NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

D.O.E. Project DE-FE0031747

Alloy for Enhancement of Operational
Flexibility of Powerplants

Ahmed C. Megri (PI)
North Carolina A&T State University

Alireza Tabarraei (co-Pl)
UNC Charlotte




NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Outline

Heat Transfer Coefficient vs. Heat Transfer Coefficient

Steam Mass Flow vs. Pressure Drop Steam Design Header

North Carolina A&T State University UNC Charlotte



NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

PART I: HEAT TRANSFER COEFFICIENT VS.

STEAM MASS FLOW

PREDICTION OF HEAT TRANSFER COEFFICIENT USING
MACHINE LEARNING
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320MW OQutlet Header
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First Set of Experimental Data

Data from a real Power Plant

Pressure, temperature, mass flow (no heat transfer is measured).
Measurement over time (10 days measurement)

Transient State ANSY'S simulation
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Methodology

Beqi Inlet Properties: Pressure, Temperature and -
€gin Experimental Data: Power Plant i
Phase Dat Begin
ata

¥ |

Inlet Mass Flow _ ]
Relationship between Energy

flow and Mass flow (using data

mining & machine learning)

¥

Inlet Calculation: Sp. Enthalpy, Sp. Entropy &

Energy Flow ‘

(for each Inlet)
Database: ANSY'S simulation to predict heat
transfer coefficient as a function of the mass
Header Calculation: Total Inlet Energy Flow, Total Ilggvﬁu(:ge\liell\?;%gome; (2) Reynolds Number;
Inlet Mass Flow, and Sp. Enthalpy ’
Predict heat transfer coefficient, using

Header Properties: Specific Enthalpy and . i
machine learning tools for any mass END
Temperature, Energy Flow flow
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Assumptions
= Steady-state

= |deal Gas

Using Pressure based formulation to calculate density from pressure
and temperature .

= Reference Density
Low Mach number flow
Introduced to improve stability of the system.

= Compressible
= Operating Pressure of 1 Atm
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Input:
» Temperatures: T1, T2, T3
» Steam mass flow: F1, F2, F3

Output:
» Heat Transfer Coefficient

T1 M1

T2 M2

T3 M3

T1 M1 ‘

0.600({m)
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Predictive Models

Simulation Data (Database)
Develop the models (70% are for training & 30% are for Testing)

Comparison between actual vs. model
» (1) Prediction of Heat Transfer Coefficient as function of the main mass flow;
» (2) Evaluation of the models using visualization techniques (gain & lift)
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MethOdS Pattern layer

Input layer

l

= Multilayer Perceptron

= PNN/GRNN Neural Network
= RBF Network

= GMDH Polynomial Network
= Cascade Correlation Network

Hidden layer —_

Summation layer
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3 layers 6, 7, 1 Neurons 3 layers (1 hidden)
e Automatic hidden layer neuron selection

e \alidation: Random 20%

e Hidden layer activation function: Logistic
e Output layer activation function: Logistic
e Traditional conjugate gradient

79 e Sigma for each variable

Constrain minimum sigma values

Model optimization and simplification: remove
unnecessary neurons (Minimize error)
Random: 20%

Type of kernel function: Gaussian

9 e Validation: Random 20%

20 20 e \Validation: Random 20%

e Layer connection: connect only to previous layer

e Overfitting protection control: Hold out sample
percent: 20%

3 6,4, 1 e Hidden layer kernel functions: Sigmoid & Gaussian
e Model testing and validation: Random 20%

Simulation Parameters
[ ) [ ] [ ] [ )
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Analysis of Variance

Method CV NMSE | Correlation RMSE MSE YIN= MAPE
(%0)

Multilayer 99.902 0.023519 0.000980 0.999567 42.326272  1791.5133  27.994853  12057.24
Perceptron

PNN/GRNN 99.958 0.015314 0.000416 0.999801 27.561308  759.6257 20.393533  4018.8622
Neural Network

RBD Network 99.851 0.029026  0.001493 0.999356 52.238191 2728.8286  30.969718  9530.1242

GMDH 99.989 0.007760  0.000107 0.999949 13.965366  195.03145  10.78587 6662.6184
Polynomial
Network

Cascade 99.917 0.0217/08 0.000835 0.999657 39.067047  1526.2341  29.394567  4160.4599

Correlation
Network
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Data Normalization

RA2 (%)  CV NMSE Sorre'at'o RMSE MSE  MAE MAPE  BEST METHOD

0.99913  3.030799 9.158879 0.999618 3.030804 9.185769 2.595512 3.000163 M4: Multilayer Perceptron

M2: PNN/GRNN Neural
0.99969 1.973454 3.88785 0.999852 1.973548 3.894889 1.890764 1 Network

0.99862  3.740464 13.95327 0.999407 3.740555 13.99174 2.871323 2.371349 M5: RBD Network

M1: GMDH Polynomial
1 1 1 1 1 1 1 1.657837 Network

M3: Cascade Correlation
0.99928 2.797423 7.803738 0.999708 2.797425 7.825581 2.725285 1.035233 Network
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Variable Importance

Method T1 T2 T3 F1 F2 F3 Most important
variable
Multilayer Perceptron 3.668 5.416 0.375 89.157 80.949 100.00 F3

PNN/GRNN Neural 05.301 90.688 100.00 F3
Network

RBD Network 0347 0.192 0.108 0.0/8 25.139 100.00 F3

GMDH polynomial 100.00 F2
network

Cascade Correlation 5.103 1.906 0.187 5.086 6.006 100.00 F3
Network
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Heat Transfer Coefficient as function of Steam Mass Flow

» In this case the only Inputis ¢ The output Is the heat
the Steam mass flow at the transfer coefficient

main pipe

 The variable importance
analysis leads us to such
assumption
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Analysis of Variance

%

Multilayer 99.975 0.011245 0.000253 0.999878 22.560377 508.97063 14.837764 13314.713
Perceptron

PNN/GRNN 99.925 0.019371 0.000750 0.999638 38.863604 1510.3797 26.997166 11408.283
Neural
Network

SEIDANCEIId @ 99.730 0.036759 0.002702 0.998794 73.750907 5439.1963 44.793472 8957.221

GMDH 99.987 0.007992 0.000128 0.999938 16.033898 257.0859 11.020228 9985.6856
polynomial
network
Cascade 00.988 0.007702 0.000119 0.999946 15.452697 238.78583 12.06805 6460.1994
Correlation
Network
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PART Il: HEAT TRANSFER COEFFICIENT
VS. PRESSURE DROP

PREDICTION OF PRESSURE DROP AND HEAT TRANSFER

OF DEVELOPING AND FULLY DEVELOPED FLOW, USING
MACHINE LEARNING TECHNIQUES
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The purpose

= To establish the relationship between pressure drop and heat transfer in
different flow regime.

= To use machine learning and experimental data to investigate in order to
predict the heat transfer coefficient.
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Second Set of Experimental Data

A smooth circular test section with an inner diameter of 11.5 mm, and
maximum length-to-diameter ratio of 872.

Measurement:

» Pressure drop and heat transfer measurements were taken at Reynolds numbers
between 500 and 10,000 at different heat fluxes.

» Water was used as the test fluid and the Prandtl number ranged between 3 and 7.

» Atotal of 317 mass flow rate measurements, 34,553 temperature measurements and
2536 pressure drop measurements were taken.

» Pressure drop and heat transfer measurements were taken simultaneously.
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Development of Predictive Models

= Using machine learning techniques, the relationship between pressure drop
and heat transfer was investigated.

= Correlations were developed to determine the relationship between heat
transfer and pressure drop, as well as the average Nusselt numbers, in the
laminar, transitional, quasi-turbulent and turbulent flow regimes, for both
developing and fully developed flow in mixed convection conditions.
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Predictive Methods

Gene Expression Programming

Multilayer perceptron neural network (MLP)

Generalized regression neural network (GRNN)

Radial basis function network

Cascade Correlation Neural Network with Deterministic Weight
GMDH (Group Method of Data Handling) Polynomial Neural Network
LSTM (Long Short-Term Memory)
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The relationships between the friction factors and Reynolds Number [1]

A ; Laminar Transitional Quasi-turbulent Turbulent
ARe _ '

i
-

_ 2APD  APpD’mt*
Lix)pVv*  8m2L(x)

The friction factor (f) is

representing the loss of ha
pressure of a fluid in a pipe ; :
due to the interactions in grdfy
between the fluid and the Fully developed\ (@);F
pipe. isothermal flow ":L 2

f = 64/Re Té

(7).

[1] M. Everts, J.P. Meyer, Heat transfer of developing and fully developed flow in smooth horizontal tubes in the
transitional flow regime, Int. J. Heat Mass Transf. 117 (2018) 1331-1351.
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The relationships between the Colburn j-factors and Reynolds Number [3]

A , laminar Transitional Quasi-turbulent Turbulent
ARe : L

g

J Factor is A dimensionless factor

for heat transfer coefficient for
calculating the heat "~
transfer coefficient

Reqt  Re Reyt
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General Regression Neural Network (GRNN): 3 kW/m2
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General Regression Neural Network (GRNN): 0 kwW/m2

Om<L<2m,

General Regression Neural Network (GRNN): 0 kwW/m2 General Regression Neural Network (GRNN): 0 kW/m2
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Fig 6: Comparison of the product of the friction factor and Reynolds number (f*Re) as a function of dimensionless
axial distance
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General Regression Neural Network (GRNN): 0 kw/m2
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Fig 6: Comparison of the product of the friction factor and Reynolds number (f*Re) as a function of
dimensionless axial distance
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Fig. 8. Comparison of the pressure drop and heat transfer results in terms of the friction factorsforOm<L <8 m

as a function of Reynolds number, at heat fluxes of 1 kW/m?2
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Comparison of the pressure drop and heat transfer results in terms of the average Colburn j-factors
for 0 m < L <8 m as a function of Reynolds number, at heat fluxes of 1 kW/m2
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Comparison of the pressure drop and heat transfer results in terms of the average Colburn j-factors
for 0 m < L <8 m as a function of Reynolds number, at heat fluxes of 3 kW/m2
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Comparison of the friction factors divided by the average Colburn j-factors as a function of Reynolds number
for 0 m <L <8 m at a heat flux of 3 kW/m2
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flj

Comparison of the friction factors divided by the average Colburn j-factors as a function of Reynolds number

forOm < L <2 m at a heat flux of 3 kW/m2
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Analysis of Variance

Figure 5: 0 Fig5: 3 Fig6a_BO0.csv F|96a Y3.cs | Fig8 f l.csv
kW/m2 kW/m2

explalned VAN CIN(ZAANNN 99.968%

_._ 0.007094

(NMSE) 0.000323

MAPE (Mean Absolute Percentage Error) 0.5314583

99.682

0.018168
0.003183

0.998468

0.0037786

0.0010562

0.0000011

0.0006473

1.2717376

99.935

0.015090
0.000645

0.999679

6.3281898

1.8890273

3.568424

0.9776852

0.5700633

99.838

0.018976
0.001616

0.999201

9.0706368

2.7823118

7.7412589

1.7255757

1.3014959

99.815

0.004997
0.001855

0.999083

0.0032808

0.0005358

0.0000003

0.0002439

0.2448627
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Number

METHODOLOGY Developed [ Reynolds }

Laminar:
48 <Re <3217,29<Pr<282,55<Gr<45 % 10% 41 <Gr =7.3 % 10°

h

. . Flow Type: Laminar, Transitional,
Transitional: [ guasi-turbulent and turbulent }
2520 < Re < 3361,5.4<Pr<6.8,2.8 x 10 < Gr<3.2 x 104, i
6.1 x 10*<Gr <3.7 x 10°

Friction Factor, such as:
Quasi-turbulent and turbulent:

2804 < Re < 9787,5.5<Pr<6.9,89 x 10°<Gr< 1.4 x 10%,
59 x 10* < Gr <3.6 x 10°

fo 3.74Re — 8066 Nu
N Re — 2320 ) Repr™%7

¥

The average Colburn j-factors of the different tube [ Nusselt Number Using Correlations, such as }
lengths as a function of Reynolds number at Nu — (0.00108Re —2.49)Gr " "Pr
different heat fluxes Ny P L !

= [ Heat Transfer Coefficient }




Conclusions and Future Work
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Conclusions

¢ The heat transfer coefficient depends mainly on the mass flow of steam. Temperature and pressure are
secondary.

¢ Machine learning techniques: GMDH polynomial network and PNN/GRNN neural network are the best in
predicting heat transfer coefficient.

¢ For both sets of experimental data, a methodology is developed to predict the heat transfer coefficient

¢ Our next goal is to predict the heat transfer coefficient using dynamic CFD modeling of an Inconel 740H
alloy boiler outlet header.
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Designing Headers

 Header is designed using three materials: P22, P91, IN740.

. Each header will be designed in
accordance with a series of ASME BPVC
Codes
. Section I: General Design
Requirements

. Section Il: Material Properties

e  Section llI-NH: Evaluation of
Components in Elevated Temperature
Service

. Section VIII-2: Alternative Rules —
Design Fatigue Curves

. IN740 material properties will be taken
from Special Metals

* The life expectancy of each header will be
evaluated using
. ASME BPVC Section VIII-2
. STP-PT-070 -

«  ASME FFS-1/ API 579-1 “\’/'Iv

The WILLIAM STATES LEE COLLEGE of ENGINEERING



Geometry Design

The wall thickness of the header and tubes were found
using the processes outlined in subsection PG-27.2.1

Tube thickness Pd
0
Tt = + 0.005d,
25 + P
d, = OD Tube = 2.0" tpy, = 0.282”
tpg; = 0.155”
P = Maximum allowable working tin740 = 0.0707

pressure (2450 psi)

S = Maximum Allowable Stress at

Design Temperature

Sp,, = 53.57 MPa at 541°C

Spg; = 108.4 MPa at 541°C

S7a0 = 276 MPa at 541°C ==

UNC CHARILOITE

The WILLIAM STATES LEE COLLEGE of ENGINEERING



Geometry

Header thickness «—— ¢ =

D = Quter Diameter

P22 - 22.25"
P91 - 19.07"
IN740 — 16.87"

ID = 15.25 for all models

P = Maximum allowable
working pressure = 2450 psi

C = Minimum allowance for
threading stability = 0

f =0, tubes will be welded in.

Design - Header

PD
C

2SE + 2yP *
E = Efficiency = 0.797

p—d
p

E =

p = Pitch = 6"
d = Diameter of opening = 1.219”

S = Maximum Allowable Stress at
Design Temperature

t = Wall Thickness

P22 - 3.457
P91 — 1.91”

_ 7 LS
IN740 — 0.81 \/=

UNC CHARILOTTE
The WILLIAM STATES LEE COLLEGE of ENGINEERING




Creep Rupture

APl 579-1/ASME FFS-1 provides 3 options to determine the creep rupture at a
given time.

. Project Omega Method

. Larson Miller Method — Average Lifetime

. Larson Miller Method — Minimum Lifetime

The Larson Miller Minimum Lifetime method was chosen to reflect the most
conservative case.

The lower value of the yield stress of the material or the stress to cause creep
rupture at 100,000 hours was used to evaluate the model for shakedown.

100,000 Hour Screening Curve Comparison Yield Stress Vs Temperature

<
e,
=
«
@
@2 9
e
=
173

STRESS (MPA)

=

595.00
TEMPERATURE( C)

- 4
UNC CHARILOTTE

The WILLIAM STATES LEE COLLEGE of ENGINEERING




Shakedown

* |dealized pressure and temperature profiles were generated from
data provided by the power plant.

 The idealized cycle was ran 7 times to evaluate the model for
shakedown.

e Peak Temperature: 550 °C
 Peak Pressure: 17 MPa

Applied Boundary Conditions

I
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N
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Geometry

Header thickness «—— ¢ =

D = Quter Diameter

P22 - 22.25"
P91 - 19.07"
IN740 — 16.87"

ID = 15.25 for all models

P = Maximum allowable
working pressure = 2450 psi

C = Minimum allowance for
threading stability = 0

f =0, tubes will be welded in.

Design - Header

PD
C

2SE + 2yP *
E = Efficiency = 0.797

p—d
p

E =

p = Pitch = 6"
d = Diameter of opening = 1.219”

S = Maximum Allowable Stress at
Design Temperature

t = Wall Thickness

P22 - 3.457
P91 — 1.91”

_ 7 LS
IN740 — 0.81 \/=
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Shakedown

* The P22 model was found to shakedown during the first
cycle.

Center - PE22, Temperature, Pressure Vs Time
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Material Model Verification

Steps were also taken to validate the application of the

material model in Abaqus.

A paper evaluating a P91 header was recreated [1].
The material used was a P91 Two-Layer Visco-Plastic

model.
14+v 1y 0 — — —
gel = g, — —tr(a,)l "=kt Qo1 exp(—bp))
Kp Kp a; = Cp(0p, — a;) — viap +
o0\~ D
eel = o — Lir(a)l — a;C;
v % 1% c; 7t
Ky Ky :

o, = Ky: (e — &)
g, = K,: (¢ —¢p)
c=0,+ o,

Ao - G A
. k—yitanh(yl 2)

.3 s,
& = ;A (00)]" 7~
Ky

Ky+Kp

N
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Material Model Verification

 The temperature and pressure profiles were provided by [1].
* Maximum Operating Pressure: 17 MPa
* Maximum Operating Temperature: 490 °C

The failure criteria was taken as the largest Ostergren parameter
Ag;,0ma, ShOwN In the following equation [1]:
Np = C(A&inOmax)”
— C & B are material constants determined from [1] and taken as 4,500
and -1.6 respectively.

T.P. Farragher Center 2,178 41.9

T.P. Farragher Edge 1,954 37.6

M. Zimnoch Center 2,211 42.5

M. Zimnoch Edge 2,042 39.3
74
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Material Model Verification

The methodology was applied to the headers under normal loading scenarios and
found an unrealistic lifespan on the order of >300 years for all materials.

Additional thermal data shows that the tube temperatures can significantly exceed
the design temperature of the header.

Some tubes have an average temperature 30 °C higher than the average header
temperature.

Tube Temperature Comparisons

700

600

500

Temperature { C)

100 ll
<
o 1 r
0 100000 200000 300000 400000 500000 600000 700000 800000 \\ /I
fime (%) UNC CHARLOTTE

Tube 51A

Tube 56A Tube 86B — - - Tube91B = = = Header
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Material Model Verification

 Additional thermal data shows that the tube temperatures
can significantly exceed the design temperature of the
header 1005 °F (540.6 °C) routinely throughout the year.

Tube Temperatures May 22 - Oct 31 2017
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Material Model Verification

* The maximum tube temperatures exceed the design temperature
of the header of 1005 °F (540.6 °C).

* The model was re-ran using the temperature data from the tubes
expected to cause the most damage.

Summary of July 20-30 Tube Data

Tube Tube 414 Tube 41B Tube 464 Tube 46B Tube 514 Tube 516 Tube 56& Tube 568 Tube 614 Tube 61B Tube 664 Tube G6B Tube T0& Tube TOB Tube 718

Auverage 801 802 804 805 81 814 813 816 810 808 803 809 782 783 804
Temperature (F]

Masimum 1057 1059 1090 1085 1100 1099 1096 1086 1089 1086 1075 1074 1030 1027 999
Temperature (F1

Tube Tube T1B Tube T6A Tube TGEB Tube 814 Tube 816 Tube 864 Tube 868 Tube 314 Tube 1B Tube 364 Tube 368 Tube 1014 Tube 1016 | Tube 105A | Tube 105B

Auerage 804 832 835 845 842 850 853 844 848 837 836 830 833 783 762
Temperature [F]

Masximum 1001 1054 1063 1074 1071 1085 1092 1074 1090 1073 1074 1065 1072 984 962
Temperature (F1

Summary of September 20-26 Tube Data

Tuhe Tube 41A | Tube 41B | Tube 46A | Tube 46B | Tube 51A | Tube 51B | Tube 56A | Tube 56B | Tube 61A | Tube 61B | Tube 66A | Tube 66B | Tube 70A | Tube 70B | Tube 71A

Average

847 849 849 850 853 858 853 857 852 852 851 858 828 831 866
Temperature (F)

Maximum

1026 1028 1047 1043 1067 1065 1090 1077 1091 1089 1066 1065 996 989
Temperature (F)

Tuhe Tuhe 71B | Tube 76A | Tube 76B | Tube 81A | Tube 81B | Tube 86A | Tube 86B | Tube 91A | Tube 91B | Tube 96A | Tube 96B |Tuhe 101A|Tube 101B|Tube 105A

Average

866 902 906 914 913 919 923 911 919 905 905 899 904 846
Temperature (F)

Maximum

984 1041 1043 1047 1047 1052 1037 1048 1043 1043 1053 1063 993
Temperature (F)
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P22 Lifetime Evaluation: Tube 56A

* Number of fatigue cycles in 10 days: 456
 Let 456 Cycles equal one ten day block.

ASME BPVC VIII-2 Annex 3F Table 3-F.1: 434 Blocks

e 11.9 Years until failure
 Peak Alternating Stress: 203 MPa

Updated life expectancy represents the minimum
known failure time of 10-20 years.

Possible discrepancy in material model not accurately
matching in service component.



P22 Material

* To validate the material model, data from samples taken from
a retired steam header will be evaluated.

* The samples were evaluated at 3 temperatures.

e 20°C
e 300°C
e 500°C

 Each sample was subjected to 50 cycles at the following
strains

* 0.1%, 0.25%, 0.4%, 0.5%, 0.75%, 0.5%, 0.25%

\/E
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New Material Model Constants

Incremental Step Test: Strain History

e  Stress-Strain data was
provided for serviced P22
samples at 3
temperatures.

. 20 °C

. 300 °C

. 500 °C
 Each sample was

subjected to 50 cycles at
the following strain blocks

e 0.1%, 0.25%, 0.4%, 0.5%,
0.75%, 0.5%, 0.25%

50 Cycles per block
* 6 Blocks per sample

STRAIN (ABS)

300

200

100

0

-100

-200

-300

-400

750 1000 1250 1500 1750 2000
CYCLE

Stress Strain Data

-1.00E-02  -8.00E-03 -6.00E-03 -4.00E-03 -2.00E-03 0.00E+00 200E-03  4.00E-03 6.00E-03  8.00E-03 1.00E-02

STRAIN (ABS)
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New Material Model Constants

The desired material model will be a Non-Linear Kinematic Hardening,
NLKH, model.

e  The model will not incorporate Isotropic Hardening or Creep effects.

The provided samples are from a retired unit with an unknown strain
history needed to determine Isotropic Hardening material parameters.

The data provided does not include rate effects required to obtain the
Creep material parameters.

The NLKH constants were found following the procedure outlined in
Lemaitre &Chaboche, “Mechanics of Solid Materials ,” 1994.

<

N\
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New Material Model Constants

 Material hardening is generally broken into two
categories.
* |sotropic Hardening
 Kinematic Hardening
* Linear
* Nonlinear

* |sotropic Hardening is used to reflect symmetric
increases of the yield surface.

 Kinematic Hardening is used to reflect translations of the
vield surface.

\/E
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New Material Model Constants

Isotropic Hardening: Increases yield strength equally in
tension and compression.

The yield function, f, has the form of f = 6, — R — 0,

\/E
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New Material Model Constants

Under symmetric strain cycles, Isotropic Hardening
stabilizes to a set value as the mean stress approaches

Zero.

The level of Isotropic Hardening depends on the strain
amplitude.

Therefore, only Kinematic hardening effects are considered
when evaluating a stabilized state.

This can be seen by the definition of the evolution of R.
dR = b(Q — R)dp

<
~\\/ /o
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New Material Model Constants

Kinematic Hardening: An increase in tensile yield strength
reduces the compressive yield strength.

For Kinematic Hardening, the yield function, f, has the
formof f = J,(c—x) — k

o
) ) -
-
N A --“'"'!
k ,f’f
X
Initial

surface N\ V_ A Lo -
p

\/E
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New Material Model Constants

Kinematic Hardening can be represented as linear and
nonlinear hardening.

For linear hardeningdy = C,deP

For nonlinear hardening dy = ngep — yxdp

L~
/ <\

(a) (&) -
UNC CHARLOTTE
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New Material Model Constants

* [nitial constants were found using a single set of
coefficients for the NLKH model.

1. Determine the initial yield stress of the first cycle

: C .
2. Determine the —value as an asymptotic value of Ac — k

Y
plotted against Ae.

3. Determine the constants C, y by fitting the relationship of

Az—g—k =§tanh(y %)

 Note: The modulus was taken as a linear fit of the first 0.00095 strain. The
initial yield stress was found as the intersection of the stress strain data and
the 0.2% offset modulus. -
N\IZ4

UNC CHARILOITE

The WILLIAM STATES LEE COLLEGE of ENGINEERING



New Material Model Constants

* The model was updated to
reflect the superposition of
multiple NLKH models.

Fig. 5.46. Superposition of several kinematic models.

E\- = 2500 MPa
JE—

/‘ElO =102 500 MPa

* A python script using the [ —
/
/

scipy.optimize.curve_fit()

functionality was used to  |§ ™ P

determine the coefficients $27 1000 o (200

/ ‘/‘_——— X3=2500¢,
C ) y X1 =40 (1 -exp (2000 €,))

0 1 2 & (%)

e The model uses Least ——
Square Minimization

300

<

N\
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® Experimental Data
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New Material Model Constants

 The updated constants for the NLKH model are shown
below.

%—k ——tanh(y ﬂ)

Temperat
ure
20°C

180,475 134.29 144916.02 1,110.81 11,670.76
300°C 206,187 133.82 18,444.78 153.46 101,885.57 2062.2
500°C 195,907 112.02 122,225.99  2,599.87 14,771.63 168.46
<&
N\lZ4
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