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U.S. Electricity Generation with Coal

Sources of U.S. electricity generation, 2020 ™
Total = 4.12 trillion kilowatthours
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Computational Fluid Dynami¢s (CFD)

- Computational fluid dynamics (CFD) simulates erosion from particle
impingement. It replaces Reynolds-Averaged Navier Stokes equation with
algebraic difference equations to solve fluid flow problems.

Advantages Disadvantages

Simulations contribute to greater understanding Complex task involving various phenomena that
of problem must be considered

Costs usually much lower compared to Computation time may extend for large models
experiments

Errors may occur due to simple flow models or
simplified boundary conditions

ANSYS Fluent Webpage




Case study model - OP-650 steam distribution header

Inlet head
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Modlinski, Norbert, et al. "Mathematical procedure for predicting tube metal temperature in the

second stage reheater of the operating flexibly steam boiler." Applied Thermal Engineering 146 (2019):
854-865.




Operating Parameter Range of OP-650
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CFD-Based Erosion Modeling

Used ANSYS Fluent v19.2 to generate data

Inlet header
ANSYS automated meshing used to l
discretize domain
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Research Outline

- Use Convolutional Neural Network (CNN)
& Long and Short-Term Memory (LSTM)

LSTM-RNN CNN

machine learning approaches to predict

complex surface erosion profiles in
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steam distribution headers
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Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are type of neural network that specialize in
processing sequences

RNNs allow variable-length sequences as both inputs & outputs.

» Long-term information sequentially
travels through all cells before getting
to present processing cell.

» Easily corrupted by being multiplied
many times by small nhumbers -
Vanishing gradient problem
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Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is special kind of RNN, capable of learning long-
term dependencies.

)

» LSTM layers have multiple switch 3 $
gates (additive & forget gates with ) , b .8
‘tanh’ activation function) A ;] A J:

* No vanishing gradient problem. Can ©
bypass units & remember for longer

time steps. Sequential processing in LSTM

Colah.github




LSTM: Particle Trajectory Prediction

ANSYS
2021 R

ACADEMIC

Hypothesis: Whole particle trajectory
predictable with LSTM based on initial
conditions such as initial positions,
speeds, pressures, & particle sizes.




Convolutional Neural Network (CNN)

* CNN (convolutional neural network or ConvNet): class of deep neural networks,
typically applied to analyze visual imagery by summarizing presence of features in
input data.
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How CNN Works?

Kernel - Filter

| N
N
™

3D-Convolution: kernel values are
multiplied with filter’s values, then
summed via dot product between
kernel and the filter. The (2x2x2)
kernel slides over by one voxel,
repeating the process until kernel
covers entire original data.

3D-Maxpooling: After convolution,
maximum value in kernel is saved in
output; kernel then strides by one
voxel & repeats same operation.




CNN: Erosion Rate Profile Prediction

Hypothesis: Erosion rate profile on Input for CNN
geometry predictable when CNN model 1
can identify & magnify features of | §8
erosion from particle trajectory data. Vp

Erosion mechanism is directly related to "

trajectory of particle after collision on
wall. Predicted by CNN

1111111




Simulation Running with Systematic Variable Control
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Workflow Diagram |
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Results & Discussion




Particle Trajectory Results (Test Dataset)

Particle trajectory from CFD Particle trajectory from LSTM




Erosion Rate Results (Test Dataset)

Erosion from CFD Erosion from LSTM+CNN
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Particle Trajectory Results (Validation Dataset)

Particle trajectory from CFD Particle trajectory from LSTM




Erosion Rate Results (Validation Dataset)

Erosion from CFD Erosion from LSTM+CNN
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Feature Importance Analysis (RMSE)

B sTM+CNN
— — = All parameters included
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Feature Importance Analysis (R%score)

Bl sTM+CNN
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Computational Time Comparison between ¢FD & LSTM+CNN

' ANSYS Fluent
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Accomplishments

* 1. Provides new computational analysis (with LSTM + CNN hybrid model) to identify
& develop insight into inefficiencies of specific physical processes in existing coal
plants

» 2. Predicts damage rates of steam distribution header with Deep Learning neural
network model

1) Constructed LSTM model for particle trajectory prediction
2) Developed CNN model to predict erosion rate profile

3) Generated numerous datasets with changing system setup variables & fed data into LSTM +
CNN layers to make high performing erosion prediction model.




Significance of Research

LSTM + CNN hybrid model for erosion prediction will skip entire iterative calculations
of Reynolds-Averaged Navier Stokes equations on given geometry & turbulence
model. - Significantly reduces computational time & expense.

Predicts particle trajectories first & erosion distribution afterwards to provide
comprehensive insight into damage mechanisms in existing coal plants.

Only requires initial parameters; easy to utilize in current industrial fields.




Conclusion

A hybrid deep learning model (LSTM + CNN) based on statistical analysis of CFD output parameters was
developed & applied to simplified OP-650 steam distribution header for case study.

Particle trajectory prediction was accomplished with LSTM model

Average R? score: 0.91
Average mean squared error: 0.0172 m

Erosion distribution prediction was accomplished with CNN model

Average R? score: 0.71
Average mean squared error: 0.0001 kg/m2:s

Initial inlet speeds are critical parameters; mean squared error of the model increased most when
information of speed parameters is excluded.

Our ML approach is over 600 times faster than numerically intensive CFD calculations & gives similar
accuracy for predicting surface erosion rates but with significantly less computational time.
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CFD Particle tracking in a gas flow

1. Eulerian-Eulerian model
» Treats gas flow & solid phase as continuum

» Gas & particle phases treated as interpenetrating continua & coupled
together by exchange coefficients

2. Eulerian-Lagrangian model

» Gas flow treated as continuous phase, but solid phase treated as
dispersed phase

» Particle volume fraction usually assumed negligible compared to carrier
phase volume & particle-particle interactions usually neglected

Eulerian-Lagrangian model is Discrete phase modeling (DPMP & was
successfully demonstrated for various experimental cases. ['1[2]

[1] Shankara, Prashanth S. CFD simulation and analysis of particulate deposition on gas turbine vanes. Diss. The Ohio State University, 2009.
[2] Peng, Z.; Doroodchi, E.; Moghtaderi, B. (2020). "Heat transfer modelling in Discrete Element Method (DEM)-based simulations of thermal

processes: Theory and model development”. Progress in Energy and Combustion Science. 79, 100847: 100847.



CFD Particle trajectory equation on DPM

» Particle trajectories obtained by integrating force balance equation written in Lagrangian
reference frame given by

dvk k
mpd—; = (mp — mf)gl- + Fj.

vF . kth particles velocity in ith direction
m, : particle mass
ms : fluid mass

g; - acceleration due to gravity

Fa’f : Stokes drag force acting on kt particle due to relative velocity between fluid & particle




Factors affecting erosion under DPM

(1) Particle velocity Oka & McLaury developed erosion models

incorporating particle properties
ERcc V"

p

, _ General formulation under DPM
V, : particle velocity .

e, C(d,) f (@),

Various values of n have been proposed £ =
p=1 Aface
Finnie:n=2
Oka :n =function of hardness m, @ Mass flow rate of the particles
f(a) : Impact angle function
(2) Impingement angle V, : Particle impact velocity
n : Velocity exponent
(3) Particle properties (hardness, size, shape, etc.) C(d,): Particle diameter function




How LSTM works?

e i « LSTM approach utilizes chain-like structure with

A U SE—— 2, series of connected LSTM units. These units
— S =1 detect features from input sequence & attempt

E i é to learn long-term dependencies.

i i i ?_;"@ « LSTM unit consists of cell state & three gates

. o | d | " that regulate information flow: a forget gate, an
N~ input gate, & an output gate.

output gate
ft = o(Wr - [he_q, xc] + by),
Ct—{ p —————

ir = o(W; - [he—1,x¢] + by),

I @ “\\"C’> ®
é /i I (>!9~ 0 é Ce = tanh(We - [he_1, %] + bc),
?}é ’ ?_LT | | Ce=fr+Coq+i¢ - Cy,
Tk 0 = oWy - [he-1, %] + by),

X; X+ ]

h; = o, - tanh (Cy),




