Robust Heat-Flux Sensors for Coal-Fired Boiler Extreme Environments

Spring 2022 NETL FECM R&D Project Review Meeting May 12th, 2022

Kenneth McAfee¹, Peter Sunderland², Oded Rabin^{3,4}

¹Department of Aerospace Engineering, University of Maryland

²Department of Fire Protection Engineering, University of Maryland

³Department of Materials Science and Engineering, University of Maryland

⁴Institute for Research in Electronics and Applied Physics, University of Maryland

Robust Heat-Flux Sensors for Coal-Fired Boiler Extreme Environments

- Personnel
 - Project Manager: Maria Reidpath
 - Pls: Oded Rabin (MSE), Peter Sunderland (FPE)
 - Graduate Student: Kenneth McAfee (AE)
 - Undergraduate Students: Julian Stewart (MSE), Audrey Li (ME)

Acknowledgment: This material is based upon work supported by the Department of Energy Award Number DE-FE0031902.

Motivation

- Powerplant personnel are reliant on sensors to determine operational parameters during dynamic energy loads.
- Heat flux measurements at the boiler wall or economizer can help determine combustion efficiency or system health.
- Current state-of-the-art heat flux gauges are not compatible with extreme boiler environments.

Objectives

- Develop a heat flux measurement system compatible with
 - Operating temperatures in excess of 750°C.
 - Oxidative, corrosive, and erosive environments.
 - Soot or deposition of combustion products.

Measuring Heat Flux

$$\Delta V = f(S, k, \theta) L \times q$$

Heat Flux Sensor Design

Transverse Seebeck Effect-based heat flux sensor head.

Heat flux collector

Auxiliary thermocouples

Beta Sensor Development

Prototype Antimony-based Heat Flux Sensor.

Beta Sensor Development

Sensor optimization through simulation.

Sensor Design Optimization

- Transduction mechanism $\Delta V = fLq$ is only valid if the heat flux in the prismatic crystals is uniform.
- ANSYS thermal simulations were used to optimize the sensor package design to increase heat flux uniformity.

Optimization Through Simulation

• Comparing temperature contours plots demonstrates improvements in heat flux uniformity.

Lessons Learned Through Simulations

- To maximize heat flux uniformity
 - Decrease package crystal thermal conductivity mismatch.
 - Minimize thermal resistance in heat flux collector.
 - Incorporate insulating features between the side walls of the crystals and the package.
 - · Arrange crystals symmetrically across mirror plane with minimal gap.

Beta Sensor Development

• Large single crystal pellet \rightarrow prismatic crystals.

Seebeck Coefficient Measurements

- The crystals used for transverse Seebeck effect-based sensing must have an anisotropic Seebeck coefficient tensor.
- In Antimony crystals $S_{11} = S_{22} > S_{33}$

Seebeck Coefficient Measurements

Sensor Element Fabrication

• Sensors were fabricated from large single crystal pellet.

Beta Sensor Development

Characterization of individual Antimony prismatic sensors.

Sensor Element Voltage Response

 The total voltage response in Sb prismatic sensors can be expressed as

$$\Delta V = C_1 \Delta T_L + C_2 \frac{L}{H} \Delta T_H$$

- Where
 - $\Delta V = V^{+} V^{-}$
 - $C_1 = -(S_{11}\cos^2\theta + S_{33}\sin^2\theta)$
 - $C_2 = -(S_{33} S_{11}) \sin \theta \cos \theta$

Characterizing Antimony Sensors

• The thermoelectric parameters of the sensor element (C_1 and C_2) were determined by subjecting the crystal to multiple heating scenarios.

Prismatic Antimony Sensor Response

 The voltage response can be represented as a planar surface.

$$\Delta V = C_1 \Delta T_L + C_2 \frac{L}{H} \Delta T_H$$

- For Antimony prismatic sensing elements
 - $C_1 = -32.8 \,\mu V/K \rightarrow \text{Matches predictions}$
 - $C_2 = 2.12 \,\mu V/K \rightarrow \text{Smaller than predicted}$

Conclusions

- Have produced single crystal Antimony sensing elements and characterized full anisotropic thermoelectric response.
- Demonstrated optimization of package configuration tailored towards heat flux uniformity.
- Have begun assembly of transverse Seebeck effect-based heat flux sensor (Beta version).

Milestones (performance period 0-15 months)

- One-dimensional Heat Flow Demonstration of a sensor head design for which heat flow through the thermoelectric sensing element is one-dimensional.
 - Status: 100% complete
- Transverse Seebeck Prototype Demonstration of analog electrical signal generation by the single crystal chain. The signal shall be a monotonic function of the heat flux.
 - Status: 80% complete

Future Work

- Demonstrate the voltage response of a fully assembled Antimony-based heat flux sensor.
- Fabricate and characterize the thermoelectric response of Rhenium prismatic sensing elements.
- Demonstrate high-temperature heat flux sensing capabilities.

Questions?