

D.O.E. Project DE-FE0031747

# Alloy for Enhancement of Operational Flexibility of Powerplants

Ahmed C. Megri (PI) North Carolina A&T State University

Alireza Tabarraei (co-PI) UNC Charlotte



## **Outline**

Heat Transfer Coefficient vs. Steam Mass Flow Heat Transfer Coefficient vs. Pressure Drop

Steam Design Header

North Carolina A&T State University

**UNC** Charlotte





# PART I: HEAT TRANSFER COEFFICIENT VS. STEAM MASS FLOW

PREDICTION OF HEAT TRANSFER COEFFICIENT USING MACHINE LEARNING

AGGIEDO



# NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY



Givens

- Startup cycle of a 320MW powerplant was recorded over 53 hours.
- ❖ Temperature was recorded at each branch inlet.
- ❖ Temperature and total Mass flow rate was recorded at the throttle outlet.
- Data sampling frequency: 5 minutes.









# First Set of Experimental Data

- Data from a real Power Plant
- Pressure, temperature, mass flow (no heat transfer is measured).
- Measurement over time (10 days measurement)
- Transient State ANSYS simulation







# **Assumptions**

- Steady-state
- Ideal Gas
  - » Using **Pressure** based formulation to calculate density from pressure and temperature .
- Reference Density
  - » Low **Mach** number flow
  - » Introduced to improve stability of the system.
- Compressible
- Operating Pressure of 1 Atm

## Input:

» Temperatures: T1, T2, T3

» Steam mass flow: F1, F2, F3

## Output:

» Heat Transfer Coefficient







## **Predictive Models**

- Simulation Data (Database)
- Develop the models (70% are for training & 30% are for Testing)
- Comparison between actual vs. model
  - » (1) Prediction of Heat Transfer Coefficient as function of the main mass flow;
  - » (2) Evaluation of the models using visualization techniques (gain & lift)



## **Methods**

- Multilayer Perceptron
- PNN/GRNN Neural Network
- RBF Network
- GMDH Polynomial Network
- Cascade Correlation Network

## Neural Network







| Method                      | Number of layers | Number of<br>Neurons | Other information related to inputs                                                                                                                                                                                                                                      |
|-----------------------------|------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multilayer Perceptron       | 3 layers         | 6, 7, 1 Neurons      | <ul> <li>3 layers (1 hidden)</li> <li>Automatic hidden layer neuron selection</li> <li>Validation: Random 20%</li> <li>Hidden layer activation function: Logistic</li> <li>Output layer activation function: Logistic</li> <li>Traditional conjugate gradient</li> </ul> |
| PNN/GRNN Neural<br>Network  |                  | 79                   | <ul> <li>Sigma for each variable</li> <li>Constrain minimum sigma values</li> <li>Model optimization and simplification: remove unnecessary neurons (Minimize error)</li> <li>Random: 20%</li> <li>Type of kernel function: Gaussian</li> </ul>                          |
| RBD Network                 |                  | 9                    | • Validation: Random 20%                                                                                                                                                                                                                                                 |
| GMDH polynomial network     | 20               | 20                   | <ul> <li>Validation: Random 20%</li> <li>Layer connection: connect only to previous layer</li> <li>Overfitting protection control: Hold out sample percent: 20%</li> </ul>                                                                                               |
| Cascade Correlation Network | 3                | 6, 4, 1              | <ul> <li>Hidden layer kernel functions: Sigmoid &amp; Gaussian</li> <li>Model testing and validation: Random 20%</li> </ul>                                                                                                                                              |

AG



#### RBF Neural Network





### Analysis of Variance

| Method                            | R^2<br>(%) | CV       | NMSE     | Correlation | RMSE      | MSE       | MAE       | MAPE      |
|-----------------------------------|------------|----------|----------|-------------|-----------|-----------|-----------|-----------|
| Multilayer<br>Perceptron          | 99.902     | 0.023519 | 0.000980 | 0.999567    | 42.326272 | 1791.5133 | 27.994853 | 12057.24  |
| PNN/GRNN<br>Neural Network        | 99.958     | 0.015314 | 0.000416 | 0.999801    | 27.561308 | 759.6257  | 20.393533 | 4018.8622 |
| RBD Network                       | 99.851     | 0.029026 | 0.001493 | 0.999356    | 52.238191 | 2728.8286 | 30.969718 | 9530.1242 |
| GMDH<br>Polynomial<br>Network     | 99.989     | 0.007760 | 0.000107 | 0.999949    | 13.965366 | 195.03145 | 10.78587  | 6662.6184 |
| Cascade<br>Correlation<br>Network | 99.917     | 0.021708 | 0.000835 | 0.999657    | 39.067047 | 1526.2341 | 29.394567 | 4160.4599 |





#### Data Normalization

| R′ | ^2 (%)  | CV       | NMSE     | Correlatio<br>n | RMSE     | MSE      | MAE      | MAPE     | BEST METHOD                     |
|----|---------|----------|----------|-----------------|----------|----------|----------|----------|---------------------------------|
|    |         |          |          |                 |          |          |          |          |                                 |
|    | 0.99913 | 3.030799 | 9.158879 | 0.999618        | 3.030804 | 9.185769 | 2.595512 | 3.000163 | M4: Multilayer Perceptron       |
|    | 0.00070 | 1 072454 | 2 00705  | 0.000052        | 1 072540 | 2 004000 | 1 000774 | 1        | M2: PNN/GRNN Neural             |
|    | 0.99969 | 1.973454 | 3.88785  | 0.999852        | 1.973548 | 3.894889 | 1.890764 | 1        | Network                         |
|    | 0.99862 | 3.740464 | 13.95327 | 0.999407        | 3.740555 | 13.99174 | 2.871323 | 2.371349 | M5: RBD Network                 |
|    | 1       | 1        | 1        | 1               | 1        | 1        | 1        | 1.657837 | M1: GMDH Polynomial<br>Network  |
|    | 0.99928 | 2.797423 | 7.803738 | 0.999708        | 2.797425 | 7.825581 | 2.725285 | 1.035233 | M3: Cascade Correlation Network |



#### Variable Importance

| Method                       | T1    | T2    | T3    | F1     | F2     | <b>F</b> 3 | Most important variable |
|------------------------------|-------|-------|-------|--------|--------|------------|-------------------------|
| <b>Multilayer Perceptron</b> | 3.668 | 5.416 | 0.375 | 89.157 | 80.949 | 100.00     | F3                      |
| PNN/GRNN Neural<br>Network   |       |       |       | 95.301 | 90.688 | 100.00     | F3                      |
| RBD Network                  | 0.347 | 0.192 | 0.108 | 0.078  | 25.139 | 100.00     | F3                      |
| GMDH polynomial network      |       |       |       |        | 100.00 |            | F2                      |
| Cascade Correlation Network  | 5.103 | 1.906 | 0.187 | 5.086  | 6.006  | 100.00     | F3                      |



## Heat Transfer Coefficient as function of Steam Mass Flow

- In this case the only Input is the Steam mass flow at the main pipe
- The variable importance analysis leads us to such assumption

• The output is the heat transfer coefficient





### Analysis of Variance

| Method                        | R^2<br>(%) | CV       | NMSE     | Correlation | RMSE      | MSE       | MAE       | MAPE                     |
|-------------------------------|------------|----------|----------|-------------|-----------|-----------|-----------|--------------------------|
| Multilayer<br>Perceptron      | 99.975     | 0.011245 | 0.000253 | 0.999878    | 22.560377 | 508.97063 | 14.837764 | 13314.713                |
| PNN/GRNN<br>Neural<br>Network | 99.925     | 0.019371 | 0.000750 | 0.999638    | 38.863604 | 1510.3797 | 26.997166 | 11408.283                |
| RBD Network                   | 99.730     | 0.036759 | 0.002702 | 0.998794    | 73.750907 | 5439.1963 | 44.793472 | 8957.221                 |
| GMDH<br>polynomial<br>network | 99.987     | 0.007992 | 0.000128 | 0.999938    | 16.033898 | 257.0859  | 11.020228 | 9985.6856                |
| Cascade Correlation Network   | 99.988     | 0.007702 | 0.000119 | 0.999946    | 15.452697 | 238.78583 | 12.06805  | 6460.1994  — ncat.edu 18 |



# PART II: HEAT TRANSFER COEFFICIENT VS. PRESSURE DROP

PREDICTION OF PRESSURE DROP AND HEAT TRANSFER OF DEVELOPING AND FULLY DEVELOPED FLOW, USING MACHINE LEARNING TECHNIQUES

## The purpose

- To establish the relationship between pressure drop and heat transfer in different flow regime.
- To use machine learning and experimental data to investigate in order to predict the heat transfer coefficient.



# **Second Set of Experimental Data**

- A smooth circular test section with an inner diameter of 11.5 mm, and maximum length-to-diameter ratio of 872.
- Measurement:
  - » Pressure drop and heat transfer measurements were taken at Reynolds numbers between 500 and 10,000 at different heat fluxes.
  - » Water was used as the test fluid and the Prandtl number ranged between 3 and 7.
  - » A total of 317 mass flow rate measurements, 34,553 temperature measurements and 2536 pressure drop measurements were taken.
  - » Pressure drop and heat transfer measurements were taken simultaneously.



# **Development of Predictive Models**

- Using machine learning techniques, the relationship between pressure drop and heat transfer was investigated.
- Correlations were developed to determine the relationship between heat transfer and pressure drop, as well as the average Nusselt numbers, in the laminar, transitional, quasi-turbulent and turbulent flow regimes, for both developing and fully developed flow in mixed convection conditions.



## **Predictive Methods**

- 1. Gene Expression Programming
- 2. Multilayer perceptron neural network (*MLP*)
- 3. Generalized regression neural network (GRNN)
- 4. Radial basis function network
- 5. Cascade Correlation Neural Network with Deterministic Weight
- 6. GMDH (Group Method of Data Handling) Polynomial Neural Network
- 7. LSTM/(Long Short-Term Memory)

#### The relationships between the friction factors and Reynolds Number [1]

$$f = \frac{2\Delta PD}{L(x)\rho V^2} = \frac{\Delta P\rho D^5 \pi^2}{8\dot{m}^2 L(x)}$$

The friction factor (f) is representing the loss of pressure of a fluid in a pipe due to the interactions in between the fluid and the pipe.



[1] M. Everts, J.P. Meyer, Heat transfer of developing and fully developed flow in smooth horizontal tubes in the transitional flow regime, Int. J. Heat Mass Transf. 117 (2018) 1331–1351.



#### The relationships between the Colburn j-factors and Reynolds Number [3]

J Factor is A dimensionless factor for heat transfer coefficient for calculating the heat transfer coefficient





#### General Regression Neural Network (GRNN): 3 kW/m2

 $0 \text{ m} \leq L \leq 2 \text{ m}$ 







#### General Regression Neural Network (GRNN): 0 kW/m2

 $0 \text{ m} \leq L \leq 2 \text{ m}$ 





#### General Regression Neural Network (GRNN): 0 kW/m2







Fig 6: Comparison of the product of the friction factor and Reynolds number (f\*Re) as a function of dimensionless axial distance









Fig 6: Comparison of the product of the friction factor and Reynolds number (f\*Re) as a function of dimensionless axial distance









Fig. 8. Comparison of the pressure drop and heat transfer results in terms of the friction factors for 0 m < L < 8 m as a function of Reynolds number, at heat fluxes of 1 kW/m2





# Comparison of the pressure drop and heat transfer results in terms of the average Colburn j-factors for 0 m < L < 8 m as a function of Reynolds number, at heat fluxes of 1 kW/m2





# Comparison of the pressure drop and heat transfer results in terms of the average Colburn j-factors for 0 m < L < 8 m as a function of Reynolds number, at heat fluxes of 3 kW/m2

#### General Regression Neural Network (GRNN): 3 kW/m2



#### General Regression Neural Network (GRNN): 3 kW/m2



# Comparison of the friction factors divided by the average Colburn j-factors as a function of Reynolds number for 0 m < L < 8 m at a heat flux of 3 kW/m2

#### General Regression Neural Network (GRNN): 3 kW/m2



#### General Regression Neural Network (GRNN): 3 kW/m2





# Comparison of the friction factors divided by the average Colburn j-factors as a function of Reynolds number for 0 m < L < 2 m at a heat flux of 3 kW/m2

#### General Regression Neural Network (GRNN): 3 kW/m2



#### General Regression Neural Network (GRNN): 3 kW/m2





### Analysis of Variance

|                                                          | Figure 5: 0<br>kW/m2 | Fig 5: 3<br>kW/m2 | Fig6a_B0.csv | Fig6a_Y3.cs<br>v | Fig8_f_1.csv |
|----------------------------------------------------------|----------------------|-------------------|--------------|------------------|--------------|
| <b>Proportion of variance</b> explained by model (R^2) % | 99.968%              | 99.682            | 99.935       | 99.838           | 99.815       |
| Coefficient of variation (CV)                            | 0.007094             | 0.018168          | 0.015090     | 0.018976         | 0.004997     |
| Normalized mean square error (NMSE)                      | 0.000323             | 0.003183          | 0.000645     | 0.001616         | 0.001855     |
| Correlation between actual and predicted                 | 0.999840             | 0.998468          | 0.999679     | 0.999201         | 0.999083     |
| Maximum error                                            | 0.0021012            | 0.0037786         | 6.3281898    | 9.0706368        | 0.0032808    |
| RMSE (Root Mean Squared Error)                           | 0.0005277            | 0.0010562         | 1.8890273    | 2.7823118        | 0.0005358    |
| MSE (Mean Squared Error)                                 | 0.0000003            | 0.0000011         | 3.568424     | 7.7412589        | 0.0000003    |
| MAE (Mean Absolute Error)                                | 0.0003513            | 0.0006473         | 0.9776852    | 1.7255757        | 0.0002439    |
| MAPE (Mean Absolute Percentage Error)                    | 0.5314583            | 1.2717376         | 0.5700633    | 1.3014959        | 0.2448627    |





#### **METHODOLOGY Developed**

#### Laminar:

$$48 \le Re \le 3217$$
,  $2.9 \le Pr \le 282$ ,  $5.5 \le Gr \le 4.5 \times 10^4$ ,  $41 \le Gr^* \le 7.3 \times 10^6$ 

#### Transitional:

$$2520 \le Re \le 3361$$
,  $5.4 \le Pr \le 6.8$ ,  $2.8 \times 10^4 \le Gr \le 3.2 \times 10^4$ ,  $6.1 \times 10^4 \le Gr^* \le 3.7 \times 10^5$ 

## Quasi-turbulent and turbulent:

$$2804 \le Re \le 9787$$
,  $5.5 \le Pr \le 6.9$ ,  $8.9 \times 10^2 \le Gr \le 1.4 \times 10^4$ ,  $5.9 \times 10^4 \le Gr^* \le 3.6 \times 10^5$ 

The average Colburn j-factors of the different tube lengths as a function of Reynolds number at different heat fluxes  $h_{Mu} = h_{Mu}$ 

 $Nu = \frac{h L}{\lambda}$ 







## Conclusions and Future Work



#### **Conclusions**

- ❖ The heat transfer coefficient depends mainly on the mass flow of steam. Temperature and pressure are secondary.
- ❖ Machine learning techniques: GMDH polynomial network and PNN/GRNN neural network are the best in predicting heat transfer coefficient.
- ❖ For both sets of experimental data, a methodology is developed to predict the heat transfer coefficient
- ❖ Our next goal is to predict the heat transfer coefficient using dynamic CFD modeling of an Inconel 740H alloy boiler outlet header.



# Part III: Steam Header Design Progress



The WILLIAM STATES LEE COLLEGE of ENGINEERING

April 2022 Michael Zimnoch



## **Designing Headers**

- Header is designed using three materials: P22, P91, IN740.
- Each header will be designed in accordance with a series of ASME BPVC Codes
  - Section I: General Design Requirements
  - Section II: Material Properties
  - Section III-NH: Evaluation of Components in Elevated Temperature Service
  - Section VIII-2: Alternative Rules –
     Design Fatigue Curves
- IN740 material properties will be taken from Special Metals
- The life expectancy of each header will be evaluated using
  - ASME BPVC Section VIII-2
  - STP-PT-070
  - ASME FFS-1/ API 579-1



https://www.indiamart.com/proddetail/boiler-headers-4962339955.html



## **Geometry Design**

 The wall thickness of the header and tubes were found using the processes outlined in subsection PG-27.2.1

Tube thickness 
$$t = \frac{Pd_o}{2S + P} + 0.005d_o$$

$$d_o = OD Tube = 2.0$$
"

P = Maximum allowable working pressure (2450 psi)

S = Maximum Allowable Stress at Design Temperature

$$S_{P22} = 53.57 \text{ MPa at } 541^{\circ}\text{C}$$

$$S_{P91} = 108.4 \text{ MPa at } 541^{\circ}\text{C}$$

$$S_{IN740} = 276 \text{ MPa at } 541^{\circ}\text{C}$$

$$t_{P22} = 0.282$$
"  
 $t_{P91} = 0.155$ "  
 $t_{IN740} = 0.070$ "



# **Geometry Design - Header**

Header thickness 
$$\leftarrow$$
  $t = \frac{PD}{2SE + 2yP} + C$ 

P22 - 22.25"

P91 – 19.07"

IN740 - 16.87"

ID = 15.25 for all models

P = Maximum allowable working pressure = 2450 psi

C = Minimum allowance for threading stability = 0

f = 0, tubes will be welded in.

$$E = Efficiency = 0.797$$

$$E = \frac{p - d}{p}$$

p = Pitch = 6"

d = Diameter of opening = 1.219"

S = Maximum Allowable Stress at Design Temperature

P22 - 3.45"

P91 - 1.91"

1N740 - 0.81"



## **Creep Rupture**

- API 579-1/ASME FFS-1 provides 3 options to determine the creep rupture at a given time.
  - Project Omega Method
  - Larson Miller Method Average Lifetime
  - Larson Miller Method Minimum Lifetime
- The Larson Miller Minimum Lifetime method was chosen to reflect the most conservative case.
- The lower value of the yield stress of the material or the stress to cause creep rupture at 100,000 hours was used to evaluate the model for shakedown.





### Shakedown

- Idealized pressure and temperature profiles were generated from data provided by the power plant.
- The idealized cycle was ran 7 times to evaluate the model for shakedown.
- Peak Temperature: 550 °C
- Peak Pressure: 17 MPa



# **Geometry Design - Header**

Header thickness 
$$\leftarrow$$
  $t = \frac{PD}{2SE + 2yP} + C$ 

P22 - 22.25"

P91 – 19.07"

IN740 - 16.87"

ID = 15.25 for all models

P = Maximum allowable working pressure = 2450 psi

C = Minimum allowance for threading stability = 0

f = 0, tubes will be welded in.

$$E = Efficiency = 0.797$$

$$E = \frac{p - d}{p}$$

p = Pitch = 6"

d = Diameter of opening = 1.219"

S = Maximum Allowable Stress at Design Temperature

P22 - 3.45"

P91 - 1.91"

1N740 - 0.81"



## Shakedown

 The P22 model was found to shakedown during the first cycle.



- Steps were also taken to validate the application of the material model in Abagus.
- A paper evaluating a P91 header was recreated [1].
- The material used was a P91 Two-Layer Visco-Plastic model.

• 
$$\varepsilon_p^{el} = \frac{1+v}{K_p} \sigma_p - \frac{v}{K_p} tr(\sigma_p)$$

• 
$$\varepsilon_v^{el} = \frac{1+v}{K_v} \sigma_v - \frac{v}{K_v} tr(\sigma_v) I$$

• 
$$\sigma_v = K_v : (\varepsilon - \varepsilon_v)$$

• 
$$\sigma_p = K_p : (\varepsilon - \varepsilon_p)$$

• 
$$\sigma = \sigma_p + \sigma_v$$

• 
$$\sigma^0 = k + Q_{\infty}(1 - \exp(-bp))$$

• 
$$\varepsilon_p^{el} = \frac{1+v}{K_p} \boldsymbol{\sigma}_p - \frac{v}{K_p} tr(\boldsymbol{\sigma}_p) I$$
  
•  $\varepsilon_v^{el} = \frac{1+v}{K_v} \boldsymbol{\sigma}_v - \frac{v}{K_v} tr(\boldsymbol{\sigma}_v) I$   
•  $\varepsilon_v^{el} = \frac{1+v}{K_v} \boldsymbol{\sigma}_v - \frac{v}{K_v} tr(\boldsymbol{\sigma}_v) I$ 

• 
$$\frac{\Delta\sigma}{2} - k = \frac{C_i}{\gamma_i} \tanh(\gamma_i \frac{\Delta\varepsilon_p}{2})$$

• 
$$\dot{\boldsymbol{\varepsilon}}_v = \frac{3}{2}A[f(\boldsymbol{\sigma}_v)]^n \frac{\boldsymbol{S}_v}{f(\boldsymbol{\sigma}_v)}$$

$$\bullet \quad B = \frac{K_{v}}{K_{v} + K_{p}}$$



- The temperature and pressure profiles were provided by [1].
  - Maximum Operating Pressure: 17 MPa
  - Maximum Operating Temperature: 490 °C

The failure criteria was taken as the largest Ostergren parameter  $\Delta \varepsilon_{in} \sigma_{max}$  shown in the following equation [1]:

$$N_F = C(\Delta \varepsilon_{in} \sigma_{max})^{\beta}$$

C & β are material constants determined from [1] and taken as 4,500 and -1.6 respectively.

| Model          | Location | Cycles To Failure | Years To Failure |
|----------------|----------|-------------------|------------------|
| T.P. Farragher | Center   | 2,178             | 41.9             |
| T.P. Farragher | Edge     | 1,954             | 37.6             |
| M. Zimnoch     | Center   | 2,211             | 42.5             |
| M. Zimnoch     | Edge     | 2,042             | 39.3             |

- The methodology was applied to the headers under normal loading scenarios and found an unrealistic lifespan on the order of >300 years for all materials.
- Additional thermal data shows that the tube temperatures can significantly exceed the design temperature of the header.
- Some tubes have an average temperature 30 °C higher than the average header temperature.





 Additional thermal data shows that the tube temperatures can significantly exceed the design temperature of the header 1005 °F (540.6 °C) routinely throughout the year.



- The maximum tube temperatures exceed the design temperature of the header of 1005 °F (540.6 °C).
- The model was re-ran using the temperature data from the tubes expected to cause the most damage.

| Summary of July 20-30 Tube Data |          |          |          |          |          |          |          |          |          |          |          |           |           |           |           |
|---------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
| Tube                            | Tube 41A | Tube 41B | Tube 46A | Tube 46B | Tube 51A | Tube 51B | Tube 56A | Tube 56B | Tube 61A | Tube 61B | Tube 66A | Tube 66B  | Tube 70A  | Tube 70B  | Tube 71A  |
| Average<br>Temperature (F)      | 801      | 802      | 804      | 805      | 811      | 814      | 813      | 816      | 810      | 808      | 803      | 809       | 782       | 783       | 804       |
| Maximum<br>Temperature (F)      | 1057     | 1059     | 1090     | 1085     | 1100     | 1099     | 1096     | 1086     | 1089     | 1086     | 1075     | 1074      | 1030      | 1027      | 999       |
| Tube                            | Tube 71B | Tube 76A | Tube 76B | Tube 81A | Tube 81B | Tube 86A | Tube 86B | Tube 91A | Tube 91B | Tube 96A | Tube 96B | Tube 101A | Tube 101B | Tube 105A | Tube 105B |
| Average<br>Temperature (F)      | 804      | 832      | 835      | 845      | 842      | 850      | 853      | 844      | 848      | 837      | 836      | 830       | 833       | 783       | 762       |
| Maximum<br>Temperature (F)      | 1001     | 1054     | 1063     | 1074     | 1071     | 1085     | 1092     | 1074     | 1090     | 1073     | 1074     | 1065      | 1072      | 984       | 962       |

| Summary of September 20-26 Tube Data |          |          |          |          |          |          |          |          |          |          |          |           |           |           |           |
|--------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
| Tube                                 | Tube 41A | Tube 41B | Tube 46A | Tube 46B | Tube 51A | Tube 51B | Tube 56A | Tube 56B | Tube 61A | Tube 61B | Tube 66A | Tube 66B  | Tube 70A  | Tube 70B  | Tube 71A  |
| Average<br>Temperature (F)           | 847      | 849      | 849      | 850      | 853      | 858      | 853      | 857      | 852      | 852      | 851      | 858       | 828       | 831       | 866       |
| Maximum<br>Temperature (F)           | 1026     | 1028     | 1047     | 1043     | 1067     | 1065     | 1090     | 1077     | 1091     | 1089     | 1066     | 1065      | 996       | 989       | 984       |
| Tube                                 | Tube 71B | Tube 76A | Tube 76B | Tube 81A | Tube 81B | Tube 86A | Tube 86B | Tube 91A | Tube 91B | Tube 96A | Tube 96B | Tube 101A | Tube 101B | Tube 105A | Tube 105B |
| Average<br>Temperature (F)           | 866      | 902      | 906      | 914      | 913      | 919      | 923      | 911      | 919      | 905      | 905      | 899       | 904       | 846       | 822       |
| Maximum<br>Temperature (F)           | 984      | 1041     | 1043     | 1048     | 1047     | 1047     | 1052     | 1037     | 1048     | 1043     | 1043     | 1053      | 1063      | 993       | 936       |

#### P22 Lifetime Evaluation: Tube 56A

- Number of fatigue cycles in 10 days: 456
  - Let 456 Cycles equal one ten day block.
- ASME BPVC VIII-2 Annex 3F Table 3-F.1: 434 Blocks
  - 11.9 Years until failure
  - Peak Alternating Stress: 203 MPa
- Updated life expectancy represents the minimum known failure time of 10-20 years.
- Possible discrepancy in material model not accurately matching in service component.

#### **P22 Material**

- To validate the material model, data from samples taken from a retired steam header will be evaluated.
- The samples were evaluated at 3 temperatures.
  - 20 °C
  - 300 °C
  - 500 °C
- Each sample was subjected to 50 cycles at the following strains
  - 0.1%, 0.25%, 0.4%, 0.5%, 0.75%, 0.5%, 0.25%

- Stress-Strain data was provided for serviced P22 samples at 3 temperatures.
  - 20 °C
  - 300 °C
  - 500 °C
- Each sample was subjected to 50 cycles at the following strain blocks
  - 0.1%, 0.25%, 0.4%, 0.5%, 0.75%, 0.5%, 0.25%
  - 50 Cycles per block
  - 6 Blocks per sample





- The desired material model will be a Non-Linear Kinematic Hardening, NLKH, model.
  - The model will not incorporate Isotropic Hardening or Creep effects.
- The provided samples are from a retired unit with an unknown strain history needed to determine Isotropic Hardening material parameters.
- The data provided does not include rate effects required to obtain the Creep material parameters.

• The NLKH constants were found following the procedure outlined in Lemaitre & Chaboche, "Mechanics of Solid Materials," 1994.

- Material hardening is generally broken into two categories.
  - Isotropic Hardening
  - Kinematic Hardening
    - Linear
    - Nonlinear
- Isotropic Hardening is used to reflect symmetric increases of the yield surface.
- Kinematic Hardening is used to reflect translations of the yield surface.

- Isotropic Hardening: Increases yield strength equally in tension and compression.
- The yield function, f, has the form of  $f = \sigma_{\rm eq} R \sigma_y$





- Under symmetric strain cycles, Isotropic Hardening stabilizes to a set value as the mean stress approaches zero.
- The level of Isotropic Hardening depends on the strain amplitude.
- Therefore, only Kinematic hardening effects are considered when evaluating a stabilized state.
- This can be seen by the definition of the evolution of R.

$$dR = b(Q - R)dp$$



- Kinematic Hardening: An increase in tensile yield strength reduces the compressive yield strength.
- For Kinematic Hardening, the yield function, f, has the form of  $f=J_2(\sigma-\chi)-k$



- Kinematic Hardening can be represented as linear and nonlinear hardening.
- For linear hardening  $\mathrm{d}\chi = C_0 d\varepsilon^p$
- For nonlinear hardening  $\mathrm{d}\chi = \frac{2}{3}Cd\varepsilon^p \gamma\chi dp$





- Initial constants were found using a single set of coefficients for the NLKH model.
  - 1. Determine the initial yield stress of the first cycle
  - 2. Determine the  $\frac{c}{\gamma}$  value as an asymptotic value of  $\Delta \sigma k$  plotted against  $\Delta \varepsilon$ .
  - 3. Determine the constants C,  $\gamma$  by fitting the relationship of

$$\frac{\Delta\sigma}{2} - k = \frac{c}{\gamma} \tanh\left(\gamma \, \frac{\Delta\varepsilon_p}{2}\right)$$

Note: The modulus was taken as a linear fit of the first 0.00095 strain. The
initial yield stress was found as the intersection of the stress strain data and
the 0.2% offset modulus.

- The model was updated to reflect the superposition of multiple NLKH models.
- A python script using the scipy.optimize.curve\_fit() functionality was used to determine the coefficients  $C, \gamma$ 
  - The model uses Least Square Minimization









 The updated constants for the NLKH model are shown below.

$$\frac{\Delta\sigma}{2} - k = \frac{c}{\gamma} \tanh\left(\gamma \frac{\Delta\varepsilon_p}{2}\right)$$

| Temperat<br>ure | E (MPa) | K (MPa) | C <sub>1</sub> | γ <sub>1</sub> | C <sub>2</sub> | γ <sub>2</sub> |
|-----------------|---------|---------|----------------|----------------|----------------|----------------|
| 20°C            | 180,475 | 134.29  | 144916.02      | 1,110.81       | 11,670.76      | 0.02           |
| 300°C           | 206,187 | 133.82  | 18,444.78      | 153.46         | 101,885.57     | 2062.2         |
| 500°C           | 195,907 | 112.02  | 122,225.99     | 2,599.87       | 14,771.63      | 168.46         |

#### References

- [1] Farragher, T.P., Scully, S., O'Dowd, N.P. and Leen, S.B., 2013. Development of life assessment procedures for power plant headers operated under flexible loading scenarios. *International Journal of Fatigue*, *49*, pp.50-61.
- [2] Lemaitre, J. and Chaboche, J.L., 1994. *Mechanics of solid materials*. Cambridge university press.



#### Thank you for your participation.

**Questions?** 



D.O.E. Project
DE-FE0031747
Alloy for Enhancement of Operational
Flexibility of Powerplants