach/Project Scope
- Progress and Current Status of Project
- Plans for Future Testing, Development, and Commercialization
- Project Summary

DE-FE0032066: Water Electrodialysis Reversal Pilot

- Overall Project Objective:
 - The objective of this project is to complete initial testing of a pilot-scale electrodialysis system to inform a conceptual industrial-scale design of an electrodialysis system for application at an existing coal-fired generation station.
- Budget:
 - Total: \$1,025,000
 - DOE: \$817,000
 - Nebraska Public Power District: \$208,000
- Period of Performance:
 - July 2021 April 2023

Nebraska Public Power District – Gerald Gentleman Station

- Location:
 - Sutherland, NE
- Facility Type:
 - 2 Pulverized Coal Steam Electric Generating Units
 - Fires Subbituminous Fuel
- Selected due to a desire to find a costeffective technology to reduce wastewater flow to the existing evaporation pond

Water Electrodialysis Reversal Pilot Team

U.S. Department of Energy National Energy Technology Laboratory

ION Clean Energy

(Lead Institution)

- Project Management and Communication with all relevant stakeholders on status and results
- Complete DOE Deliverables: TEA, EH&S Risk Assessment, Technology Maturation Plan

ElectroSep, Inc.

(Subcontractor - EDR Technology Provider)

- Process design & costing for EDR pilot
- Fabrication of EDR pilot system

Sargent & Lundy, LLC

(Subcontractor - Engineering)

- Techno-economic Analysis
- Commercialization Plan

Nebraska Public Power District

(Host Site)

- Installation of EDR pilot and pretreatment system
- Operation support during test campaign
- Pilot stream sampling and analysis
- Decommissioning of the pilot system

Technology Background

- Technical Approach/Project Scope
- Progress and Current Status of Project
- Plans for Future Testing, Development, and Commercialization
- Project Summary

Technology Background

Water Electrodialysis Reversal

Technology Background

Water Electrodialysis Reversal

- lons are moved from the product stream to the concentrate stream inside the stack.
- This process concentrates the wastewater and recovers purified water in a manner that does not require the energy of thermal distillation.
- Advantages:
 - Lower energy requirement than thermal desalination
 - More tolerant to scale than reverse osmosis
 - Higher maximum concentrate concentration and water recovery than reverse osmosis
- Challenges:
 - Not optimized for lower feed conductivity (driver for pilot testing)
 - Cannot remove non-ionic species (such as dissolved gases)
 - Water softening may be required due to the precipitation of calcium at high concentrations

Technology Background

Water Electrodialysis Reversal Compared to Thermal Desalination

- Electrodialysis Reversal
 - Water does not change phase
 - Lower energy cost per unit volume purified
 - The voltage reversal step mitigates the deposition of scale on membrane surface
 - Lower maintenance due to scale
 - Materials of construction do not have to contend with high TDS and Temperature
 - Lower Capital Cost

- Thermal Brine Concentrator
 - Water is vaporized
 - High energy cost of heat of vaporization
 - Local conditions within the concentrator may be above saturation (scaling)
 - Requires greater maintenance labor for cleaning
 - Materials of construction must be suitable for high TDS and Temperature
 - Higher Capital Cost

- Project Overview
- Technology Background

Technical Approach/Project Scope

- Progress and Current Status of Project
- Plans for Future Testing, Development, and Commercialization
- Project Summary

Technical Approach/Project Scope

Project Scope and Key Milestones

- Prepare Preliminary TEA, and Technology Maturation Plan
- Develop Test Plan
- Develop EDR Pilot Conceptual Plan
- Install and commission pretreatment system
- Install and commission EDR pilot
- Operate pilot test and record data
- Final data evaluation and reporting
- Develop Final TEA, Technology Gap Assessment, and Commercialization Plan

Milestone Title / Description	Completion Date		
Kickoff Meeting	07-14-2021		
EDR Pilot Factory Pre-test	07-22-2022		
Pretreatment System Installation	09-02-2022		
EDR System Installation	09-09-2022		
Pilot Operation Start	09-19-2022		
Pilot Operation End	10-28-2022		
Technology Gap Assessment	12-30-2022		
Technoeconomic Analysis	01-26-2023		
Commercialization Plan	04-20-2023		

- Project Overview
- Technology Background
- Technical Approach/Project Scope

- Plans for Future Testing, Development, and Commercialization
- Project Summary

Pilot System Process Flow Diagram

Feed Pump

- Project Overview
- Technology Background
- Technical Approach/Project Scope
- Progress and Current Status of Project

Plans for Future Testing, Development, and Commercialization

Project Summary

Plans for Future Testing, Development, and Commercialization

Current Tasks

- Operate at 8000 ppm EDR feedwater concentration
- Simulate a second stage of EDR by preprocessing collected concentrate
- Analyze Pilot Data
 - Evaluate the lowest wastewater TDS that may be economically treated

Next Steps

- Prepare the Final TEA
 - Full scale (150 gpm) wastewater flow
 - Optimize EDR Stack Configuration
 - Include Permanent Pretreatment
 - Pilot to inform extent of pretreatment
- Prepare a Site-Specific Design for NPPD Gerald Gentleman
 - Example of actual site installation
 - Reuse of existing plant infrastructure

- Project Overview
- Technology Background
- Technical Approach/Project Scope
- Progress and Current Status of Project
- Plans for Future Testing, Development, and Commercialization

Project Summary

Project Summary

- Pilot is in Operation
 - 2000 ppm EDR Feedwater results
 - Concentrated to 20,000 ppm
 - Estimated specific power will be determined when analytical results are available
 - 4000 ppm EDR Feedwater results
 - Concentrated to 21,000 ppm
 - Estimated specific power will be determined when analytical results are available
- Next step in pilot testing is 8000 ppm
 - Collect sufficient volume for maximum concentration testing
- Maximum concentration testing TBD

Thank You

Water Electrodialysis Reversal Pilot Team

U.S. Department of Energy National Energy Technology Laboratory

ION Clean Energy

(Lead Institution)

- Project Management and Communication with all relevant stakeholders on status and results
- Complete DOE Deliverables: TEA, EH&S Risk Assessment, Technology Maturation Plan

ElectroSep, Inc.

(Subcontractor - EDR Technology Provider)

- Process design & costing for EDR pilot
- Fabrication of EDR pilot system

Sargent & Lundy, LLC

(Subcontractor - Engineering)

- Techno-economic Analysis
- Commercialization Plan

Nebraska Public Power District

(Host Site)

- Installation of EDR pilot and pretreatment system
- Operation support during test campaign
- Pilot stream sampling and analysis
- Decommissioning of the pilot system

Water Electrodialysis Reversal Pilot Schedule

١						
ID	% Complete	Task Name	Duration	Start	Finish	2022 2023 2023 2023
1	66%	GGS Grey Water Reclamation Project	471 days	7/1/2021	4/20/2023	
2	100%	Start Date	0 days	7/1/2021	7/1/2021	♠ 7/1
3	0%	End Date	0 days	4/20/2023	4/20/2023	•
	61%	Task 1 - Project Management and Planning	436 days	7/1/2021	3/2/2023	·
	62%		_	7/1/2021	2/16/2023	·
8	58%	1.2 - Technology Maturation Plan	396 days	8/26/2021	3/2/2023	
17	42%	1.3 - Reporting, Briefings and Technical Presentations			12/16/2022	
	100%			7/1/2021	5/11/2022	<u>+</u>
	100%			7/1/2021	7/14/2021	<u>-</u>
	100%		-	7/15/2021	8/25/2021	
42	100%			8/12/2021	5/11/2022	
48	100%			8/26/2021	7/22/2022	
	100%		-	8/26/2021	9/1/2021	п
	100%		_	9/2/2021	9/24/2021	
	100%			12/20/2021	7/22/2022	
65	100%	3.4 - Test Plan and BOP Design	185 days	9/27/2021	6/10/2022	
80	100%	M4: Prepare & Submit Conceptual Study Results to DOE,			6/14/2022	
81	100%			4/4/2022	9/9/2022	
	100%		_	7/25/2022	8/8/2022	
	100%			4/4/2022	9/9/2022	
	100%			8/15/2022	9/9/2022	
		-		9/12/2022	10/28/2022	
	100%			9/12/2022	9/16/2022	n e
117			_	9/19/2022	10/28/2022	
145				10/31/2022	11/14/2022	
146	0%		-	10/31/2022	11/14/2022	
152				11/4/2022	11/8/2022	п
		Task 7 Reporting	124 days	10/31/2022	4/20/2023	
156				12/19/2022	4/20/2023	
157				10/31/2022	1/26/2023	
161		7.2 - M8: Technology Gap Assessment	45 days	10/31/2022	12/30/2022	
165	0%	7.3 - M9: Commercialization Plan	90 days	12/16/2022	4/20/2023	

