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Project Objective

The overall objective of this project is to develop, test, and validate a general
drag model for multiphase flows in assemblies of non-spherical particles by a
physics-informed deep machine learning (PIDML) approach using artificial
neural network (ANN).
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Project Status

Project Timeline

Milestone G

Task Name Assigned Resources Yearl Year2 Year 3
Qtrl |aQtr2 |Qtr3 [Gird |GQrl |Qir2 |Qir3 |Qtr4 |Qtrl |Qir2 |Otr3 |Qird
Task 1.0 - Project Management and Planning Pl
Task 2.0 - Data Collection and Generation Team i
Subtask 2.1 Data Collection Team
Milestone A ‘
Subtask 2.2 Data Generation Co-PI
Milestone B ’
Decision Paint 1 Team
Task 3.0 - ANN Model Development Co-Pl
Subtask 3.1 ANN Model Training & Test Co-PI
Milestone C ‘.
Subtask 3.2 ANN Algorithm Evaluation Team
Milestone D ’
Decision Point 2 Team
Task 4.0 - Drag Model Integration Team
Milestone E
Decision Point 3 Team .'
Task 5.0 - Multiphase Flow CFD Validation Team _
Subtask 5.1 Multiphase Flow Validation Pl
Milestone F ’
Subtask 5.2 ANN Model Modification Co-PI




Introduction

Cube Spheroid

* The particle laden flow is found in many
industrial and natural processes

* The accuracy of simulation of multiphase flow
system mainly governs by the fidelity of the
particle drag model employed

Example application: fluidized-beds
v’ Generate energy from a variety of g

solid fuels & o
v’ Reduce toxic emissions 20 4

v’ Promote environmental
sustainability




Motivation

Existing work considers at most two features (i.e., Reynolds & sphericity)

Drag coefficient depends on multiple features such as aspect ratio, lengthwise
sphericity, crosswise sphericity, density ratio, etc

Traditional correlation-based methods have drawbacks:
* Limited number of features

* Limited feature range

* Limited to specific experimental conditions

Neural network can efficiently consider the effects of all these features and
predict drag coefficient with high accuracy



Regular vs. Irregular Shapes particle Shape
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Regular shaped particles: Spheroid
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mathematically determined
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IDioguardi, F., D. Mele, and P. Dellino. "A new one-equation model of fluid drag for irregularly shaped
particles valid over a wide range of Reynolds number." Journal of Geophysical Research: Solid Earth 123, no. 1

(2018): 144-156.



Data Collected So Far

Digitalized several more papers/reports
(> 4K data points)

Created a combined spreadsheet with
data of drag coefficients at identified
features

Source

Performed preliminary data analysis of
feature importance and feature
correlation

Conducted a systematic experimental
analysis on various data configurations

* Particle shape and settling velocity are retrieved from David, 2017. Other parameters including Re and Cd are
calculated ourselves to be consistant with other data
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Feature Generation

Drag Coefficient

f(Re, Ry, @, AR, ¢, ¢, )

Flow property{
Particle geometry {

Settling direction {

Re: Reynolds number

R,: Density ratio between fluid and particle
@ : Sphericity

AR : Aspect ratio
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¢ , : Crosswise
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Data Challenges
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DNN vs. Machine Learning

Preliminary study and results demonstrate DL/ML models can achieve better
performance.

The more data we can feed the model to learn, the better result we obtain.
Mean Squared Error (MSE) Comparison
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Expanded Feature Set

Proposed General Drag Model

T Stack Generalization (SG)
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Analytic Setup

o Apply log transform to Re and Cp,
o Apply a standard scaling to input features

o Huber Loss: using MAE for bigger loss values and reduces the weight given to
outliers

Stratified Group KFold: StratifiedGroupKFold

- Each experiment is a group

o Testing set
B Training set

- Constraints:

- Maintain proportion of target values
- Non-overlapping experimental sources dass

. . rou | I I
- Test capability to generalize o

CV iteration
[ M = o

I T T T T 1
0 20 40 60 80 100
Sample index
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Results

Full Feature Set S: < Re, ¢, ¢, P, AR, Rp >

Type Method Input Features RMSE MRAE NRSS SSLE R2
Haider & Levenspicl, 1989 < Re, ¢ > 37.93+12.13  30.08411.08 56.06+54.48 19.52421.10 0.71464+0.38
Chicn, 1994 < Re, ¢ = 49.46+12.29 38.5949.06 92.21490.81 26.14+29.03 0.625940.40
TC

Yow et al., 2005 < Re, ¢ > 200.91492.01  164.10+£85.42  2001.564+2686.58  31.47+34.76  -1.5375+7.44
Holzer & Sommerfield, 2008 < Re,¢,01,¢) > 55.13+28.29  46.26424.90 111.61+£127.72  46.394+51.91 0.11714+1.71
ML  Random Forest S 48.52+12.73 34.70+9.08 121.774+190.37  19.85+20.62 0.54264+0.33
Gradicent Boosting S 45.12+14.10 33.01+8.21 108.76+152.78 18.234+20.01 0.58914+0.31
DL Bascline < Re, ¢ > 36.3849.72 28.59+6.16 62.14487.10 11.844+13.33 0.79714+0.22
S 37.0948.92 27.05+5.18 72.66+116.09 72.66+116.09 0.782240.20
< Re, ¢ > 31.54+12.89 23.60+9.41 42.62449.90 8.314+9.76 0.750840.30

Single-Model DNN
S 26.63+£10.63 17.4346.29 40.83+£62.95 6.96110.50 0.811840.25
DCC-DNN (SG) S 44.66+12.47 33.9247.29 76.41481.48 13.224+12.52 0.81504+0.19
DCC-DNN (MoE) S 25.984+10.18 17.05+6.03 38.00+5H8.17 6.76+10.02 0.8569+0.20
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Predicted Cp
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Results: Ablation Study
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CTGAN: Synthetic Data Generation
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CTGAN (cont.)

Preliminary results show:

Model trained on the real data
along with synthetic data
generated by GAN achieves
better performance

Mean R-squared is 0.9215

On average, when including
Synthetic data, our model can
explain about 92.15 % of the
variations in the test data
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Conclusion

Within the investigated parameter ranges, it is found:

e An improved drag coefficient model was developed by considering more
features such as, aspect ratio, lengthwise sphericity, crosswise sphericity, and
density ratio

e DNN model can predict better results compared to traditional methods using
various regression metrics

e The proposed model addresses data challenges such as limited data and
extreme data points through expanded feature-set, model regularization, and
synthetic GAN data generation



Plan for the Next Few Months

Continued effort to improve the DNN-based drag model in an ensemble
approach.

Implemenation of the best drag model the CFD code, MFIX.

Verification and validation of the multiphase flow modeling results for
selected cases.
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