Predicting Pollutant Generation in the Subsurface to Inform Produced Wastewater Remediation and Reuse

Presenter: Lauren C. Burrows NETL Support Contractor, Research Scientist

Resource Sustainability Annual Project Review Meeting

October 25, 2022

NATIONAL ENERGY TECHNOLOGY LABORATORY

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Lauren C. Burrows^{1,2}, Wei Xiong^{1,2}, Alexander Shumski^{1,2}, Vikas Agrawal³, Shikha Sharma³, Remy Goldberg^{1,4}, Sean Sanguinito^{1,2}, Brandon McAdams^{1,2}, Angela Goodman¹, Barbara Kutchko¹, J. Alexandra Hakala¹

¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236 ²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236 ³West Virginia University, Department of Geology and Geography, 98 Beechurst Ave,

West Virginia University, Department of Geology and Geography, 98 Beechurst Ave, Morgantown, WV

³Mickey Leland Energy Fellow, 626 Cochran Mill Road, Pittsburgh, PA 15236

Task 27.0: Predicting Pollutant Generation in the Subsurface to Inform Produced Wastewater Remediation and Reuse

2021 \$315k	2022 \$450k	2023 \$450k		Total Project Value (2021–2023) \$1,215k	
Problem	Research Questic	on <u>End Products</u>			
Shale well production generates large volumes of wastewater with unpredicted types and concentrations of pollutants making treatment expensive and difficult	How, when, and where do reactions between existing reservoir components (i.e., minerals, clays, and organics) and injected fracturing fluid additives generate pollutants in produced wastewater?		 Rep gen whic can Dev whe curv exp 	 Report on <i>where</i> pollutant generation is likely to occur, which will inform <i>how</i> pollutants can be prevented or removed Develop a model to predict <i>when</i> during the production curve pollutant generation is expected 	

Oil & Gas Wastewater

Shale Oil Production Generates Large Volumes of Wastewater

NET NET IECHNOLOGY LABORATORY

Volume of water: estimated up to 14,000,000 L per well

Ratio of Water/Oil: between 3 and 20

Hazards: Vary by location and production time

High Salinity

Up to 10 times saltier than ocean water

Radioactive

Contains Radium-226 and other radionuclides

Organic Chemicals

Unknown types and concentrations

Kondash, A. J.; Albright, E.; Vengosh, A., Quantity of flowback and produced waters from unconventional oil and gas exploration. Science of The Total Environment **2017**, 574, 314-321. Sanchez-Rosario, R.; Hildenbrand, Z. L., Produced Water Treatment and Valorization: A Techno-Economical Review. Energies, **2022**, 15, 4619.

Enabling Beneficial Reuse of Produced Water

• Water strain in arid regions

Stream Augmentation

Danforth, C.; McPartland, J.; Blotevogel, J.; Coleman, N.; Devlin, D.; Olsgard, M.; Parkerton, T.; Saunders, N., Alternative Management of Oil and Gas Produced Water Requires More Research on Its Hazards and Risks. Integrated Environmental Assessment and Management **2019**, 15, 677-682.

ATIONAL

Organic Chemicals in Produced Water

NATIONAL ENERGY TECHNOLOGY LABORATORY

Unpredicted Types and Concentrations of Organic Contaminants Make Treatment Expensive and Difficult

Injected Chemicals

• Surfactants, biocides, etc.

Subsurface Chemicals

- Phenols, aromatics, hydrocarbons
- Unknown concentrations

Transformation Products

- Halogenated, alcohols, PEGs
- Unknown concentrations

Hoelzer, K.; Sumner, A. J.,; Karatum, O.; Nelson, R. K.; Drollette, B. D.; O'Connor, M. P.; D'Ambrio, E. L.; Getzinger, G. J.; Ferguson, P. L.; Reddy, C. M.; Elsner, M.; Plata, D. L.; Indications of Transformation Products from Hydraulic Fracturing Additives in Shale-Gas Wastewater. *Environ. Sci. Technol.*, **2016**, 50, 8036-8048.

Toxicity of Halogenated Compounds

- **NETIONAL** ENERGY TECHNOLOGY LABORATORY
- Halogenated organic compounds are more toxic than their non-halogenated counterparts
- Fat-soluble and not broken down by the body
- Increase in toxicity from CI < Br < I

Examples:

1,2-dibromo-3-chloro propane (DBCP) Reproductive difficulties; increased risk of cancer Limit: 0.002 mg/L

Dioxin (2,3,7,8-TCDD) Reproductive difficulties, increased risk of cancer, 0.00000003 mg/L

Ethylene Dibromide Problems with liver, stomach, reproductive system, or kidneys; increased risk of cancer Limit: 0.00005 mg/L

https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

What subsurface conditions lead to halogenated transformation products?

Previously studied by Sumner and Plata, 2018

Andrew J. Sumner; Desiree L. Plata. Halogenation Chemistry of Hydraulic Fracturing Additives under Highly Saline Simulated Subsurface Conditions. Environ. Sci. Technol. 2018, 52, 9097–9107

Mechanism of Oxidant-Initiated Halogenation Reactions

How do Oxidants, Brine, and Organics React to Give Halogenated Contaminants?

Research Question: What is the Role of Iron?

Focus of EY22 Q1 and Q2

Hypothesis: The presence of iron in subsurface shale increases the rate and scope of halogenation reactions

Goal: Develop Halogenation Rate Constants

Phase 1 Phase 2 Model compounds & Geologic samples (kerogen, mineral standards pyrite, shale powder)

Geochemical modeling: Basinspecific reaction predictions

Phase 3

Phase 1 Experimental Plan

Set Up Reactions in Flasks, Meant to Mimic Subsurface Condition

ATIONAL

Experimental Procedure

Redox Geochemistry Lab

Reaction Setup

Measured concentrations using gas chromatographymass spectrometry

Results: Degradation of Cinnamaldehyde

NATIONAL

Results: Halogenation Products, $(NH_4)_2S_2O_8$

NATIONAL Energy

Results: Halogenation Products, NaOCI

Why Do a-Halocinnamaldehydes Decrease Over Time?

Hypoiodous acid forms and oxidizes quickly

• a-halocinnamaldehydes undergo oxidative degradation

Supported by decrease in TOC over the reaction (540 mg/L to 200-300 mg/L)

Li, J.; Jiang, J.; Pang, S. Y.; Cao, Y.; Zhou, Y.; Guan, C., Oxidation of iodide and hypoiodous acid by non-chlorinated water treatment oxidants and formation of iodinated organic compounds: A review. *Chemical Engineering Journal* **2020**, 386, 123822.

Why are iodo- and bromo-cinnamaldehyde formed instead of chloro?

Iodine Radical (I•) is Formed ~100x Faster than Br• and ~1000x Faster than CI•

Chen, L.; Peng, X.; Liu, J.; Li, J.; Wu, F., Decolorization of Orange II in Aqueous Solution by an Fe(II)/sulfite System: Replacement of Persulfate. Industrial & Engineering Chemistry Research **2012**, *51*, 13632-13638.

Das, T. N., Reactivity and role of SO5-- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation. Journal of Physical Chemistry A 2001, 105, 9142-9155.

Peyton, G. R., The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry 1993, 41, 91-103.

Phase 2: Reactions of Extracted Kerogen

West Virginia University

(NH4)2 ^S 2O6, NaBrO4, or NaOCI ►						
Brine Recipe						
	50,000 mg/L	CaCO ₃	40 mg/L			
Br	500 mg/L	HCI	pH = 3			
Ē	25 ma/L		•			

Elemental Analysis: Extent of kerogen oxidation Types and amount of halogenated compounds ¹³C Solid State NMR:

ICP-MS: Inorganic contaminants and critical minerals

ATIONAL

Summary and Implications for Produced Water Treatment

- lodinated and brominated contaminants may be formed in higher amounts in produced water than previously expected.
- High-salinity brine that contains I⁻ and Br⁻, in the presence of oxidants, is susceptible to generation of toxic contaminants.
- The results so far with cinnamaldehyde show that the halogenated compounds form and then degrade.
- Rates of formation and degradation are important for understanding water toxicity.
- Water treatment using Fe should be avoided (or carefully timed).

Thank you!

VISIT US AT: www.NETL.DOE.gov

🧿 @NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Lauren Burrows Lauren.Burrows@netl.doe.gov

