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Motivation: coal and biomass gasificat
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» Thermal conversion systems
are very challenging to model:

 Particles have complex
shapes, a broad range of
sizes, shapes and density.

» Non-spherical particle
interact with other particles.

Intermed
33

» Force closures are needed
for non-spherical particles,
I.e. drag and lift (maybe
even other unsteady forces
such as added mass and
history force)
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Drag Coefficient on Single Spherical and Non-

Spherical Particle )
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Drag Coeff|C|ent on Packed Spherical Particle

F(¢,Rep) = 1_0)°

5.81 1/3
Fy(¢) = 25 + 04852

F‘P’:R&n (QJ}? Rem) = ¢’3 Re,, ({] 95 + Fﬁlt;;l )

Wen & Yu (1966) for dilute suspensions and Ergun’s

equation (Ergun 1952) for denser systems are the earliest

® _ ° experimental efforts.
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Drag Coeffluent on Packed Non-spherical Particle

Normalized mean drag force from current simulation compare to F&H, T&H and T&Z

correlation.
p—

Re @ IBM  F&H  %diff T&H % diff T&RZ % diff
10 10% 358 278 —2251% | 3.65 1.99% 349  —2.72%
50 582 566 —280% | 626 747% 592  1.67%
100 846 876 —358% | 914 8.14% 829 —1.96%
200 14.10 1445 253% 14.60 3.61% 1232 —1262%
10 20% 6.87 439 —3510% | 657 —434% |630 —8.37%
50 11.13 895 —1966% | 1043 —628% | 988 —1129%
(¢’ Rem) T + F¢.(¢>] + Fﬁbﬁem((ﬁ’ R‘em) 100 1581 1366 —1357% | 1474 —675% | 1341 —15.16%
200 2497 2202 —11.78% | 22.89 —830% | 1947 —2201%
5.81¢ Pl/3 10 30% 13.14 746 —43.18% | 11.98 —881% | 1157 —11.89%
F¢(¢) = —— + 0.4 —_ 50 2020 1538 —23.83% | 1838 —902% | 1756 —13.06%
(1—¢) (1-¢) 100 2758 2329 —1556% | 2559 —721% | 2363 —1431%
5 0. ﬁlt#’ 200 4282 3677 —1411% | 3934 —813% | 3427 —1997%
_ 10 35% 1938 1085 —4401% | 1641 —1532% | 1599 —17.46%
F¢=Rﬂm (‘i}? Rem) o ¢' R&n, (0 95 + (1—¢)? ) 50 2683 2142 —20.16% | 25.02 —675% |2420 —9.83%
100 3659 3439 —601% | 3481 —486% | 3266 —10.75%
200 5776 6034 4.46% 5352 —734% | 4764 —1753%

o ° Re /& ~ Re /& Re &+ n
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Human Learning versus Machine Learning

Human Learning Machine Learning
24
Selicls [Sieles dowe €y = =2 F. = (F)(Re.$) + AF:(Re. §. {1yt ..., Fyt)).
‘ add non-spherical shape T;= AT(Re, ¢, {rj=1. ..., Ficu}).
Non-spherical particle (Stokes flow): Seyed-Ahmadi and Wachs (2020)
8 1 16 1 Neighbor configuration
D = Re /&, + Re /3 input features for ANN

_ _ | Re,d,X1,¥1,21,X2,¥2,22...Xn, Yns Zn)
D. Leith, Aerosol Sci. Tech. 6 (1987) 153

‘ add large Re J - »’

Non-spherical particle (Re < 10°):
-Fisnl (R-'em)

‘ add concentration

Fisol (Rem]
= + F, + Fy ge (¢, Re,,
. (1—9)° o(9) + Fo.re, (¢ ) He and Tafti 2019

N ® Still spherical particles
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Problems

Curse of dimensionality:
As the number of features or dimensions grows, the amount of data we need to
generate grows exponentially.

1 neighbor Input: r; = (xj, v, z7) Output: Fy, ¢4 D, =3, N;=1000
15 neighbor Input: 15 X 3 = 45 Output: Fy, ¢4 D,= 45, N, = NDZ/D1 = 10001°

Table 1
Mumber of spherical particles tested at each solid fraction.
Number of particles (N) ¢ = 0.1 191 Overfitting
¢ =102 382 -
=103 573 =]
¢ = 0.35 669

a0
1

each particle are collected, to yield 21,780 data points. All forces are fur-
ther normalized using the Stokes-Einstein relation:

=50

The input is a vector containing 47 features (1 Reynolds
number, 1 solid fraction, relative distance in(x,y,z) from the
nearest 15 neighboring particles).

T T T T T
0 500 1000 1500 2000

Output parameter

Input parameter
o He and Tafti 2019

1. Reduce the number of dimensions
2. Increase the sample size
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Introduce our team and methodology

Subteam 1: Experiment
Diagnostic methods

Validation
AN Drop tower (Re, @)
Rui Ni Xu Xu \
Training _]_‘E’nS'C‘r

Subteam 2: Simulation /WF
- 1. X
| Dimension reduction

L 2

Training
Gretar o Particle-resolved DNS
Jiacai Lu
Tryggvason
o ° Validation
o o
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Computational Method & Setup

The Navier-Stokes equations are solved on a fixed uniform staggered grid

5’pu
ot

D — pn(Vu + Vul) in the fluid
10 in the solid.

+ Vpuu=—-Vp+ (p— paw)g+ V- -D+ £,

We compute the centroid velocity and the solid body rate of rotation by
+1 _
MsU’;%l _ /S(l — &)pudv IsQ = /S(l — &) +r X pudv
The velocity inside the solid is then updated

n+1 n—|—1 n+1
US U +rX QS Since the stress inside the particles is not
included, a collision force is added to

prevent the particles from overlapping
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Computational Setup

For ellipsoids of a given shape, the flow A,Og,ofdg’ _ Ps
is governed by the Galilei number, the N = 5 r= E
density ratio and the volume fraction Ky

Here, N = 1,751 r =10

Pfls de
Hf

of around 20, depending on the volume fraction

Giving a Reynolds number Re, =

This system can be approximately realized by copper particles of effective
diameter 1.4 cm in olive oil at 20 centigrade

The computations are done in a domain 1.25 by 1.25 by 2.5

The particles are ellipsoids with an “effective” diameter of 0.2
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Falling Ellipsoids




Falling Ellipsoids

The slip velocity for each particle,
computed as the velocity of the
particle minus the average fluid
velocity in the entire domain, versus
time for 50 particles. 10 trajectories
are shown in color, the rest in gray.
The thick line is the average velocity 0.2 ;————
for all the particles

o
o

o
»

Solids' Falling Velocity
o e
N B

o

180
The orientation of each particle, as 8k
measured by the angle the long axis :5, o0 ;
makes with the direction of gravity "g 120 |
(vertical axis), is versus time for 50 = |
particles. The plot is for 180 degrees E 90:
to include particles that pass through % 60 |
a horizontal orientation E’ w0l

o ° ° ;

. L 0
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Falling Ellipsoids

The average slip velocity of

08 . 03 The average fluid velocit
. the particles Z 8 Y
g | 8
% 0.85 g
> e
=1} 4]
g | £
= 04f g
- I o
2 | Re(a=22%)=23.2 E
o L [T
5 92 Re(a=5.5%) =204 o> = 22% g 0=2 2%
<> =5,5% © o=5.5%
< RG(OJ = 99%) = 1725 <§>=9_9% E =9 9%,
o
0 ! ! ! ! 1 ! ! ! ! 1 ! ! ! ! 1 ! ! ! ! ] I
0 10 Ti2r9_|e 30 40 ad
Average quantities versus time for o OF o . 2=2.2%
&= 4 : 5 The dissipation in the fluid =5 5%
three different volume fractions. = | 5=9.9%
The averages converge relatively g .
quickly in time but the fluctuations in 5
reflect the relatively small size of the & 02
domain g
o ° Og 10 70 Time 30 A0 50
R °
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Falling Ellipsoids .

aw=2.2%
E c="9.5%
S I %=9.9%
5 g gy =e=ee=e- Gasussian distribution
L
The probability distribution of B
0
the velocity fluctuations for the 3
three volume fractions. The top Z
frame is the fluctuations in the g
[=]
vertical component and the e » s
: i === 01 0 K i 0
bOttom_ One 1S the the hOFIZOﬂtal Fluctating Veritcal Slip Velocity of Solids
probability is the average value
of the probabilities is the 167 -
. . = I =L,
horizontal velocity. The dashed 2 = 350
black line is a Gaussian e S Gausssian distribution
distribution with the same g
. . : I
standard deviation 8
ﬁ L
8
o
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o ° Fluctating Horizontall Slip Velocity of Solids
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0.014

Falling Ellipsoids
The distribution of orientations PO
for the particles, measure as the
angle between the longest axis
and the horizontal direction.

For 90 degrees the longest axis

is horizontal. R v T 1T 1
Angle (Degrees) between major axis and veritcal direction

0.004

Prohab:l:ty Density Funciton

120 ¢
The average angle between 10
the longest axes of different o 1m0 E
particles, versus the distance E‘ 0 :
between the particle pair. e L
® 80
& C

< T0r 2.2%

: 5.5%
BO

. - 9.9%

o C 1 I |

oM 7

L A - R
Distance between Solid Pairs
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6.5%
9.9%

Fa"ing Spheroids distance threshold = 0.04 5 2%

Average cluster size versus
time for the three different
volume fractions. Cluster size
is computed by assuming that
the shortest distance
between the surfaces of two

particles falls below a i 10 70 30 a0 50
threshold. Time

Average Cluster Size

0015

The angle between
neighboring particles in the
cluster, identified as particles

0.01

Probability Density Funciton

that are almost touching each 0005

other [

°_° T /R
o ) Angle between neighboring partice orientations in clusters
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Falling Spheroids

S ]l Res
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Fa"ing SpherOidS Higher Reynolds numbers

- Particle slip velocity versus time oo Distribution of angles
b for a single particle

=
2
. 8
s 5
g 'L 0.o0a-
:
2 a
o Ty r
3 Z0.004-
> B L
5 £ L Low Re
o .
£ c L High Re
8 o _
. . . . . L L L L L L L L L L L L L L L L L L L L L L L L 1 L L L I
Based on the individual Filtered Fluid Velocity 0 a0 B0 an 720 T&0 T80
DU 5' 1'0 1'5 2'0 2'5 SID Angle {Degrees) between major axis and veritcal direction

P °’ distance threshold = 0.04 Low Re
% . High Re
2 g

At higher Reynolds & S

numbers the 5 ) _ Average cluster size

. . 0 : ' : !
particles interact ! " Time ” "
more violently The particle angle versus time
0 fUgde
. Re, = 2= —187.6
. ° Hf
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Forces by Machine Learning

. . — Collisions
The motion of a particle is given by

=~ Added Mass
dU F
My—2 =Fp+ (ps — pr)Vp8

-
—’
-
-

— Velocity — __-=>7 .
dt Uy I Trajectory
w
The force on the particle in
unsteady motion has many parts, 5
but the simplest assumption is that .
o : Acceleration R
it is dominated by the steady drag ‘g
Fy~Fp=q1—"—r “p Gravity
§IOU1?AP

The drag coefficient depends the fluid, the slip velocity and the “neighborhood”

Cp = Cp(Reyp, Orientation, Flow Configuration, Volume Fraction, Neighbors, .....)

NI RESEARCH GROUP l()l 1\\ HC )I’I\N%

'.‘\E‘_‘- Y
UNIVERSITY




Forces by Machine Learning

Finding total force by machine learning: The total dataset is collected from 50 ellipsoids
at 647 different times, and the data where the collision force is not zero are removed.
The total input matrix size is 28548 x 30, and the target matrix size is 28548 x 1.

Deep Learning Steps:

1) Split the dataset into a training set (80%) and a test set (20%). The training
set is used to train the model, and the test set is used in the final evaluation
of the model.

2) Standardize the dataset by removing the mean and scaling to unit variance
for each input/feature.

3) Build a model. Use Tensorflow 2 to build a sequential model, which consists
of 4 dense hidden layers with 200, 100, 50 and 25 nodes (neurons), and 1
out layer.

4) Compile and train the model. During the training, 20% of the training data is
used to validate the model.

5) Evaluate the model’s predication with the testing data.
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Forces by Machine Learning

e - 100

Angle -

A - Finding the optimum independent variable.
dAdy - B 075
s AN We have explored several ways to do so.
B . |
adgy - ENEE -
dwa N ' 10
o 0
: =000 08
‘E: --0.25 06 |
eps [ 1] [ | |
Q2 -—0.50 o
ﬁ% " ¥ o4
lesIlp " E | ] -0.75
omegay n %27
omegszT ...! .................... -1.00
RRIISITRINE AR 00 | EEE———— - =
Pearson’s correlation coefficients o2l - , _
L Z YN EEFIEIAEEN RIS EEEEAYNEREYYS
between all features. P ARERRREE SRR RE DRI ARG EE R0 S

> (i — ) (y; — 7)
\/E (i —2)* Y (y;, — §)° Sorted correlation coefficients between the
' target acceleration and other input features

r =
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Forces by Machine Learning

_ Feature importance are ranked
Another way to determine the most according to the mean decrease

method. Random forest consists

of multiple single decision trees.
Feature Importances Every nodes in the decision
trees is a condition on a single
variable, and the measure based
on which the locally optimal
condition is chosen is called
impurity. When training a tree, it
can be computed how much
each variable decreases the
weighted impurity in a tree. For a
forest, the impurity decrease
from each variable can be
averaged and the variables are
ranked according to this
g measure.

008

(=]

=]

[=1]
i

[=]

=]

e
L

Mean Decrease Impurity

=

=)

P
i

0000 -
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Forces by Machine Learning

Training Set Testing Set Total force values versus the
03{  R"2=0.974 °/® o oee o ’ predicted values for full set of
input features. (Left for
s c Training dataset, and Right for
s | g the Testing dataset). R
= F o squared (coefficient of
determination) as a
o2] regression score function is
’:;E‘;?r!i}%'git A% un X;'s” . also shown on each figure.
o I . e | Total force versus the
| predicted values with a
g 5" reduced set of input features.
g oo % . While the correlation is not as
good as for the full set, it
remains reasonably high
° "3 _0; o ActE:;Ual Vaci.lllle = = o B ;é?tual Vauﬁle = =
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Experimental Setup

* We utilize three Phantom
cameras with LED backlight.

» \We kept a 60-degree angle
between each cameras.

» All cameras are facing
downward with roughly 5-
degree angle.

« The test tank is hexagonal, 30
cm wide, and 80 cm tall.

4000 fps 150 us 60 um Water Stagnant

, Goal: simultaneously measure particle and fluid flow.
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Non-spherical Particles

Particle This is a 3D printed

v particle with supporting
material. It has a 2.5 mm
major diameter and 0.5

supporting material ) )
aaa ol mm minor diameter.

Non-spherical particles also exist in nature

Formlabs Form2 3D printer

» Stereolithography technology
* 145 x 145 x 175 mm build volume
« 25 um minimum layer thickness

The aspect ratios from left to right are roughly
° ° 5,3.5and 1.5.
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Phase Separation

A.U.M. Masuk et. al. 2019, “Virtual-Camera Reconstruction” Tan et. al. 2020, “OpenLPT (Shake-The-Box)”
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Two Phase Measurements

5
15 4
o — . k. b 10
5 -]
5 ; : E 0
- -_— .
5 4
10}
A0 4
: -20
15} 1 ; : 151 -10
: - 10 0
0 10
| Tl | - 10 z, mm
; y, mm
05 | | | |
15 -10 5 0 5 10

« This is a single-phase test

» Left panel show reconstructed particles. case where a vortex structure
* Right panel show raw image at the same IS created by stirring the tank.
frame. » The vortex structure is
. captured
o
. o
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Reconstructed Rice Particles

mm/s
100

How does particle interaction
% affect drag coefficient?

Maybe through wake
interaction.

170

- 60

Particles in others wake can
have smaller Reynolds
140 number.

mm

How does the drag coefficient
2 experienced by a group of
particles compare with an
isolated particle?
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Results

mm

Slip velocity:
U = up — Uy

Ry = 2d,

* R, is the search radius.
* dy is the equivalent radius of a

sphere with the same volume.
* u, Is the particle velocity

. * g is the fluid velocity

JOHNS HOPKINS
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Results 0.12F 7
01F -
0.08 - -
: I :
N 0.06 E— -
200 400 600 800
Frame number
Us = U — Uy

The gray line is the slip velocity of the
isolated particle.

The colored lines correspond to particles of
o ° the same color in the 3D plot.
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Comparison with drag coefficient model

Model for non-spherical particle (Re < 10°): Z
8 1 16 1 3 1 0z 1
Cp = - + +0.421 * 100-4(-log®)™" _—_
® ReJ®, Re\d +Re i ®,
_ _ _ Us, ap, g
Estimation from experimental measurements:
Fp=p,Va +(p p)Vg Cp =2 IFol
D~ — Pr D=4, (12
PR Aprlu|?
* ay is the particle acceleration * Reis particle Reynolds number.
« g is the gravitational acceleration * & is the sphericity defined as ratio between
« Vis the particle volume sphere equivalent surface area and actual surface
*  pp is the particle density area.
« pgis the fluid density « &, is the lengthwise sphericity.
. « @, isthe crosswise sphericity.
o . .
PY  Als the cross-sectional area.
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Comparison with drag coefficient model

2 . T T T | — 1 T 1
10 ' ! « The colored circle

symbols represent the
particles adjacent to
each other

» The gray circle
symbols represent the
isolated particle.

» The green square
symbols are results
calculated with the

Drag Cocfficient
S
o

12—l L drag coefficient
200 300 400 500 model
Re
o ° What about added mass force?
®
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Comparison with drag coefficient model

1
Fp = pyVa, + (pp — pe)Vg — SpiV(as—ap)

105 ] ] | | I | ] ] ] I ] | ] |

* The added mass

- - coefficient utilized
here is for spherical
particles, a more

l - accurate added mass
coefficient for
100F ° ® cowm  wo@ocomgn mwom - spheroid will be used
l i in the future.

Drag Cocfficient

200 300 400 500
Re
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Comparison with drag coefficient model

105 ] ] | | I | ] ] ] I ] | ] |

i - * When accounting for
the added mass force,
isolated particle

i - agrees with the
steady drag model

100F ° oo meom 8o M P 00 — . !Doespa}rtic_le-particle
o interaction influence

- - the results?

Drag Cocfficient

200 300 400 500
Re
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Comparison with drag coefficient model

105 ! I I I | — 1 . [ rrri

4':_: = =
E - .  Particle-particle
= ! ] interaction cause the
S . Instantaneous drag
) - . .: > - coefficient to deviate
P "ak e oo° 2 : from the green
2.0k o %8 . i away from the gree
A 10 ’ &3.‘3.# -g o ﬁ ..E - symbols.

B [ ] L . . o .n .‘ i

| '
200 300 400 500
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Comparison with drag coefficient model

i % crosswise and lengthwise
/ disks and plates

2. I§°o
0%
¢ >
/ %%%%

crosswise disks
and plates

(o

iIsometric
L1
particles ‘-.‘»‘«'r.
and minerals

spheroids

Drag coefficient

lengthwise plates, spheroids i

and streamline bodies — o:h' uoounu

10° 10" 10’ 10° 10° 10’
Reynolds number

NI RESEARCH GROUP

Our instantaneous
drag coefficient
results generally
agree with the
previous efforts.

Particle-particle
interaction may
change the
instantaneous drag
coefficient by one
order of magnitude.
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Plan

Subteam 1: Experiment

Rui Ni Xu Xu

Subteam 2: Simulation

Gretar
Tryggvason

Jiacai Lu

Diagnostic methods

Validation

Drop tower (Re, ®)

h Tensor

T

Dimension reduction

o MFiX

L 2

Particle-resolved DNS

Training
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