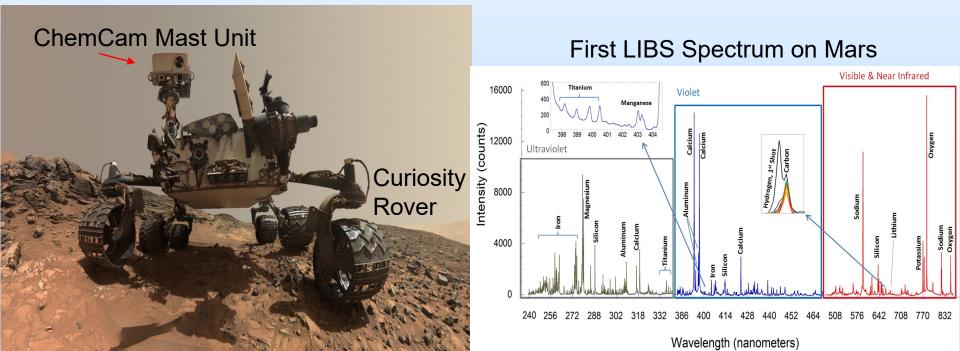
Evaluation of Laser-Based Analysis of Rare Earth Elements in Coal-Related Materials FWP-FE-781-16-FY17 Samuel M. Clegg Chemistry Division, Los Alamos National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting October 25 - 27, 2022

Project Overview

- Project Objectives
 - Demonstrate quantitative elemental analysis of REEs in coal sample in the lab.
 - Using Laser-Induced Breakdown Spectroscopy (LIBS)
 - Demonstrate molecular / mineralogical analysis of REEs in coal samples in the lab.
 - Using Raman Spectroscopy
 - Construct and Demonstrate a Backpack LIBS-Raman Spectroscopy Instrument
 - Lightweight Instrument
 - Capable of LIBS and Raman Spectroscopy
 - Integrated interlock for eye-safe operation

Copper


Basalt

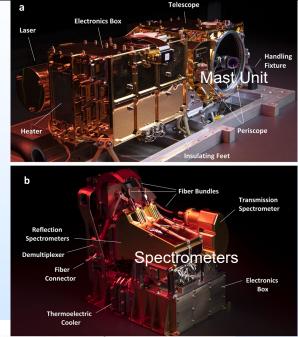
Technology Background (1/3)

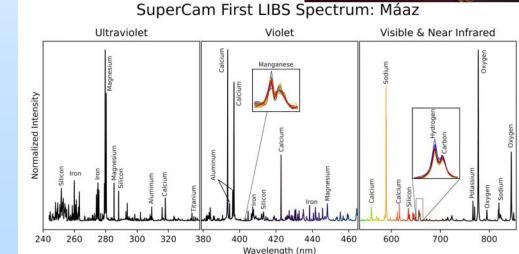
ChemCam on the NASA Curiosity Mars Rover

- ChemCam
 - Remote Laser-Induced Breakdown Spectrometer
 - Elemental analysis from the mast of the rover to 7 m
 - >900,000 laser shots since landing on August 5, 2012
 - Grayscale Remote Micro-Imager (RMI)

Technology Background (2/3)

SuperCam on the NASA Perseverance


Mars Rover

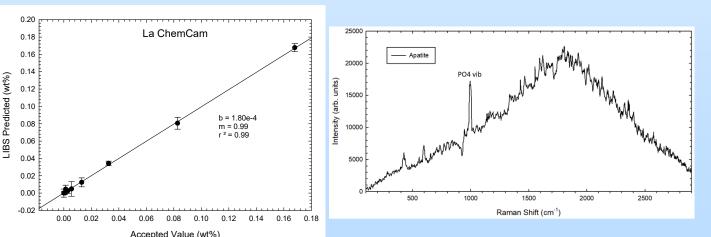

<u>SuperCam</u> – 6 remote analytical techniques, 1 instrument! Laser-Induced Breakdown Spectroscopy (LIBS): elemental Raman Spectroscopy: molecular/mineralogy analysis Time-Resolved Luminescence Spectroscopy (TRLS): elemental, molecular analysis Visible and Near Infrared Spectroscopy (VisNIR): molecular/mineralogy analysis Color Remote Micro-Imager Microphone

SuperCam

Perseverance Rover

Indenu

Technology Background (3/3)



Technical Approach/Project Scope

- Project Closeout
 - ✓ Demonstrated LIBS quantitative elemental analysis of REEs in coal sample in the lab.
 - ✓ Demonstrated Raman molecular / mineralogical analysis of samples containing REEs.
 - Constructed and Demonstrate a Backpack LIBS-Raman Spectroscopy Instrument

✓ Field Tested the Instrument

Detection Requirements for Instrument Design

Table 2

A summary of REY data from the USGS COALQUAL V3.0 database (Concentrations in ppm on a moisture-free whole coal basis).

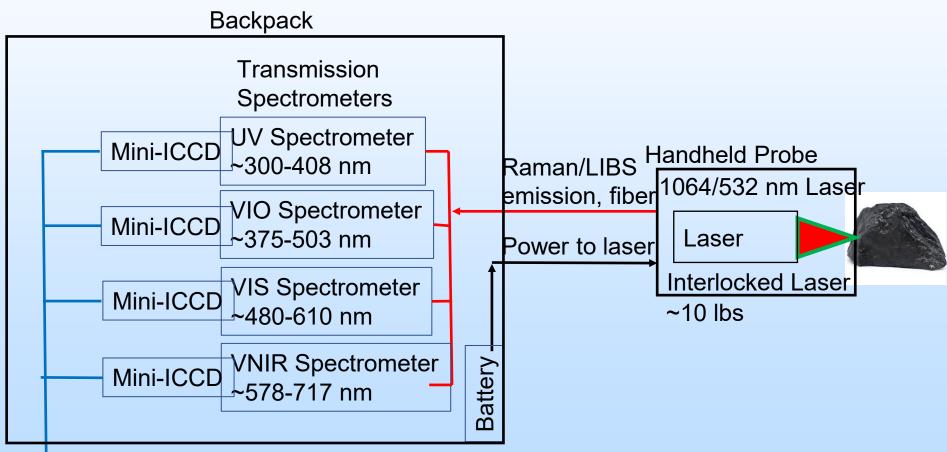
Element	Include data with L qualifier				Exclude data with L qualifier				Data with L qualifier			From Finkelman (1993) ^a			
	No. of samples	Max	Mean ^b	SD^{c}	No. of samples	Max	Mean	SD	No. of samples	$\%L^{\rm d}$	Mean	No. of samples	Max	Mean	SD
Y	7585	185	8.93	6.84	7560	185	8.94	6.83	25	0.3	4.92	7897	170	8.5	6.7
La	6652	236	11.70	9.42	6160	236	11.19	9.06	492	7	18.10	6235	300	12	16
Ce	6081	506	23.96	25.45	5557	506	20.69	17.42	524	9	58.68	5525	700	21	28
Pr	5601	110	10.21	8.33	948	67.5	6.48	7.32	4653	83	10.97	1533	65	2.4 ^e	n/a ^g
Nd	5946	236	12.32	11.09	4303	236	13.36	11.76	1643	28	9.60	4749	230	9.5 ^f	n/a
Sm	5588	68	2.54	3.78	5103	19.9	1.94	1.42	485	9	8.87	5151	18	1.7	1.4
Eu	5626	5.83	0.42	0.28	5270	5.83	0.43	0.28	356	6	0.32	5266	4.8	0.4	0.33
Gd	5602	39.7	2.91	2.39	1670	39.7	2.80	2.75	3932	70	2.96	2376	39	1.8 ^f	n/a
Tb	5619	47	1.16	3.76	4878	4.08	0.33	0.22	741	13	6.57	5024	3.9	0.3	0.23
Dy	5607	23	3.11	2.15	717	19.2	3.39	2.46	4890	87	3.07	1510	28	1.9	2.7
Ho	5598	19	1.03	1.06	351	4.59	0.75	0.56	5247	94	1.05	1130	4.5	0.35 ^f	n/a
Er	5603	16	1.24	0.95	1070	11.2	1.54	1.08	4533	81	1.17	1792	11	1	1.1
Tm	5603	7.7	0.63	0.48	42	1.99	0.44	0.41	5561	99	0.63	365	1.9	0.15 ^f	n/a
Yb	7269	9.27	1.01	0.68	7222	9.27	1.02	0.68	47	1	0.50	7522	20	0.95 ^f	n/a
Lu	5587	10.1	0.37	0.89	4945	10.1	0.16	0.24	642	11	1.99	5006	1.8	0.14	0.1

^a Data obtained from the NCRDS before the release of the COALQUAL database.

^b Mean: arithmetic mean.

^c SD: standard deviation.

^d Percent of data with L qualifier.

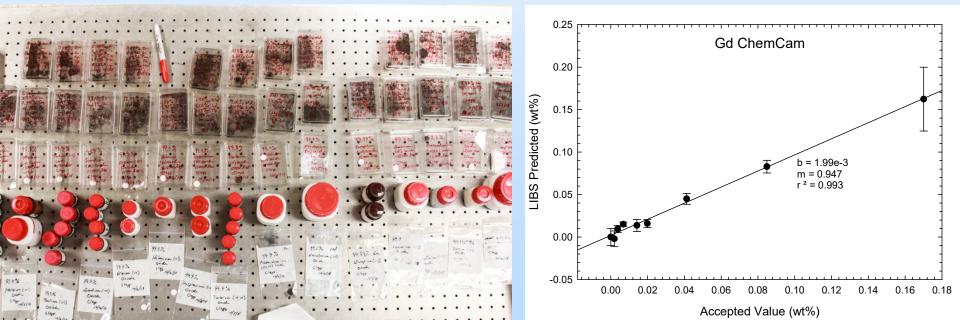

e Estimated based on NCRDS and literature data.

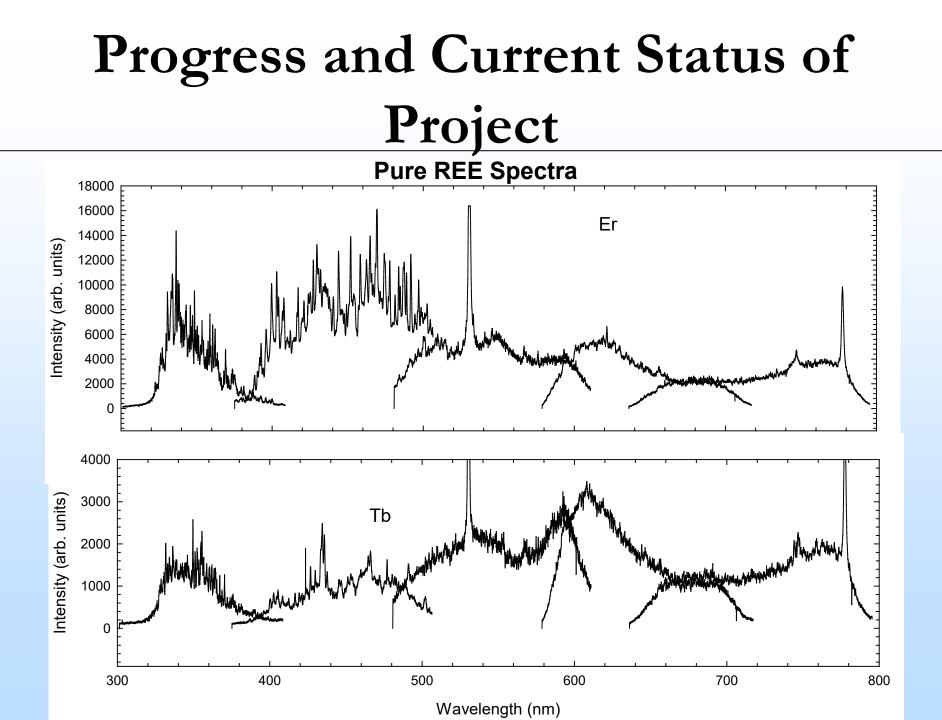
^f Calculated from La and Ce data assuming a smooth chondrite-normalized REE distribution pattern with the exception of Eu.

^g No data available.

Lin, Soong, and Granite, "Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY)," International Journal of Coal Geology 192 (2018) 1–13

Raman-LIBS Backpack Instrument – Block Diagram


PC


• Complete construction of the backpack instrument

- Calibrate the Backpack LIBS Raman Instrument
 - Collect LIBS spectral library
 - Recalibrate LIBS elemental analysis
 - Partial Least Squares (PLS) model for each REE doped in a coal sample
 - PyHAT software developed at USGS Flagstaff

Progress and Current Status of

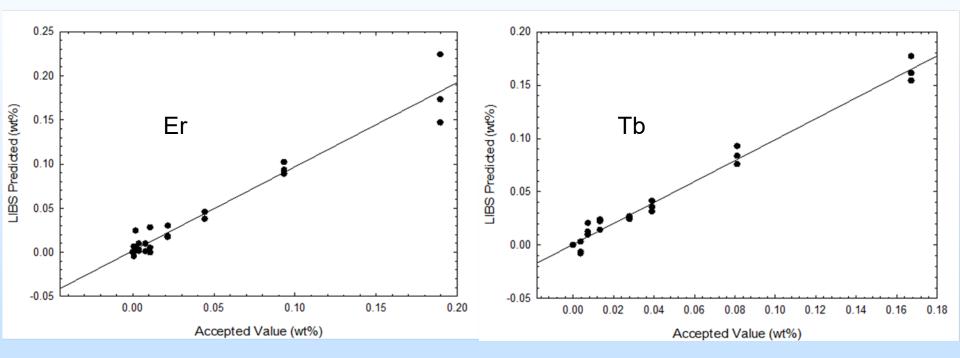
Project

REE Calibration Spectra – REEs Doped in Coal Sample

0.0030 Sample B6 Analysis 1 Analysis 2 0.0025 Analysis 3 Normalized Intensity (arb. units) **Calibration Procedure** Sample X1 – add 1st REE 0.0020 Sample X2 – dilute X1 and add 2nd REE 0.0015 ... Sample X5 – dilute X4 and Nd, Gd, Tb, Dy, Ho add 5th REE 0.0010 Sample X6 to X9 – continue diluting 0.0005 Collected 3 sets, each with up to 5 REEs 0.0000 Normalize the spectra to total 700 300 400 500 600 emission intensity Wavelength (nm)

Develop PLS model for Each ٠ REE.

•


•

•

•

•

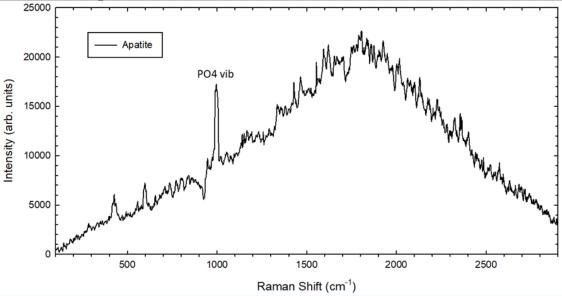
Partial Least Squares Quantitative Analysis

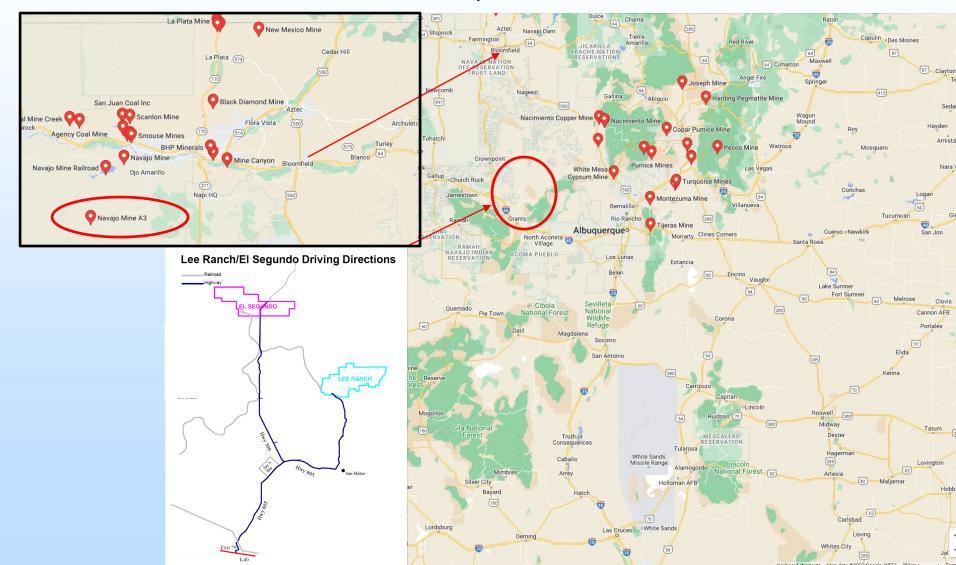
Conservative Estimated Detection Limits

	Requireme	ents (ppm)	LIBS DL (ppm)			
Elements	Max	Mean	Conservative	Likely		
Y	185	8.94	Not in st	study		
La	236	11.19	100	10		
Ce	506	20.69	150	15		
Pr	67.5	6.48	70	5		
Nd	236	13.36	200	10		
Sm	19.9	1.94	60	4		
Eu	5.83	0.43	50	5		
Gd	39.7	2.8	60	5		
Tb	4.08	0.33	50	4		
Dy	19.2	3.39	20	3		
Но	4.59	0.75	40	1		
Er	11.2	1.54	20	2		
Tm	1.99	0.44	30	2		
Yb	9.27	1.02	20	1		
Lu	10.1	0.16	20	1		

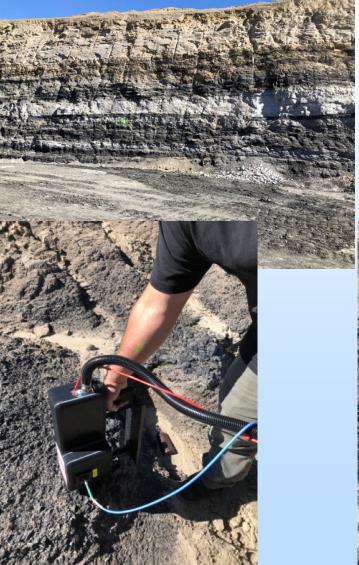
Design instrument to meet requirements (Lin et al. International Journal of Coal Geology 192 (2018) 1–13)

Progress and Current Status of

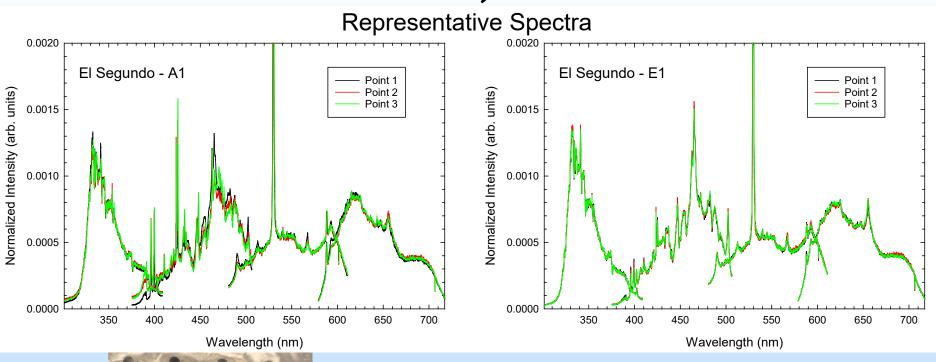

Project

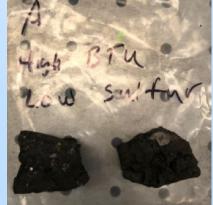

Raman Spectrum

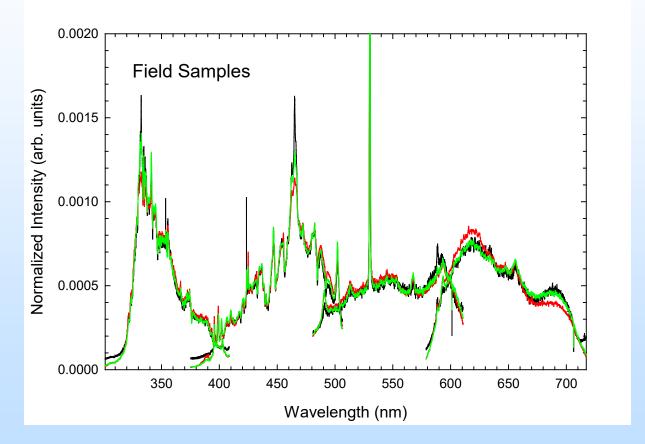
- Sensitive to Molecular Vibrations
- Mineralogy determined by Raman Shift
- Determine the molecular framework
 - Phosphates
 - Sulfates
 - Carbonates
 - Oxides
 - Etc...
- Help inform on separation process decisions


Complementary to LIBS

- LIBS determines REE concentration
- Raman only determines mineralogy/molecular characteristics



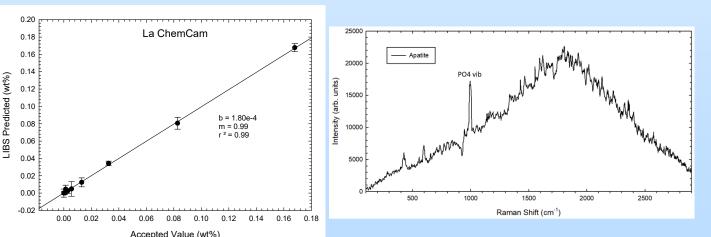

El Segundo Mine Peabody Energy


Progress and Current Status of

Project

At this time, no REEs qualitatively detected in these coal samples.

Plans for future testing/development/ commercialization


Plans for future testing/development/commercialization

- a. In this project
 - a. The project will be completed on November 18, 2022.
- b. After this project
 - a. No follow-on project currently planned.
- c. Scale-up potential, if applicable
 - a. IP application is in process at LANL.

Summary Slide

- Project Closeout
 - ✓ Demonstrated LIBS quantitative elemental analysis of REEs in coal sample in the lab.
 - ✓ Demonstrated Raman molecular / mineralogical analysis of samples containing REEs.
 - ✓ Constructed and Demonstrate a Backpack LIBS-Raman Spectroscopy Instrument

✓ Field Tested the Instrument

Acknowledgements

- This material is based upon work supported by the Department of Energy Award Number FWP-FE-781-16-FY17
- Coal Mine Representatives
 - Christopher J. Schumacher, Sr. Engineer, El Segundo Mine, Peabody Energy
 - Joshua M. Johns, Senior Geologist, Navajo Mine, Navajo Transitional Energy Company

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

- Describe project team, organization, and participants.
 - Sam Clegg (PI), LANL
 - Kristy Nowak-Lovato (Co-I) now deputy group leader in Chemistry Division, LANL.
 - Ron Martinez (Co-I), LANL

Gantt Chart

• The project will be completed on November 18, 2022.

Outreach and Workforce Development Efforts or Achievements

- Outreach Provide a bulleted list of community outreach efforts or achievements.
 - None
- Workforce Development Provide a bulleted list of ways you have developed the current or future workforce including training/graduating students or postdocs, (re-)training tradespeople or professionals, etc.
 - Sam Clegg (Scientist 5) designed all transmission grating spectrometers and quantitative analysis.
 - Kristy Nowak-Lovato (Manager 3) designed the overall optical system
 - Ron Martinez (Research Technologist 2) completed the mechanical design, assembly, and characterization work.