Lab-Scale Production of Particle Bonded Filaments with High-Loading Coal-Derived Carbon FE0032147

Kelvin Fu University of Delaware

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

- Funding (DOE and Cost Share):
 - DOE share: \$1,000,000; cost share: \$250,000
- Overall Project Performance Dates:

February 01, 2022-January 31, 2025

- Project Participants:

Prof. Kelvin Fu, Mechanical Engineering;

Prof. Feng Jiao, Chemical Engineering

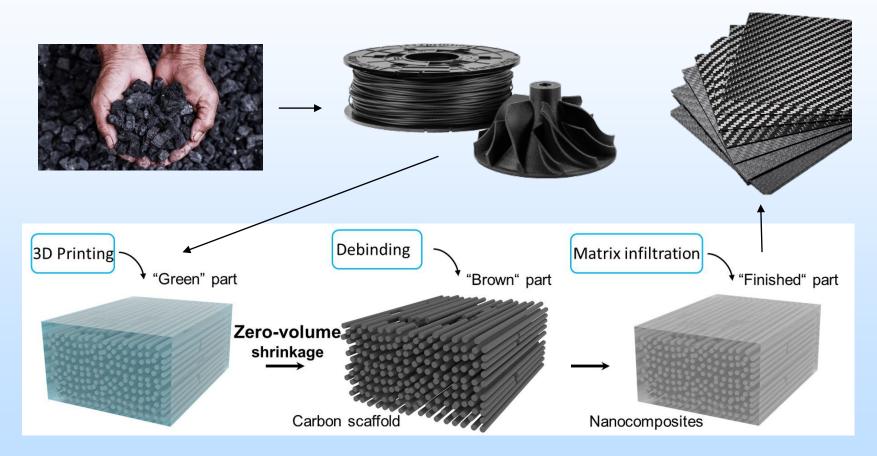
University of Delaware

Project Overview

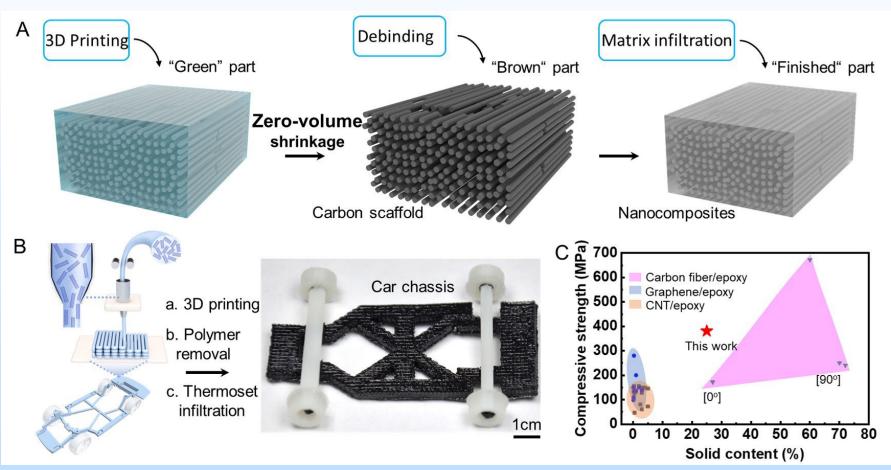
- Overall Project Objectives

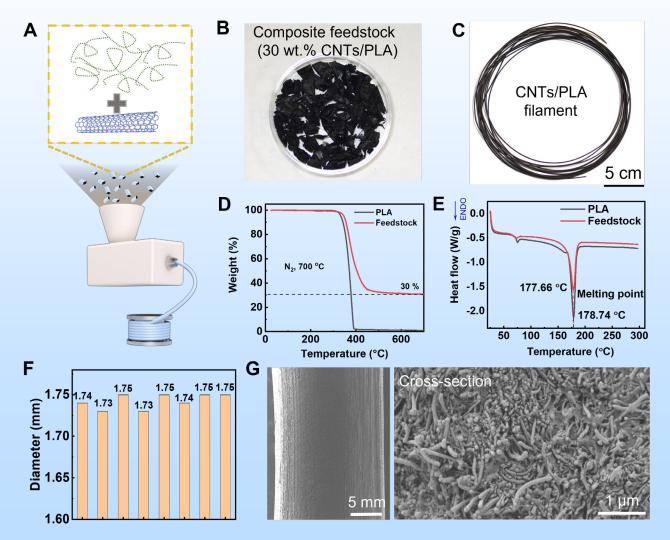
The main goal of the project is to develop a lab-scale manufacturing process to fabricate filaments with high carbon content for FDM 3D printing use. Graphene particles derived from domestic US coal wastes will be used as feedstock for filament development.

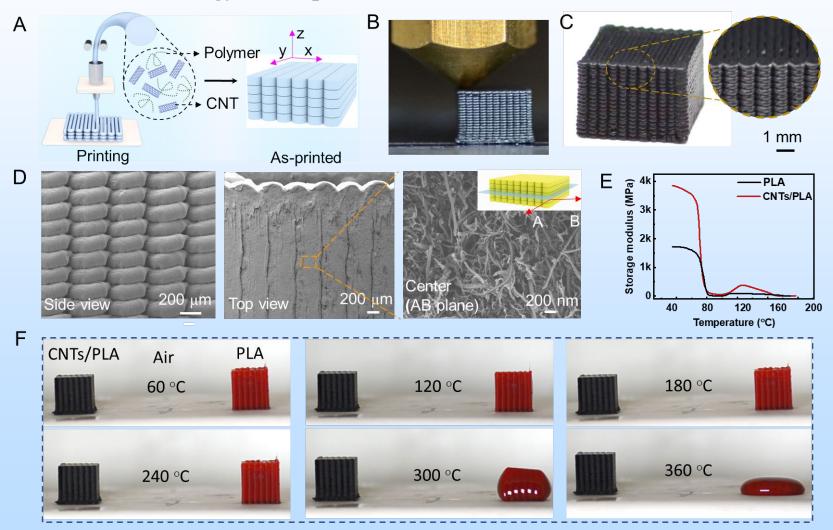
- (1) Develop a coal-enhanced filament production technology to fabricate filament containing high-loading of coal-derived graphene;
- (2) Develop debinding and sintering post-processing to fabricate fully carbon structure;
- (3) Develop a composite material based on fully carbon preform structure and evaluate composite as a potential alternative to carbon fiber composite;
- (4) Perform a full techno-economic analysis to assess the coal-enhanced filament potential for the fast-growing and high-value additive manufacturing and composite market.


- Using particle-filled filaments to fabricate fully particle-sintered 3D parts based on FDM-extrusion printing and prost-processing (debinding and sintering) has received great interests in additive manufacturing.
- Particle-filled filament FDM 3D printing offers a simple, cost-efficient, safe production of fully particle-sintered parts, which has drawn many industrial players in this field.
- Metal-filled and ceramic-filled filaments have been commercially available on market.

Motivation:

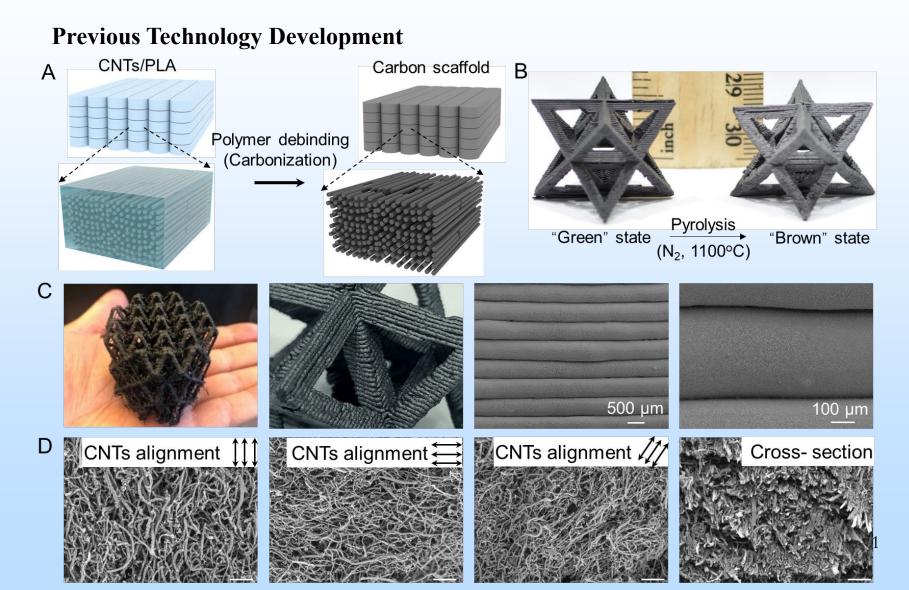

Carbon-filled filaments for making full-carbon part have not been developed.

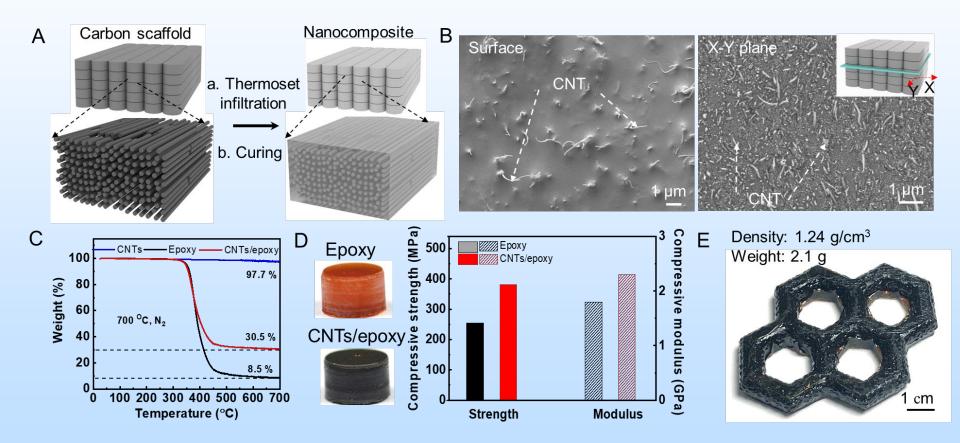

Technology Path

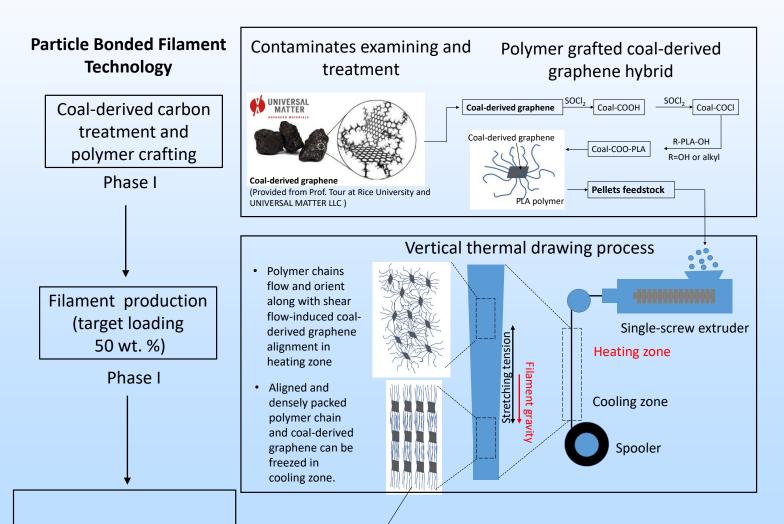


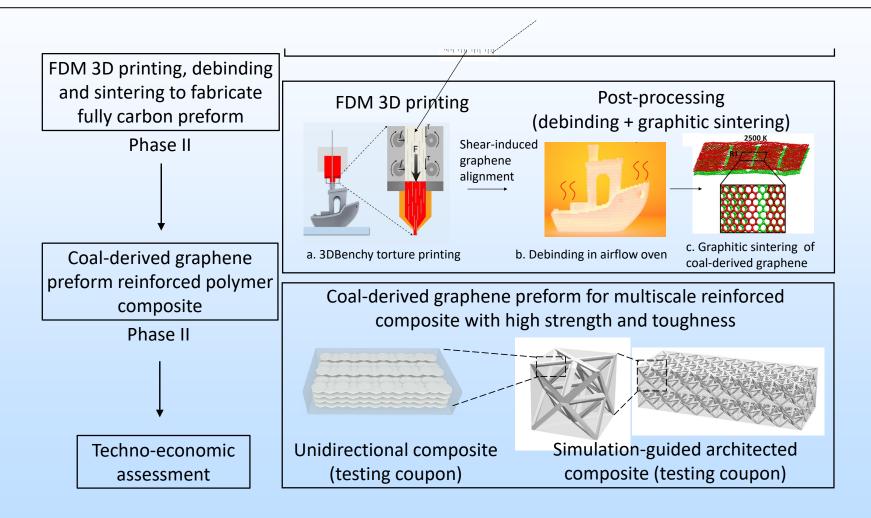
- Current carbon-filled filament, due to low carbon content (<10 wt.%), could not be used to fabricate full carbon parts for carbon composite applications.
- Carbon-filled filament with <u>high carbon particle loading</u> could be used to fabricate full carbon parts.
- Using carbon nanomaterials derived from abundant domestic US coals and their wastes provides abundant and low-cost feedstock resources for 3D printing, offering a great upgrading opportunity to develop high-value carbon-filled filament for new carbon economy.

If successful, coal-derived carbon nanomaterials, such as graphene, could be produced into macroscale carbon reinforcement with tunable alignment via extrusion 3D printing for structural and functional composite materials, such as mechanically strong composite, and battery electrodes.





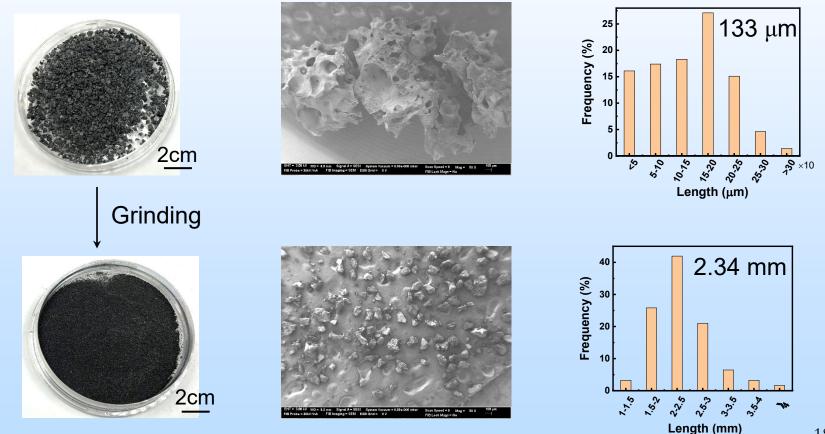




a. Experimental design or project steps and work plan

b. Project schedule

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Verification method
Task 2.2	Milestone A – Complete the development and evaluation of PLA grafted coal- derived graphene hybrid	06/30/2022	Documented performance data
Task 2.4	Milestone B – Complete the development and evaluation of feedstock pellets	09/30/2022	Documented performance data
Task 3.2	Milestone C – Complete of the trial production of medium-loading (20wt. %) filament to meet criteria: filament with 1.75 ± 0.05 mm diameter, continuous 25 g filament	12/3/2022	Documented performance data
Task 3.3	Milestone D – Complete the fabrication and evaluation of high-loading (50 wt. %) filament to meet criteria: coal-derived graphene loading up to 50 wt. % in filament, alignment of coal-derived graphene up to 50% in filament, filament with 1.75 ± 0.05 mm diameter, 100g filament	6/31/2023	Documented performance data and filament deliverables
Task 4.2	Milestone E – Complete the printing performance evaluation on commercial desktop and industrial 3D printers	12/31/2023	Documented performance data and photo images of printed parts
Task 5.1	Milestone F – Complete the development of coal-derived graphene carbon structure to meet criteria: volume change less than 10 wt. %, coal-derived graphene over 95 wt. % in carbon framework after carbonization.	06/30/2024	Documented performance
Task 5.2	Milestone G – Complete the development of coal-derived carbon preform and composite development to meet criteria: composite density 1.55 g/cm ³ , flexural strength/modulus 600 MPa/45 GPa, tensile strength/modulus 700 MPa/50 GPa, Compression strength/modulus 400 MPa/50 GPa, and interlaminar shear strength 45 MPa	12/31/2024	Documented performance and composite coupon deliverables
Task 6.0	Milestone I – Complete the Techno- Economic Analysis	12/31/2024	Documented analysis results

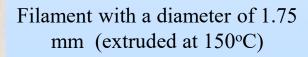

c. Project success criteria

Deci	Date	Success Criteria
sion		
0	06/30/2023	coal-derived graphene loading up to 50 wt. % in filament, alignment of coal-
Decision		derived graphene up to 50% in filament, filament with 1.75 ± 0.05 mm
Point #1		diameter, 100 g filament.
0	12/31/2024	Filament can be printed on commercial desktop and industrial FDM 3D
Decision		printers;
Point #2		3D printed samples: 3DBenchy model torture-test sample with volume
		shrinkage less than 5%, no delamination or warpage;
		Graphitized coal-derived graphene framework: volume change less than 10
		wt. %, coal-derived graphene over 95 wt. % in carbon framework;
		Graphitized coal-derived graphene reinforced thermoset composite
		coupons: density 1.55 g/cm ³ , flexural strength/modulus 600 MPa/45 GPa,
		tensile strength/modulus 700 MPa/50 GPa, Compression strength/modulus
		400 MPa/50 GPa, and interlaminar shear strength 45 MPa;
		Total filament weight: 1kg.

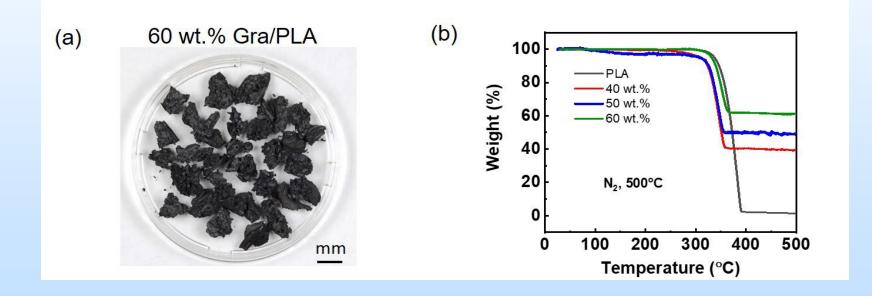
d. Risks and Mitigation

	Ri	sk Rating				
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy		
	(Low	, Med, High)			
Technical/Scope Risks:						
Single screw pellet extruder can cause a decreased coal-derived graphene particle dimension (particle size, thickness) due to the shear extrusion process	Med	Low	Low	The mitigation plan will be to balance the solids, temperature, and extrusion speed in the extrusion operation.		
Fabricated filament diameter may have a large variation.	Med	Med	Med	The mitigation plan will be to extend the filament formation length (the distance from pellet extruder to filament winding machine) while optimizing the two- stage zone temperature. If a much larger filament is inevitable, sanding will be used to reduce diameter to 1.75 mm.		
Filament cannot be automatically extruded into hot end in FDM 3D printer due to lack of sufficient gear torque to overcome high viscosity of molten filament.	High	Med	Med	The mitigation plan will be (a) to slightly decrease coal additive loading to reduce viscosity, and (b) to increase gear torque by replacing with a high stepping torque motor		

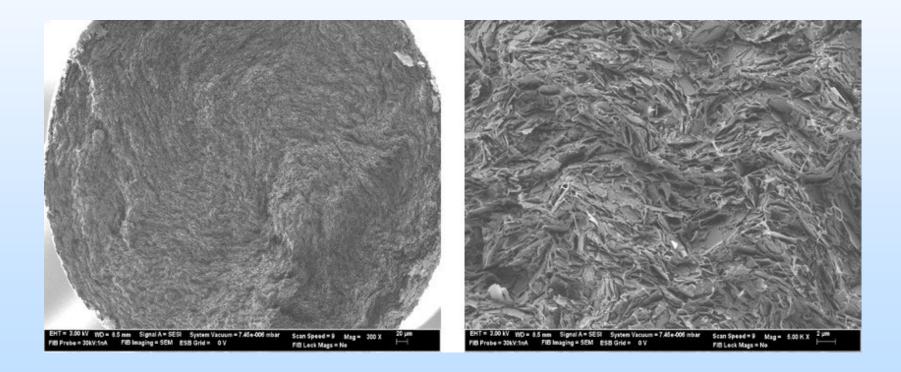
Coal-derived graphene (Universal Matters)

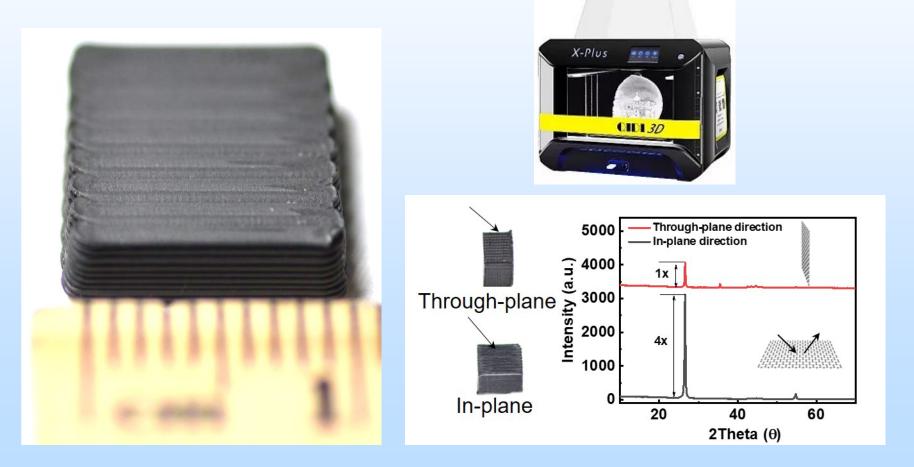

Filament preparation

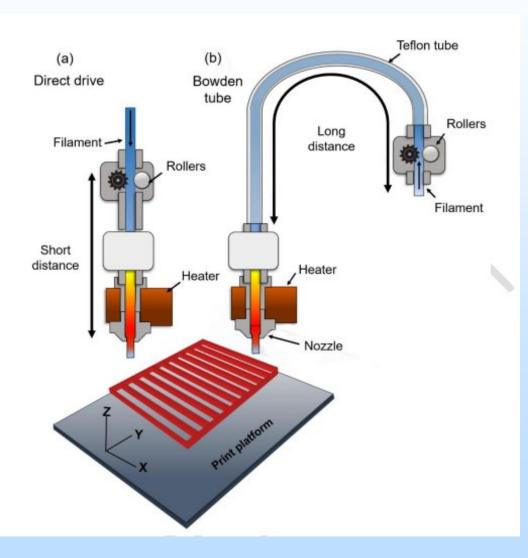
2cm


20 wt.% grinded graphene/PLA pellet

- PLA/graphene/dichloromethane
- Drying and grinding




Graphene flakes (Cheaptubes.com)



Filament with 60wt.%

Printer: Qidi 3D X-Plus; Filament: 50 wt.% Graphene-filled filament

Qidi 3D (Direct drive): Good

Ender 3 (Bowden drive) : Bad

23

Status: Complete

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Verification method
Task 2.2	Milestone A – Complete the development and evaluation of PLA grafted coal- derived graphene hybrid	06/30/2022	Documented performance data
Task 2.4	Milestone B – Complete the development and evaluation of feedstock pellets	09/30/2022	Documented performance data

Plans for future testing/development/ commercialization

Future testing:

- Electrical and thermal characterizations of filaments;
- Thermo-mechanical characterizations of 3D printed parts

Scale-up potential

• CarbonForm Inc. (filament, 3D printer, and post-treatment process)


Summary Slide

- Highly loaded carbon-filled (up to 60 wt.%) filament can be achieved
- Vertical filament extrusion is better than horizontal filament extrusion to make filaments
- Direct drive 3D printer is better than Bowden drive 3D printer to print high loading filament
- Highly loaded graphene can be aligned through shear extrusion at FDM nozzle

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Gantt Chart

	Task/ Subtask	Milestone Title & Description	Planned Completion Date	Verification method
Complete	Task 2.2	Milestone A – Complete the development and evaluation of PLA grafted coal- derived graphene hybrid	06/30/2022	Documented performance data
Complete	Task 2.4	Milestone B – Complete the development and evaluation of feedstock pellets	09/30/2022	Documented performance data
	Task 3.2	Milestone C – Complete of the trial production of medium-loading (20wt. %) filament to meet criteria: filament with 1.75 ± 0.05 mm diameter, continuous 25 g filament	12/3/2022	Documented performance data
	Task 3.3	Milestone D – Complete the fabrication and evaluation of high-loading (50 wt. %) filament to meet criteria: coal-derived graphene loading up to 50 wt. % in filament, alignment of coal-derived graphene up to 50% in filament, filament with 1.75 ± 0.05 mm diameter, 100g filament	6/31/2023	Documented performance data and filament deliverables
	Task 4.2	Milestone E – Complete the printing performance evaluation on commercial desktop and industrial 3D printers	12/31/2023	Documented performance data and photo images of printed parts
	Task 5.1	Milestone F – Complete the development of coal-derived graphene carbon structure to meet criteria: volume change less than 10 wt. %, coal-derived graphene over 95 wt. % in carbon framework after carbonization.	06/30/2024	Documented performance
	Task 5.2	Milestone G – Complete the development of coal-derived carbon preform and composite development to meet criteria: composite density 1.55 g/cm ³ , flexural strength/modulus 600 MPa/45 GPa, tensile strength/modulus 700 MPa/50 GPa, Compression strength/modulus 400 MPa/50 GPa, and interlaminar shear strength 45 MPa	12/31/2024	Documented performance and composite coupon deliverables
	Task 6.0	Milestone I – Complete the Techno-	12/31/2024	Documented analysis results

Task Name	Assigned		Yea	r 1	1		Year 2			Year 3		
	Resources	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	QQ 34	Q 1		Q 3	
Task 1.0 - Project Management and Planning	Fu		-	-		-	-				-	İ
Task 2.0 – Development of polymer grafted coal-derived graphene feedstock	Jiao, Fu											
Subtask 2.1 Examining contaminates in coal-derived graphene	Jiao											
Subtask 2.2 Synthesis of polymer grafted coal-derived graphene	Jiao											
Milestone A – Complete the development and evaluation of PLA grafted coal-derived graphene	Jiao											
Subtask 2.3 Evaluation of polymer grafted coal-derived graphene	Jiao											
Subtask 2.4 Fabrication of feedstock pellets	Fu											
Milestone B - Complete the development and evaluation of feedstock pellets	Jiao, Fu									:	: :	
Task 3.0 – Development of coal-derived graphene bonded filaments	Fu, Jiao											
Subtask 3.1 Optimization of manufacturing parameters	Fu, Jiao											
Subtask 3.2 Fabrication of medium-loading filament	Fu, Jiao											
Milestone C - Complete of the trial production of medium-loading (20 wt. %) filament	Fu, Jiao					•						
Subtask 3.3 Fabrication and evaluation of high-loading filament	Fu, Jiao											
Milestone D - Complete the fabrication and evaluation of high- loading (50 wt. %) filament	Fu, Jiao						•					
Decision Point 1	Team						Ó					
Task 4.0 – Filament printing performance evaluation	Fu, Jiao											
Subtask 4.1 Filament printing performance on commercial FDM 3D printers	Fu, Jiao											
Subtask 4.2 Evaluation of printed panels	Fu, Jiao											
Milestone E - Complete the printing compatibility evaluation of filaments on commercial desktop and industrial 3D printers (0.5 kg filament)	Fu, Jiao								•			
Task 5.0 Development of composite based on coal-derived graphene preform	Fu, Jiao											
Subtask 5.1 Fabrication of coal-derived graphene carbon preform	Fu											
Milestone F - Complete the development of coal-derived graphene preform	Fu											
Subtask 5.2 Fabrication and evaluation of composite based on coal- derived graphene preform	Fu											
Milestone G - Complete the development of graphitic coal-derived graphene reinforced composite coupons	Fu, Jiao											
Task 6.0 Techno-economic analysis	Fu, Jiao											
Decision Point 2	Fu, Jiao											