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Motivation: coal and biomass gasification 
• Thermal conversion systems 

are very challenging to model:

• Particles have complex 

shapes, a broad range of 

sizes, shapes and density. 

• Non-spherical particle 

interact with other particles.

• Force closures are needed 

for non-spherical particles, 

i.e. drag and lift (maybe 

even other unsteady forces 

such as added mass and 

history force)

Objective: develop validated drag models for non-spherical particles
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Drag Coefficient on Single Spherical and Non-
Spherical Particle

A. Hölzer, M. Sommerfeld / Powder Technology 184 (2008) 361–365

Sphere (Stokes flow): 𝑐𝐷 =
24

𝑅𝑒

Non-spherical particle (Stokes flow):

D. Leith, Aerosol Sci. Tech. 6 (1987) 153

Non-spherical particle (𝑅𝑒 < 105):

(Newton factor)

G. H. Ganser, Powder Technol. 77 (1993) 143

Non-spherical particle (𝑅𝑒 < 105):
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Drag Coefficient on Packed Spherical Particle

Tenneti et al. (2011);
Hill et al. (2001);
Beetstra et al. (2007);
Gidaspow (1986); 
Syamlal and O’Brien (1987);

Tenneti et al. (2011)

Tenneti et al. (2011)

Wen & Yu (1966) for dilute suspensions and Ergun’s 
equation (Ergun 1952) for denser systems are the earliest 
experimental efforts.
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Drag Coefficient on Packed Non-spherical Particle

L. He et al. / Powder Technology 313 (2017) 332–343
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Human Learning versus Machine Learning

Sphere (Stokes flow): 𝑐𝐷 =
24

𝑅𝑒

Non-spherical particle (Stokes flow):

D. Leith, Aerosol Sci. Tech. 6 (1987) 153

Non-spherical particle (𝑅𝑒 < 105):

add non-spherical shape

add large Re

add concentration

Human Learning Machine Learning 

Seyed-Ahmadi and Wachs (2020)

Neighbor configuration
input features for ANN 

He and Tafti 2019

Still spherical particles
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Problems
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Curse of dimensionality:
As the number of features or dimensions grows, the amount of data we need to 
generate grows exponentially. 

Input: Output: 𝐹𝑑, 𝑐𝑑 𝐷1 = 3,1 neighbor

Input: 15 × 3 = 45 Output: 𝐹𝑑, 𝑐𝑑 𝐷2= 45,15 neighbor

𝑁1 = 1000

𝑁2 = 𝑁1
𝐷2/𝐷1 = 100015

The input is a vector containing 47 features (1 Reynolds 
number, 1 solid fraction, relative distance in(x,y,z) from the 
nearest 15 neighboring particles).

He and Tafti 2019 1. Reduce the number of dimensions
2. Increase the sample size

Overfitting
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Introduce our team and methodology
Subteam 1: Experiment

Subteam 2: Simulation

Rui Ni Xu Xu

Gretar
Tryggvason

Jiacai Lu

Diagnostic methods

Drop tower (𝑅𝑒,Φ)

Dimension reduction

Particle-resolved DNS

Training

Training

Validation

Validation
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Domain Size: 2.0 x 2.0 x 2.0; 

Resolution: 200 x 200 x 200;

Gravity: 0.6081;

Density: 1.0 / 10.0

Viscosity: 0.005 / 0.05

Number of Solid Spheres: 50

Size of Ellipsolid: 0.32 x 0.16 x 0.16

Volume Fraction of Solids: 2.68%

Case 2: 50 Ellipsoids
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Computational Method & Setup
The Navier-Stokes equations are solved on a fixed uniform staggered grid 

Since the stress inside the particles is not 

included, a collision force is added to 

prevent the particles from overlapping

We compute the centroid velocity and the solid body rate of rotation by

The velocity inside the solid is then updated
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Computational Setup

For ellipsoids of a given shape, the flow 
is governed by the Galilei number, the 
density ratio and the volume fraction 

Here,

Giving a Reynolds number

of around 20, depending on the volume fraction

This system can be approximately realized by copper particles of effective 
diameter 1.4 cm in olive oil at 20 centigrade

The computations are done in a domain 1.25 by 1.25 by 2.5

The particles are ellipsoids with an “effective” diameter of 0.2
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Falling Ellipsoids
N=20; α=2.2% N=50; α=5.5% N=90; α=9.9%
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Falling Ellipsoids

The orientation of each particle, as 
measured by the angle the long axis 
makes with the direction of gravity 
(vertical axis), is versus time for 50 
particles. The plot is for 180 degrees 
to include particles that pass through 
a horizontal orientation

The slip velocity for each particle, 
computed as the velocity of the 
particle minus the average fluid 
velocity in the entire domain, versus 
time for 50 particles. 10 trajectories 
are shown in color, the rest in gray. 
The thick line is the average velocity 
for all the particles
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Falling Ellipsoids

Average quantities versus time for 
three different volume fractions. 

The averages converge relatively 
quickly in time but the fluctuations in 
reflect the relatively small size of the 
domain

  

  

Fig.5  The average fluid velocity in the vertical direction ( We have adjusted the velocities in the code to 

prevent the momentum drift);   fluid turbulent kinetic energy; fluid dissipation rate; and sum of 

horizontal voritcity squared ( ) 

 

 

Fig.6a The probability distribution of the slip velcoity fluctuations in the vertical direction for the three 

cases. The black dashed line shows the gaussian distrubtion (standard normal distrubtuion) with the 

standard deviation of 0.1. 
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Fig.5  The average fluid velocity in the vertical direction ( We have adjusted the velocities in the code to 

prevent the momentum drift);   fluid turbulent kinetic energy; fluid dissipation rate; and sum of 

horizontal voritcity squared ( ) 

 

 

Fig.6a The probability distribution of the slip velcoity fluctuations in the vertical direction for the three 

cases. The black dashed line shows the gaussian distrubtion (standard normal distrubtuion) with the 

standard deviation of 0.1. 
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The average slip velocity of 
the particles

The dissipation in the fluid

The average fluid velocity
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The probability distribution of 
the velocity fluctuations for the 
three volume fractions. The top 
frame is the fluctuations in the 
vertical component and the 
bottom one is the the horizontal 
probability is the average value 
of the probabilities is the 
horizontal velocity.  The dashed 
black line is a Gaussian 
distribution with the same 
standard deviation

Falling Ellipsoids
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The distribution of orientations 
for the particles, measure as the 
angle between the longest axis 
and the horizontal direction.  
For 90 degrees the longest axis 
is horizontal.

Falling Ellipsoids

The average angle between 
the longest axes of different 
particles, versus the distance 
between the particle pair. 
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Average cluster size versus 
time for the three different 
volume fractions. Cluster size 
is computed by assuming that 
the shortest distance 
between the surfaces of two 
particles falls below a 
threshold. 

Falling Spheroids

The angle between 
neighboring particles in the 
cluster, identified as particles 
that are almost touching each 
other
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The distribution of ellipsoidal particles at time = 30 for different “aspect ratios”

Falling Spheroids
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Falling Spheroids

Gravity: -1.0 in the y-direction; 

Density(Solid/Fluid): 10.0 / 1.0; 

Viscosity(Solid/Fluid): 0.05 / 0.001; 

Computational Domain Size: 1.25 x 2.5 x 1.25  

Resolution used: 96 x 192 x 96 

50 Ellipsoids of 0.32 x 0.16 x 0.16 

Averaged Volume Fraction of Solids: 5.5%; 

 

 

Averaged Reynolds Number  

 

 at time=25.0         
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Gravity: -1.0 in the y-direction; 

Density(Solid/Fluid): 10.0 / 1.0; 
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Higher Reynolds numbers

At higher Reynolds 
numbers the 
particles interact 
more violently

Distribution of angles 
for a single particle

Average cluster size

The particle angle versus time

Particle slip velocity versus time
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Forces by Machine LearningForce Analysis  

 

 

 

 

 

 

 

 

 

 

 

 

Velocity: ( , )w u v  ;  Accelerator: ( , )
du dv

a
dt dt

;    Gravity: ( , )
x y

g g g ;  

Collision Force:   

Force balance equation in the velocity direction: 
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cos ( ) cos cos cos
2

s s s f s d f AM f s collisonV a V g C A w C V a f   (1) 

So the drag coefficient is  

 
2 2

2 2
( 1) cos ( ) cos coss s s
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Trajectory
Velocity

Acceleration

Gravity

Collisions

Added Mass

Drag

The motion of a particle is given by

The force on the particle in 
unsteady motion has many parts, 
but the simplest assumption is that 
it is dominated by the steady drag

The drag coefficient depends the fluid, the slip velocity and the “neighborhood”
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Forces by Machine Learning

Deep Learning Steps: 
1) Split the dataset into a training set (80%) and a test set (20%). The training 

set is used to train the model, and the test set is used in the final evaluation 
of the model. 

2) Standardize the dataset by removing the mean and scaling to unit variance 
for each input/feature. 

3) Build a model. Use Tensorflow 2 to build a sequential model, which consists 
of 4 dense hidden layers with 200, 100, 50 and 25 nodes (neurons), and 1 
out layer. 

4) Compile and train the model. During the training, 20% of the training data is 
used to validate the model. 

5) Evaluate the model’s predication with the testing data. 

Finding total force by machine learning: The total dataset is collected from 50 ellipsoids 
at 647 different times, and the data where the collision force is not zero are removed. 
The total input matrix size is 28548 x 30, and the target matrix size is 28548 x 1. 
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Forces by Machine Learning

Sorted correlation coefficients between the 
target acceleration and other input features 

 

 

Fig. 1 Pearson’s correlation coefficients between all features. 

 

 

Fig. 2 Sorted correlation coefficients between the target acceleration and other input features. 

 

 

 

Fig. 1 Pearson’s correlation coefficients between all features. 

 

 

Fig. 2 Sorted correlation coefficients between the target acceleration and other input features. 

 

Pearson’s correlation coefficients 
between all features. 

Finding the optimum independent variable. 
We have explored several ways to do so.



NI RESEARCH GROUP
NI RESEARCH GROUP

Domain Size: 2.0 x 2.0 x 2.0; 
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Forces by Machine Learning

Feature importance are ranked 

according to the mean decrease 

impurity from Random Forest 

method. Random forest consists 

of multiple single decision trees. 

Every nodes in the decision 

trees is a condition on a single 

variable, and the measure based 

on which the locally optimal 

condition is chosen is called 

impurity. When training a tree, it 

can be computed how much 

each variable decreases the 

weighted impurity in a tree. For a 

forest, the impurity decrease 

from each variable can be 

averaged and the variables are 

ranked according to this 

measure. 

 

Fig. 3 Feature importance are ranked according to the mean decrease impurity from Random Forest 

method. Random forest consists of multiple single decision trees. Every nodes in the decision trees is a 

condition on a single variable, and the measure based on which the locally optimal condition is chosen is 

called impurity. When training a tree, it can be computed how much each variable decreases the 

weighted impurity in a tree. For a forest, the impurity decrease from each variable can be averaged and 

the variables are ranked according to this measure. 

 

 

 

Fig.4  Actual acceleration values vs the predicted values with full set of input features. (Left for Training 

dataset, and Right for the Testing dataset). R squared (coefficient of determination) as a regression 

score function is also shown on each figure. 

 

Another way to determine the most 

important independent variables
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Forces by Machine Learning
Total force values versus the 
predicted values for full set of 
input features. (Left for 
Training dataset, and Right for 
the Testing dataset). R 
squared (coefficient of 
determination) as a 
regression score function is 
also shown on each figure. 

 

Fig. 3 Feature importance are ranked according to the mean decrease impurity from Random Forest 

method. Random forest consists of multiple single decision trees. Every nodes in the decision trees is a 

condition on a single variable, and the measure based on which the locally optimal condition is chosen is 

called impurity. When training a tree, it can be computed how much each variable decreases the 

weighted impurity in a tree. For a forest, the impurity decrease from each variable can be averaged and 

the variables are ranked according to this measure. 

 

 

 

Fig.4  Actual acceleration values vs the predicted values with full set of input features. (Left for Training 

dataset, and Right for the Testing dataset). R squared (coefficient of determination) as a regression 

score function is also shown on each figure. 

 

 

Fig.5  Actual acceleration values vs the predicted values with the input features of Angle, Alpha, Uslip, 

Q2, uu, vv, ww, uv, uw, vw, omegay and omegaz. 

 

 

Fig.6  Actual acceleration values vs the predicted values with the input features of Angle, Alpha, Uslip, 

Q2, vv, uv and vw. 

 

Total force versus the 
predicted values with a 
reduced set of input features. 
While the correlation is not as 
good as for the full set, it 
remains reasonably high
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Experimental Setup

• We utilize three Phantom 

cameras with LED backlight.

• We kept a 60-degree angle 

between each cameras.

• All cameras are facing 

downward with roughly 5-

degree angle.

• The test tank is hexagonal, 30 

cm wide, and 80 cm tall.

Camera frame rate Exposure time Tracer diameter Fluid Fluid initial condition

4000 fps 150 𝜇s 60 𝜇m Water Stagnant

Goal: simultaneously measure particle and fluid flow.
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Non-spherical Particles

• Stereolithography technology

• 145 × 145 × 175 mm build volume

• 25 𝜇m minimum layer thickness

Formlabs Form2 3D printer

Non-spherical particles also exist in nature

The aspect ratios from left to right are roughly 

5, 3.5 and 1.5.

7
.5

 m
m

7
 m

m

4
 m

m
This is a 3D printed 

particle with supporting 

material. It has a 2.5 mm 

major diameter and 0.5 

mm minor diameter.
supporting material

Particle
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Phase Separation

A.U.M. Masuk et. al. 2019, “Virtual-Camera Reconstruction” Tan et. al. 2020, “OpenLPT (Shake-The-Box)”
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Two Phase Measurements

• Left panel show reconstructed particles.

• Right panel show raw image at the same 

frame.

• This is a single-phase test 

case where a vortex structure 

is created by stirring the tank. 

• The vortex structure is 

captured
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Reconstructed Rice Particles
mm/s

How does particle interaction 

affect drag coefficient?

Maybe through wake 

interaction.

Particles in others wake can 

have smaller Reynolds 

number.

How does the drag coefficient 

experienced by a group of 

particles compare with an 

isolated particle?
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Results

𝒖s = 𝒖p − 𝒖f

𝑢

𝑅𝑠 = 2𝑑p

• 𝑅𝑠 is the search radius.

• 𝑑p is the equivalent radius of a 

sphere with the same volume.

• 𝒖p is the particle velocity

• 𝒖f is the fluid velocity

Slip velocity:

𝑅𝑠
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Results

• The gray line is the slip velocity of the 

isolated particle.

• The colored lines correspond to particles of 

the same color in the 3D plot.

𝒖s = 𝒖r − 𝒖f
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Comparison with drag coefficient model 

𝐶𝐷 =
8

𝑅𝑒

1

Φ∥

+
16

𝑅𝑒

1

Φ
+

3

𝑅𝑒

1

Φ
3
4

+ 0.421 ∗ 100.4 −𝑙𝑜𝑔Φ 0.2 1

Φ⊥

Model for non-spherical particle (𝑹𝒆 < 𝟏𝟎𝟓):

Estimation from experimental measurements:

𝐶D = 2
𝑭D

𝐴𝜌f 𝒖s
2

• 𝑅𝑒 is particle Reynolds number.

• Φ is the sphericity defined as ratio between 

sphere equivalent surface area and actual surface 

area.

• Φ∥ is the lengthwise sphericity.

• Φ⊥ is the crosswise sphericity.

• 𝐴 is the cross-sectional area.

𝑭D = 𝜌p𝑉𝒂𝐩 + 𝜌p − 𝜌f 𝑉𝒈

• 𝒂𝐩 is the particle acceleration

• 𝒈 is the gravitational acceleration

• 𝑉 is the particle volume

• 𝜌p is the particle density

• 𝜌f is the fluid density

𝒖𝐬, 𝒂𝐩, 𝒈

z

x
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Comparison with drag coefficient model 

• The colored circle 

symbols represent the 

particles adjacent to 

each other

• The gray circle 

symbols represent the 

isolated particle.

• The green square 

symbols are results 

calculated with the 

drag coefficient 

model

What about added mass force?
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Comparison with drag coefficient model 

• The added mass 

coefficient utilized 

here is for spherical 

particles, a more 

accurate added mass 

coefficient for 

spheroid will be used 

in the future.

𝑭D = 𝜌p𝑉𝒂𝐩 + 𝜌p − 𝜌f 𝑉𝒈 −
1

2
𝜌f𝑉(𝒂f − 𝒂𝐩)
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Comparison with drag coefficient model 

• When accounting for 

the added mass force, 

isolated particle 

agrees with the 

steady drag model

• Does particle-particle 

interaction influence 

the results?
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Comparison with drag coefficient model 

• Particle-particle 

interaction cause the 

instantaneous drag 

coefficient to deviate 

away from the green 

symbols.
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Comparison with drag coefficient model 

• Our instantaneous 

drag coefficient 

results generally 

agree with the 

previous efforts.

• Particle-particle 

interaction may 

change the 

instantaneous drag 

coefficient by one 

order of magnitude.
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Plan
Subteam 1: Experiment

Subteam 2: Simulation

Rui Ni Xu Xu

Gretar
Tryggvason

Jiacai Lu

Diagnostic methods

Drop tower (𝑅𝑒,Φ)

Dimension reduction

Particle-resolved DNS

Training

Training

Validation

Validation
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