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PART I: HEAT TRANSFER COEFFICIENT VS. 
STEAM MASS FLOW

PREDICTION OF HEAT TRANSFER COEFFICIENT USING 
MACHINE LEARNING 
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Powerplant Operation 
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❖ Startup cycle of a 320MW powerplant was recorded over 53 hours.

❖ Temperature was recorded at each branch inlet. 

❖ Temperature and total Mass flow rate was recorded at the throttle outlet.

❖ Data sampling frequency: 5 minutes.   

(EPRI, 2020)
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First Set of Experimental Data

▪ Data from a real Power Plant 

▪ Pressure, temperature, mass flow (no heat transfer is measured). 

▪ Measurement over time (10 days measurement) 

▪ Transient State ANSYS simulation 
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Methodology

Begin
Experimental Data: Power Plant 

Data

Relationship between Energy 

flow and Mass flow (using data 

mining & machine learning)

Database: ANSYS simulation to predict heat 

transfer coefficient as a function of the mass 

flow: (1) Velocity profile; (2) Reynolds Number; 

(3) Nusselt Number, 

Predict heat transfer coefficient, using 

machine learning tools for any mass 

flow

END

Begin
Inlet Properties: Pressure, Temperature and 

Phase 

Inlet Mass Flow 

Inlet Calculation: Sp. Enthalpy, Sp. Entropy & 

Energy Flow 

(for each Inlet)

Header Calculation:  Total Inlet Energy Flow, Total 

Inlet Mass Flow, and Sp. Enthalpy  

Header Properties: Specific Enthalpy and 

Temperature, Energy Flow  
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Assumptions
▪ Steady-state 

▪ Ideal Gas

»Using Pressure based formulation to calculate density from pressure 

and temperature .

▪ Reference Density 

» Low Mach number flow

» Introduced to improve stability of the system. 

▪ Compressible

▪ Operating Pressure of 1 Atm 
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▪ Input: 

» Temperatures: T1, T2, T3

» Steam mass flow: F1, F2, F3

▪ Output:

» Heat Transfer Coefficient 

T1 M1

T1 M1

T2 M2

T3 M3

T1 M1  

T1 M1
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Predictive Models 

▪ Simulation Data (Database)

▪ Develop the models (70% are for training & 30% are for Testing)

▪ Comparison between actual vs. model

» (1) Prediction of Heat Transfer Coefficient as function of the main mass flow; 

» (2) Evaluation of the models using visualization techniques (gain & lift)  
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Methods 

▪ Multilayer Perceptron

▪ PNN/GRNN Neural Network 

▪ RBF Network

▪ GMDH Polynomial Network

▪ Cascade Correlation Network 

Neural Network
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Method Number of 

layers 

Number of 

Neurons 

Other information related to inputs

Multilayer Perceptron 3 layers 6, 7, 1 Neurons • 3 layers (1 hidden)

• Automatic hidden layer neuron selection

• Validation: Random 20%

• Hidden layer activation function: Logistic 

• Output layer activation function: Logistic 

• Traditional conjugate gradient 

PNN/GRNN Neural 

Network 

79 • Sigma for each variable 

• Constrain minimum sigma values

• Model optimization and simplification: remove 

unnecessary neurons (Minimize error)

• Random: 20%

• Type of kernel function: Gaussian

RBD Network 9 • Validation: Random 20%

GMDH polynomial 

network 

20 20 • Validation: Random 20%

• Layer connection: connect only to previous layer 

• Overfitting protection control: Hold out sample 

percent: 20%

Cascade Correlation 

Network 

3 6, 4, 1 • Hidden layer kernel functions: Sigmoid & Gaussian

• Model testing and validation: Random 20%



13

RBF Neural Network
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Analysis of Variance

Method R^2 

(%)

CV NMSE Correlation RMSE MSE MAE MAPE 

Multilayer 

Perceptron

99.902 0.023519 0.000980 0.999567 42.326272 1791.5133 27.994853 12057.24

PNN/GRNN 

Neural Network 

99.958 0.015314 0.000416 0.999801 27.561308 759.6257 20.393533 4018.8622

RBD Network 99.851 0.029026 0.001493 0.999356 52.238191 2728.8286 30.969718 9530.1242

GMDH 

Polynomial 

Network 

99.989 0.007760 0.000107 0.999949 13.965366 195.03145 10.78587 6662.6184

Cascade 

Correlation 

Network 

99.917 0.021708 0.000835 0.999657 39.067047 1526.2341 29.394567 4160.4599
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Data Normalization

R^2 (%) CV NMSE
Correlatio

n 
RMSE MSE MAE MAPE BEST METHOD 

0.99913 3.030799 9.158879 0.999618 3.030804 9.185769 2.595512 3.000163 M4: Multilayer Perceptron

0.99969 1.973454 3.88785 0.999852 1.973548 3.894889 1.890764 1

M2: PNN/GRNN Neural 

Network

0.99862 3.740464 13.95327 0.999407 3.740555 13.99174 2.871323 2.371349 M5: RBD Network

1 1 1 1 1 1 1 1.657837

M1: GMDH Polynomial 

Network

0.99928 2.797423 7.803738 0.999708 2.797425 7.825581 2.725285 1.035233

M3: Cascade Correlation 

Network
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Variable Importance

Method T1 T2 T3 F1 F2 F3 Most important 

variable 

Multilayer Perceptron 3.668 5.416 0.375 89.157 80.949 100.00 F3

PNN/GRNN Neural 

Network 

95.301 90.688 100.00 F3

RBD Network 0.347 0.192 0.108 0.078 25.139 100.00 F3

GMDH polynomial 

network 

100.00 F2

Cascade Correlation 

Network 

5.103 1.906 0.187 5.086 6.006 100.00 F3
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Heat Transfer Coefficient as function of Steam Mass Flow

• In this case the only Input is 
the Steam mass flow at the 
main pipe

• The variable importance 
analysis leads us to such 
assumption 

• The output is the heat 
transfer coefficient 
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Analysis of Variance

Method R^2 

(%)

CV NMSE Correlation RMSE MSE MAE MAPE 

Multilayer 

Perceptron

99.975 0.011245 0.000253 0.999878 22.560377 508.97063 14.837764 13314.713

PNN/GRNN 

Neural 

Network 

99.925 0.019371 0.000750 0.999638 38.863604 1510.3797 26.997166 11408.283

RBD Network 99.730 0.036759 0.002702 0.998794 73.750907 5439.1963 44.793472 8957.221

GMDH 

polynomial 

network 

99.987 0.007992 0.000128 0.999938 16.033898 257.0859 11.020228 9985.6856

Cascade  

Correlation 

Network  

99.988 0.007702 0.000119 0.999946 15.452697 238.78583 12.06805 6460.1994



PART II: HEAT TRANSFER COEFFICIENT 
VS. PRESSURE DROP

PREDICTION OF PRESSURE DROP AND HEAT TRANSFER 
OF DEVELOPING AND FULLY DEVELOPED FLOW, USING 
MACHINE LEARNING TECHNIQUES 
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The purpose 

▪ To establish the relationship between pressure drop and heat transfer in 

different flow regime. 

▪ To use machine learning and experimental data to investigate in order to 

predict the heat transfer coefficient.
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Second Set of Experimental Data

▪ A smooth circular test section with an inner diameter of 11.5 mm, and 

maximum length-to-diameter ratio of 872. 

▪ Measurement: 

» Pressure drop and heat transfer measurements were taken at Reynolds numbers 

between 500 and 10,000 at different heat fluxes. 

» Water was used as the test fluid and the Prandtl number ranged between 3 and 7. 

» A total of 317 mass flow rate measurements, 34,553 temperature measurements and 

2536 pressure drop measurements were taken. 

» Pressure drop and heat transfer measurements were taken simultaneously.
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Development of Predictive Models

▪ Using machine learning techniques, the relationship between pressure drop 

and heat transfer was investigated.

▪ Correlations were developed to determine the relationship between heat 

transfer and pressure drop, as well as the average Nusselt numbers, in the 

laminar, transitional, quasi-turbulent and turbulent flow regimes, for both 

developing and fully developed flow in mixed convection conditions. 
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Predictive Methods 

1. Gene Expression Programming 

2. Multilayer perceptron neural network (MLP)

3. Generalized regression neural network (GRNN)

4. Radial basis function network

5. Cascade Correlation Neural Network with Deterministic Weight 

6. GMDH (Group Method of Data Handling) Polynomial Neural Network 

7. LSTM (Long Short-Term Memory) 



24

The relationships between the friction factors and Reynolds Number [1]

The friction factor (f) is 

representing the loss of 

pressure of a fluid in a pipe 

due to the interactions in 

between the fluid and the 

pipe.

f = 64/Re

Fully developed 

isothermal flow

[1] M. Everts, J.P. Meyer, Heat transfer of developing and fully developed flow in smooth horizontal tubes in the 

transitional flow regime, Int. J. Heat Mass Transf. 117 (2018) 1331–1351.
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The relationships between the Colburn j-factors and Reynolds Number [3] 

J Factor is A dimensionless factor 

for heat transfer coefficient for 

calculating the heat 

transfer coefficient 
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General Regression Neural Network (GRNN): 3 kW/m2
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General Regression Neural Network (GRNN): 0 kW/m2
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Fig 6: Comparison of the product of the friction factor and Reynolds number (f*Re) as a function of dimensionless 
axial distance
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Fig 6: Comparison of the product of the friction factor and Reynolds number (f*Re) as a function of 
dimensionless axial distance
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Fig. 8. Comparison of the pressure drop and heat transfer results in terms of the friction factors for 0 m < L < 8 m 
as a function of Reynolds number, at heat fluxes of 1 kW/m2
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Comparison of the pressure drop and heat transfer results in terms of the average Colburn j-factors
for 0 m < L < 8 m as a function of Reynolds number, at heat fluxes of 1 kW/m2
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Comparison of the pressure drop and heat transfer results in terms of the average Colburn j-factors
for 0 m < L < 8 m as a function of Reynolds number, at heat fluxes of 3 kW/m2
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Comparison of the friction factors divided by the average Colburn j-factors as a function of Reynolds number 
for 0 m < L < 8 m at a heat flux of 3 kW/m2
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Comparison of the friction factors divided by the average Colburn j-factors as a function of Reynolds number 
for 0 m < L < 2 m at a heat flux of 3 kW/m2
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Analysis of Variance

Figure 5: 0 

kW/m2

Fig 5: 3 

kW/m2

Fig6a_B0.csv Fig6a_Y3.cs

v

Fig8_f_1.csv

Proportion of variance explained by model (R^2) 

%

99.968% 99.682 99.935 99.838 99.815

Coefficient of variation (CV) 0.007094 0.018168 0.015090 0.018976 0.004997

Normalized mean square error (NMSE) 0.000323 0.003183 0.000645 0.001616 0.001855

Correlation between actual and predicted 0.999840 0.998468 0.999679 0.999201 0.999083

Maximum error 0.0021012 0.0037786 6.3281898 9.0706368 0.0032808

RMSE (Root Mean Squared Error) 0.0005277 0.0010562 1.8890273 2.7823118 0.0005358

MSE (Mean Squared Error) 0.0000003 0.0000011 3.568424 7.7412589 0.0000003

MAE (Mean Absolute Error) 0.0003513 0.0006473 0.9776852 1.7255757 0.0002439

MAPE (Mean Absolute Percentage Error) 0.5314583 1.2717376 0.5700633 1.3014959 0.2448627
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METHODOLOGY Developed

The average Colburn j-factors of the different tube 

lengths as a function of Reynolds number at 

different heat fluxes



Conclusions and Future Work 
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Conclusions

❖ The heat transfer coefficient depends mainly on the mass flow of steam. Temperature and pressure are 

secondary.

❖ Machine learning techniques: GMDH polynomial network and PNN/GRNN neural network are the best in 

predicting heat transfer coefficient.

❖ For both sets of experimental data, a methodology is developed to predict the heat transfer coefficient

❖ Our next goal is to predict the heat transfer coefficient using dynamic CFD modeling of an Inconel 740H 

alloy boiler outlet header.



Part III: Steam Header Design  

Progress
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Michael Zimnoch



Designing Headers

https://www.indiamart.com/proddetail/boiler-headers-4962339955.html

• Each header will be designed in 
accordance with a series of ASME BPVC 
Codes
• Section I: General Design 

Requirements
• Section II: Material Properties
• Section III-NH: Evaluation of 

Components in Elevated Temperature 
Service

• Section VIII-2: Alternative Rules –
Design Fatigue Curves

• IN740 material properties will be taken 
from Special Metals

• The life expectancy of each header will be 
evaluated using
• ASME BPVC Section VIII-2
• STP-PT-070
• ASME FFS-1/ API 579-1

• Header is designed using three materials: P22, P91, IN740. 



Geometry Design
• The wall thickness of the header and tubes were found 

using the processes outlined in subsection PG-27.2.1

𝑑𝑜 = OD Tube = 2.0”

P = Maximum allowable working 

pressure (2450 psi)

S = Maximum Allowable Stress at 

Design Temperature 

SP22 = 53.57 MPa at 541°C

SP91 = 108.4 MPa at 541°C

SIN740 = 276 MPa at 541°C

tP22 = 0.282”

tP91 = 0.155”

tIN740 = 0.070”

𝑡 =
𝑃𝑑𝑜

2𝑆 + 𝑃
+ 0.005𝑑𝑜

Tube thickness



Geometry Design - Header

𝑡 =
𝑃𝐷

2𝑆𝐸 + 2𝑦𝑃
+ 𝐶

D = Outer Diameter

P22 - 22.25”

P91 – 19.07”

IN740 – 16.87”

ID = 15.25 for all models

P = Maximum allowable 

working pressure = 2450 psi 

C =  Minimum allowance for 

threading stability = 0 

f = 0, tubes will be welded in.

E =  Efficiency = 0.797 

𝐸 =
𝑝 − 𝑑

𝑝
p = Pitch  = 6”

d = Diameter of opening = 1.219” 

S = Maximum Allowable Stress at 

Design Temperature 

t = Wall Thickness

P22 - 3.45”

P91 – 1.91”

IN740 – 0.81”

Header thickness



Creep Rupture

• API 579-1/ASME FFS-1 provides 3 options to determine the creep rupture at a 
given time.
• Project Omega Method
• Larson Miller Method – Average Lifetime
• Larson Miller Method – Minimum Lifetime

• The Larson Miller Minimum Lifetime method was chosen to reflect the most 
conservative case. 

• The lower value of the yield stress of the material or the stress to cause creep 
rupture at 100,000 hours was used to evaluate the model for shakedown.



Shakedown
• Idealized pressure and temperature profiles were generated from 

data provided by the power plant.
• The idealized cycle was ran 7 times to evaluate the model for 

shakedown.
• Peak Temperature: 550 °C
• Peak Pressure: 17 MPa 
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Geometry Design - Header

𝑡 =
𝑃𝐷

2𝑆𝐸 + 2𝑦𝑃
+ 𝐶

D = Outer Diameter

P22 - 22.25”

P91 – 19.07”

IN740 – 16.87”

ID = 15.25 for all models

P = Maximum allowable 

working pressure = 2450 psi 

C =  Minimum allowance for 

threading stability = 0 

f = 0, tubes will be welded in.

E =  Efficiency = 0.797 

𝐸 =
𝑝 − 𝑑

𝑝
p = Pitch  = 6”

d = Diameter of opening = 1.219” 

S = Maximum Allowable Stress at 

Design Temperature 

t = Wall Thickness

P22 - 3.45”

P91 – 1.91”

IN740 – 0.81”

Header thickness
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Shakedown

• The P22 model was found to shakedown during the first 
cycle.



Material Model Verification

• Steps were also taken to validate the application of the 
material model in Abaqus. 

• A paper evaluating a P91 header was recreated [1].

• The material used was a P91 Two-Layer Visco-Plastic 
model.

• 𝜎0 = 𝑘 + 𝑄∞(1 − exp −𝑏𝑝 )

• ሶ𝜶𝑖 = 𝐶𝑖 ሶ𝑝
1

𝝈0
𝝈𝑝 − 𝜶𝑖 − 𝛾𝑖𝜶𝑖 ሶ𝑝 +

1

𝐶𝑖
𝜶𝑖

ሶ𝐶𝑖

•
Δ𝜎

2
− 𝑘 =

𝐶𝑖

𝛾𝑖
tanh(𝛾𝑖

Δ𝜀𝑝

2
)

• ሶ𝜺𝑣 =
3

2
𝐴[𝑓(𝝈𝑣)]

𝑛 𝑺𝑣

𝑓(𝝈𝑣)

• 𝐵 =
𝐾𝑣

𝐾𝑣+𝐾𝑝

• 𝜀𝑝
𝑒𝑙 =

1+𝜐

𝐾𝑝
𝝈𝑝 −

𝜐

𝐾𝑝
𝑡𝑟 𝝈𝑝 I

• 𝜀𝑣
𝑒𝑙 =

1+𝜐

𝐾𝑣
𝝈𝑣 −

𝜐

𝐾𝑣
𝑡𝑟 𝝈𝑣 I

• 𝝈𝑣 = 𝑲𝑣: (𝜀 − 𝜀𝑣)
• 𝝈𝑝 = 𝑲𝑝: (𝜀 − 𝜀𝑝)

• 𝝈 = 𝝈𝑝 + 𝝈𝑣



Material Model Verification

• The temperature and pressure profiles were provided by [1].

• Maximum Operating Pressure: 17 MPa

• Maximum Operating Temperature: 490 °C

The failure criteria was taken as the largest Ostergren parameter 
∆𝜀𝑖𝑛𝜎𝑚𝑎𝑥 shown in the following equation [1]: 

𝑁𝐹 = 𝐶 ∆𝜀𝑖𝑛𝜎𝑚𝑎𝑥
𝛽

– C & β are material constants determined from [1] and taken as 4,500 

and -1.6 respectively. 

Model Location Cycles To Failure Years To Failure

T.P. Farragher Center 2,178 41.9

T.P. Farragher Edge 1,954 37.6

M. Zimnoch Center 2,211 42.5

M. Zimnoch Edge 2,042 39.3



Material Model Verification

• The methodology was applied to the headers under normal loading scenarios and 
found an unrealistic lifespan on the order of >300 years for all materials.

• Additional thermal data shows that the tube temperatures can significantly exceed 
the design temperature of the header. 

• Some tubes have an average temperature 30 °C higher than the average header 
temperature.



Material Model Verification

• Additional thermal data shows that the tube temperatures 
can significantly exceed the design temperature of the 
header 1005 °F (540.6 °C) routinely throughout the year. 



Material Model Verification

• The maximum tube temperatures exceed the design temperature 
of the header of 1005 °F (540.6 °C).

• The model was re-ran using the temperature data from the tubes 
expected to cause the most damage.



• Number of fatigue cycles in 10 days: 456
• Let 456 Cycles equal one ten day block.

• ASME BPVC VIII-2 Annex 3F Table 3-F.1: 434 Blocks
• 11.9 Years until failure
• Peak Alternating Stress: 203 MPa

• Updated life expectancy represents the minimum 
known failure time of 10-20 years. 

• Possible discrepancy in material model not accurately 
matching in service component. 

P22 Lifetime Evaluation: Tube 56A



P22 Material

• To validate the material model, data from samples taken from 
a retired steam header will be evaluated. 

• The samples were evaluated at 3 temperatures.

• 20 °C

• 300 °C

• 500 °C

• Each sample was subjected to 50 cycles at the following 
strains

• 0.1%, 0.25%, 0.4%, 0.5%, 0.75%, 0.5%, 0.25%



New Material Model Constants

• Stress-Strain data was 
provided for serviced P22 
samples at 3 
temperatures.
• 20 °C
• 300 °C
• 500 °C

• Each sample was 
subjected to 50 cycles at 
the following strain blocks
• 0.1%, 0.25%, 0.4%, 0.5%, 

0.75%, 0.5%, 0.25%
• 50 Cycles per block
• 6 Blocks per sample



New Material Model Constants

• The desired material model will be a Non-Linear Kinematic Hardening, 
NLKH, model.
• The model will not incorporate Isotropic Hardening or Creep effects.

• The provided samples are from a retired unit with an unknown strain 
history needed to determine Isotropic Hardening material parameters.

• The data provided does not include rate effects required to obtain the 
Creep material parameters. 

• The NLKH constants were found following the procedure outlined in 
Lemaitre &Chaboche, “Mechanics of Solid Materials ,” 1994.



New Material Model Constants

• Material hardening is generally broken into two 
categories.

• Isotropic Hardening

• Kinematic Hardening

• Linear

• Nonlinear

• Isotropic Hardening is used to reflect symmetric 
increases of the yield surface.

• Kinematic Hardening is used to reflect translations of the 
yield surface.



New Material Model Constants

• Isotropic Hardening: Increases yield strength equally in 
tension and compression.

• The yield function, f, has the form of 𝑓 = σeq − R − 𝜎𝑦

Adapted from [2]



New Material Model Constants

• Under symmetric strain cycles, Isotropic Hardening 
stabilizes to a set value as the mean stress approaches 
zero.

• The level of Isotropic Hardening depends on the strain 
amplitude.

• Therefore, only Kinematic hardening effects are considered 
when evaluating a stabilized state.

• This can be seen by the definition of the evolution of R.

𝑑𝑅 = 𝑏 𝑄 − 𝑅 𝑑𝑝



New Material Model Constants

• Kinematic Hardening: An increase in tensile yield strength 
reduces the compressive yield strength.

• For Kinematic Hardening, the yield function, f, has the 
form of 𝑓 = 𝐽2 𝜎 − 𝜒 − 𝑘

Adapted from [2]



New Material Model Constants

• Kinematic Hardening can be represented as linear and 
nonlinear hardening. 

• For linear hardening d𝜒 = 𝐶0𝑑𝜀
𝑝

• For nonlinear hardening d𝜒 =
2

3
𝐶𝑑𝜀𝑝 − 𝛾𝜒𝑑𝑝

Adapted from [2]



New Material Model Constants

• Initial constants were found using a single set of 
coefficients for the NLKH model. 
1. Determine the initial yield stress of the first cycle

2. Determine the 
𝐶

𝛾
value as an asymptotic value of Δ𝜎 − 𝑘

plotted against Δ𝜀.

3. Determine the constants 𝐶, 𝛾 by fitting the relationship of
Δ𝜎

2
− 𝑘 =

𝐶

𝛾
tanh 𝛾

Δ𝜀𝑝

2

• Note: The modulus was taken as a linear fit of the first 0.00095 strain. The 
initial yield stress was found as the intersection of the stress strain data and 
the 0.2% offset modulus. 



New Material Model Constants

• The model was updated to 
reflect the superposition of 
multiple NLKH models. 

• A python script using the 
scipy.optimize.curve_fit() 
functionality was used to 
determine the coefficients

𝐶, 𝛾

• The model uses Least 
Square Minimization

Adapted from [1]









New Material Model Constants

• The updated constants for the NLKH model are shown 
below.

Δ𝜎

2
− 𝑘 =

𝐶

𝛾
tanh 𝛾

Δ𝜀𝑝

2

Temperat
ure

E (MPa) K (MPa) C1 γ1 C2 γ2

20°C 180,475 134.29 144916.02 1,110.81 11,670.76 0.02

300°C 206,187 133.82 18,444.78 153.46 101,885.57 2062.2

500°C 195,907 112.02 122,225.99 2,599.87 14,771.63 168.46
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Thank you for your participation.
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