Project # DE-FE0031739

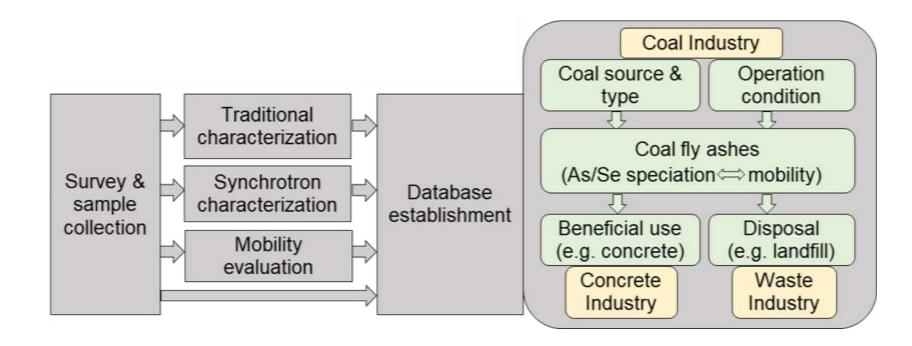
Elucidating Arsenic and Selenium Speciation in Coal Fly Ashes

PI: Yuanzhi Tang PhD students: Pan Liu, Estefania Garcia

Co-PIs: Jose Sanchez, Nanda Srinivasan

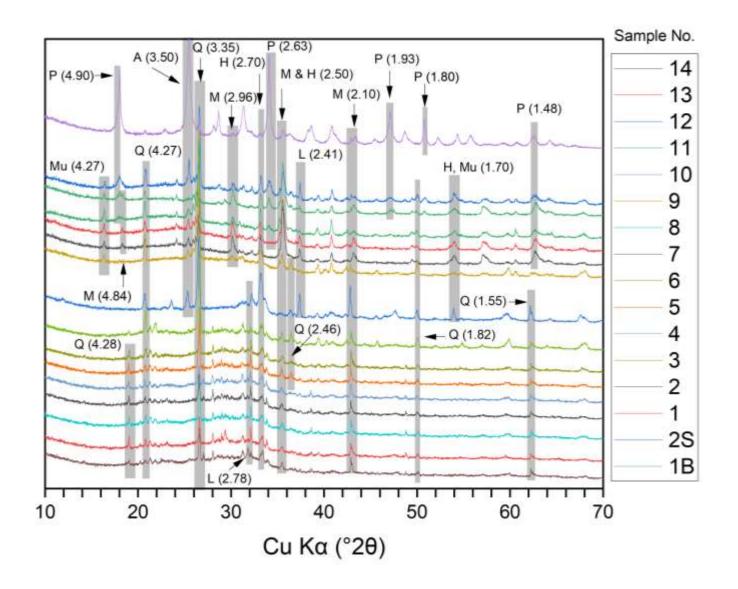
2022.05 NETL annual review meeting

Research background


- Recent EPA CCR and ELG regulations First federal boundaries on the amount of toxic metals (e.g. Hg, As, Se, Cr) and other pollutants that steam electric power plants are allowed to discharge to their waste streams (e.g. bottom ash, fly ash, FGD purge).
- Addressing compliance with these regulations can present a significant financial and environmental burden to the coal industry.
- Toxic metals: total content vs. speciation

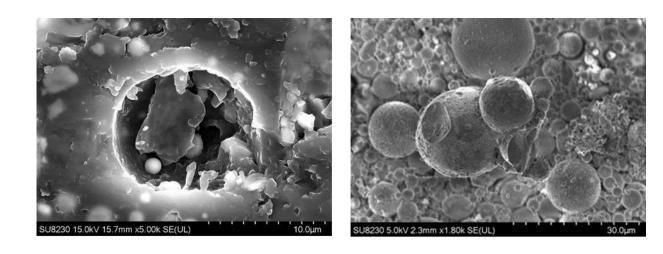
Project goals

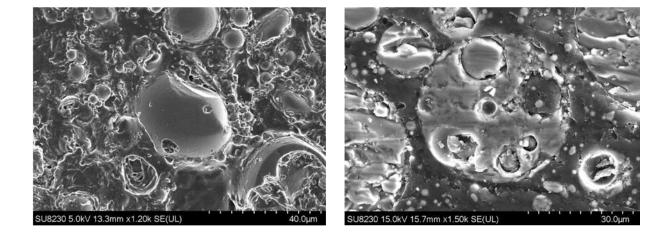
- To systematically characterize As and Se speciation within a representative matrix of coal fly ashes.
- To develop correlations for coal source/type, generation condition, As/Se speciation, and As/Se mobility.


Survey of current operating plants

- Determined the current outlook of coal-fired EGUs generating fly ash across the US
- Collected total 20 samples representing:
 - Coal basin/rank
 - Capacity
 - Furnace burner design
 - NOx control
 - SOx control
 - Particulate matter control

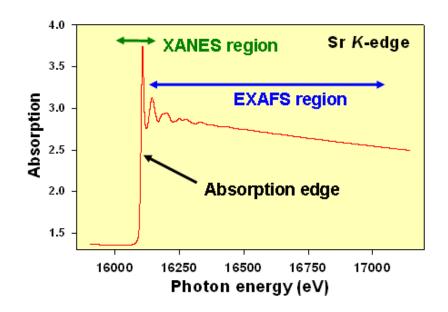
Unit A	Bit - ILB	Tang. + SCR + ESPc or BH + WFGD
Unit B	Sub - PRB	Tang. + SCR + BH + WFGD
Units C & D	Sub - PRB	OPP + ESPc
Unit E	Sub-PRB 85% + Bit-MSW 15%	Tang. + ESPc
Unit F	Bit-ILB	Tang. + ESPc + BH + WFGD
Unit G	Bit-ILB	OPP + ESPc + BH + WFGD


Mineralogical analysis by XRD

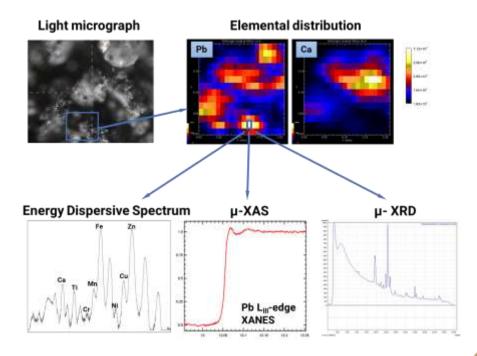

L: Lime

Morphological analysis by SEM-EDS

Spherical morphology

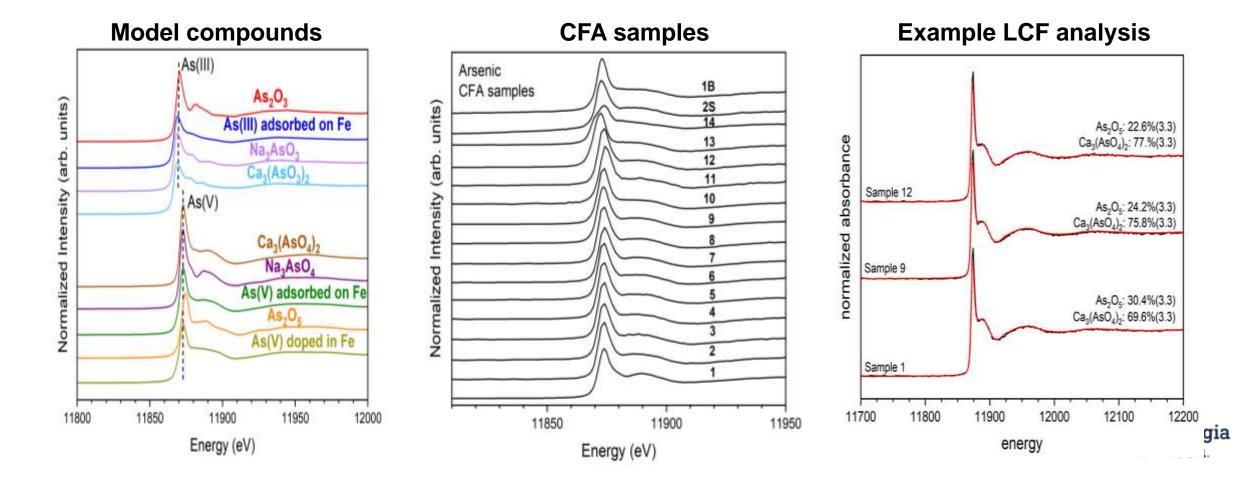


Irregular morphology and plerosphere


Bulk X-ray absorption spectroscopy (XAS)

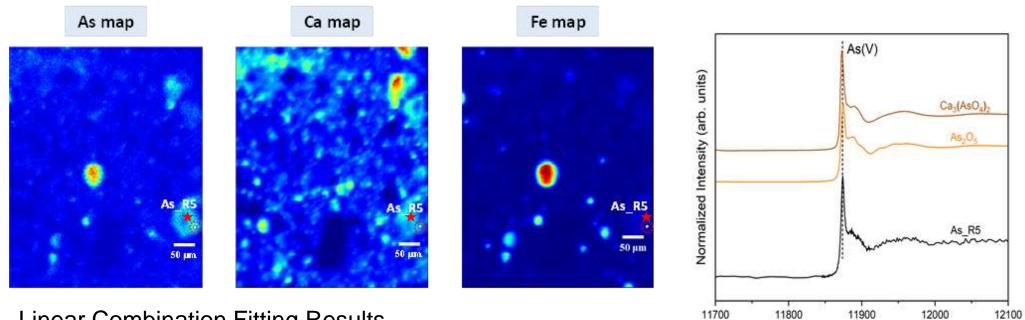
- Element specific
- In situ, non-destructive
- High resolution (ppm)
- Highly desired for complex heterogeneous samples
- XANES (X-ray absorption near edge structure)
- EXAFS (Extended X-ray absorption fine structure)

Micro-X-ray fluorescence microscopy (μ -XRF) and μ -XAS


- µ-XRF: element distribution and correlation
- µ-XANES: micro-scale oxidation state, phase, and structure information
- X-ray beam size: µm to nm
- Suitable for samples with low bulk concentration and heterogeneous distribution

As K-edge bulk XANES analysis

- Bulk XAS data for 9 model compounds and 20 fly ash samples
- Principal component analysis, target transformation, and linear combination fitting (LCF) to identify the dominant As species and their relative contribution

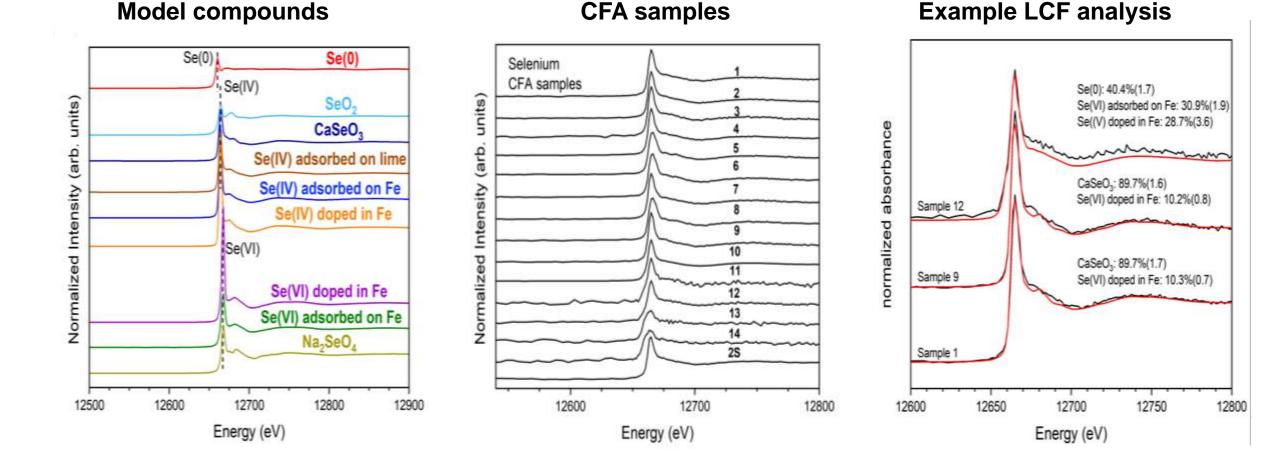


As speciation obtained from LCF of As bulk XANES

	As(III) species (%)			As(V) species (%)					
Sample ID	As ₂ O ₃	As(III) adsorbed Fe oxide	Na ₃ AsO ₃	Ca₃(AsO₃)₂	As ₂ O ₅	Na3AsO₄	As(V) adsorbed Fe oxide	As(V) doped Fe oxide	Ca₃(AsO₄)₂
2691					19.3(2.6)	46.0(5.8)	27.6(7.2)		
2690								31.7(3.5)	59.1(3.0)
С	14.3(3.4)								88.1(3.1)
F					13.4(1.3)	14.8(1.5)		70.0(2.1)	
CFA-2			19(1.1)						81.6(1.0)
CFA-1				11.5(0.7)					85.9(0.7)
14	44.3(0.8)				37.3(1.4)				17.2(1.4)
13	56.4(1.8)				52.0(1.6)				
12					24.8(3.4)				76.1(3.3)
11					28.9(5.7)				75.3(5.9)
10					22(2.7)				77.7(2.6)
9					30.1(2.9)				75.5(2.5)
8					22.6(3.5)				78.1(3.4)
7					49.6(4.2)				51.3(4.1)
6					24.9(3.4)				76.1(3.4)
5					25.5(3.5)				75.4(3.4)
4					27.4(3.6)				73.5(3.5)
3					29.6(3.7)				72(3.6)
2					27.8(3.6)				73.3(3.5)
1					58.2(2.4)				40.3(2.1)

Microscopic distribution of As

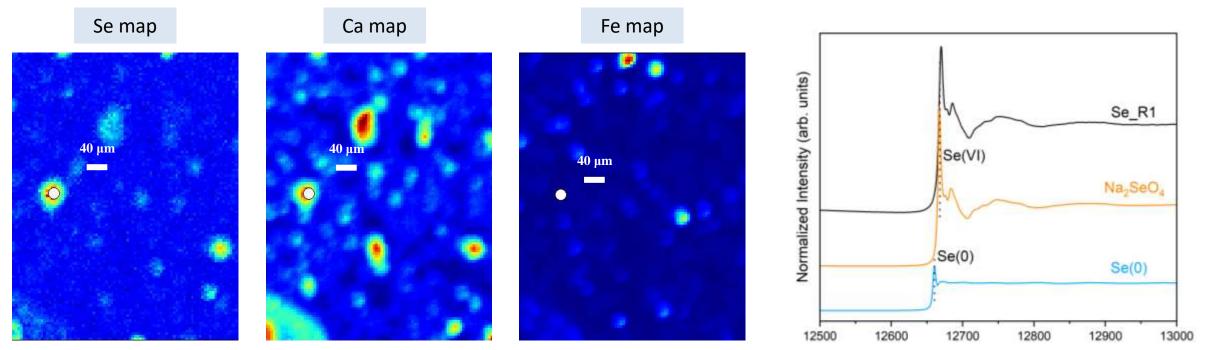
Linear Combination Fitting Results


• CaAsO₄ 49.2% and As₂O₅ 50.8%

Energy (eV)

Se K-edge bulk XANES analysis

- Bulk XAS data for 9 model compounds and 20 fly ash samples
- Principal component analysis, target transformation, and linear combination fitting (LCF) to identify the dominant Se species and their relative contribution

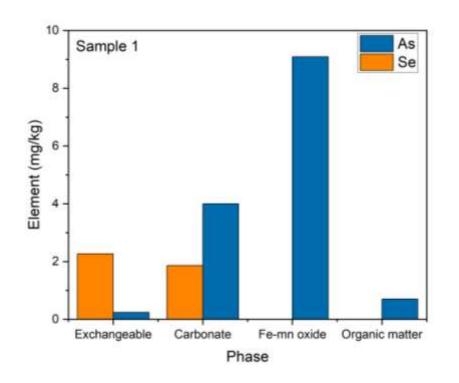


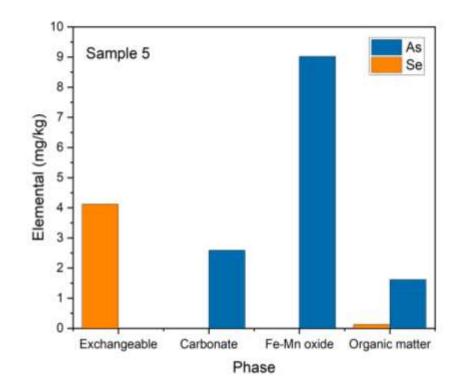
Se speciation obtained from LCF of Se bulk XANES

Sample ID	Se(0) (%)		Se(IV) species (%)						Se(VI) species (%)		
		Se(IV) adsorbed Fe oxide	Se(IV) doped Fe oxide	Se(IV) adsorbed lime	SeO ₂	CaSeO ₃	Se(VI) adsorbed Fe oxide	Se(VI) doped Fe oxide	Na ₂ SeO ₄		
2691		28.6(4.3)				41.5(8.6)	34.8(4.0)				
С				97.8(1.1)			14.0(1.2)				
F				19.4(1.5)	55.6(2.4)		28.5(1.1)				
CFA-1											
CFA-2	11.5(0.7)			64.5(0.6)			23.2(0.6)				
14	87.9(1.2)		19.2(0.8)								
13	76.6(1.4)		17.1(0.7)				10.2(1.4)				
12	45.4(1.3)		27.8(0.7)				31.5(1.4)				
11	46.9(2.6)		29.8(1.5)				34.0(2.7)				
10	12.9(0.5)					72.2(0.7)	13.6(0.6)				
9						93.2(0.8)		9.6(0.7)			
8	13.8(0.9)		22.3(0.5)				65.7(0.9)				
7						78.1(1.1)	24(1.1)				
6	13.7(1.0)		23.2(0.6)				65.8(1.0)				
5	15.1(0.8)		22.9(0.5)				63.9(0.9)				
4						80.7(1.2)	22.2(1.2)				
3						96.4(1.1)		9.8(0.9)			
2			28.4(0.6)		33.3(1.3)		41.2(1.1)				
1						78.5(1.2)	24.2(1.2)				

aıa

Microscopic distribution of Se


Energy (eV)


Linear Combination Fitting Results

• Se(0) 30.9% and Na₂SeO₄ 69.1%

Mobility Analysis

Acknowledgements

This material is based upon work supported by the Department of Energy Award Number DE-FE0031739.

Synchrotron X-ray analyses were conducted at Stanford Synchrotron Radiation Lightsource (SSRL) and Advanced Photon Source (APS).

