AOI2 Wireless High-Temperature Sensor Network for Smart Boiler Systems

Project No.: DE-FE0031895

Dr. Xuejun Lu, Dr. Xingwei Wang,
and Dr. Tricia Chigan (subject to DOE approval)
University of Massachusetts Lowell (UML)

Dr. Dongsheng Li, Advanced Manufacturing LLC (subcontractor)

Dr. Xinsheng Lou, General Electric (GE), vendor

Federal Project Manager: Robie E. Lewis

05/12/2022
Acknowledgement

This material is based upon work supported by the Department of Energy Award Number DE-FE0031895

Disclaimer:

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Outline

• Project objective
• Background
• Methods
• Tasks
• Progress
• Future work
• Team members
Project objective

Develop a new wireless high-temperature sensor network for real-time continuous boiler condition monitoring in harsh environments

- High-temperature sensors with integrated antennas
- Coupled with a ZigBee end device (ZED)
- Collect and route boiler temperature data in real-time

Schematic architecture of the smart boiler wireless sensor network
Background

The needs

- Boilers and furnaces are extensively used virtually everywhere
- These systems consume the most significant amount of energy
- Optimizing the operation of the systems can lead not only to huge energy savings and bring tremendous benefits to our environment

Estimated impacts

- 1% efficiency improvement provides energy savings of around 30 billion kilowatt-hours (kW·h)
- ~ 300 billion cubic feet of natural gas
- ~ 17 million tons of carbon emission reduction
Tasks

Task 1: Obtain optimal designs of the wireless high temperature sensor network.

Task 2: Fabricate the wireless high-temperature sensor and build the wireless sensor network.

Task 3: Characterize the wireless high-temperature sensor and evaluate the performance of the wireless high-temperature sensor.

Task 4: Determine the system stability and reliability.

Task 5: Report.
Milestones

DOE Project Schedule
University of Massachusetts Lowell

<table>
<thead>
<tr>
<th>Task Description</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 Obtain optimal designs of the wireless sensor network</td>
<td>10/1/2020</td>
<td>3/31/2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Design the high-temperature sensor</td>
<td>10/01/2022</td>
<td>12/31/2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Design the broadband antenna</td>
<td>11/1/2020</td>
<td>1/31/2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Antenna coupling through the Lamb filter</td>
<td>12/1/2020</td>
<td>3/30/2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Design the sensor network and perform network simulation</td>
<td>2/2/2021</td>
<td>4/30/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2 Fabricate the wireless sensor network</td>
<td>3/1/2021</td>
<td>3/30/2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Fabricate the wireless high-temperature sensor</td>
<td>3/1/2021</td>
<td>1/31/2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Set up the wireless high-temperature sensor network</td>
<td>12/1/2021</td>
<td>3/30/2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3 Characterize the wireless high-temperature sensor network</td>
<td>2/2/2022</td>
<td>1/31/2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Characterize the high-temperature sensor</td>
<td>2/2/2022</td>
<td>9/30/2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Characterize the RF performance of the antenna</td>
<td>8/1/2022</td>
<td>11/30/2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Characterize the wireless sensor network</td>
<td>10/1/2022</td>
<td>1/31/2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4 Determine the system stability and reliability</td>
<td>12/1/2022</td>
<td>9/3/2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Characterize the high-temperature sensor reliability</td>
<td>12/1/2022</td>
<td>5/31/2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Characterize the reliability of the sensor network</td>
<td>4/1/2023</td>
<td>12/3/2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5 Report</td>
<td>10/1/2020</td>
<td>12/3/2024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design the High-temperature wireless sensor

- A Lamb filter\(^1\) sensing structure
- The high-temperature sensor and the bow-tie transmission and receiving antennas are all on the 4H SiC piezoelectric substrate.
- The Lamb filter provides sharp transmission spectrum and a 0\(^0\) degree phase shift at the resonant frequency.
- Enables strong coupling of the integrated antennas.
- The resonant frequency shifts with the temperature, allowing temperature measurement through the transmission and receiving and the coupling properties of the antennas

Lamb-filter temperature shift

\[Y = \frac{1}{R_m + j\omega L_m + \frac{1}{j\omega C_m}} + j\omega C_0 \]

\[R_m + j\omega L_m + \frac{1}{j\omega C_m} = 1 + \frac{C_0}{C_m} - \omega^2 C_m L_m + j\omega C_0 R_m \]

\[R_m + j\omega L_m + \frac{1}{j\omega C_m} = \Gamma \frac{F}{V} = e_{31} \cdot l \]

\[C_m = \frac{\Gamma^2}{k_{eq}} \]

\[L_m = \frac{m_{eq}}{\Gamma^2} \]

\[C_0 = \frac{\varepsilon_r \varepsilon_0}{t} \cdot w \cdot l \]

\[k_{eq} = \frac{Elt}{2w} \]

\[R_m = \sqrt{\frac{L_m}{C_m}} \]

Task 1

Lamb-filter temperature shift (900 MHz)
Design parameters for 2.4 GHz filter

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Thickness (mm)</th>
<th>Width (mm)</th>
<th>CTE (/K)</th>
<th>Meq (kg)</th>
<th>e31 (C/m²)</th>
<th>E (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>0.2</td>
<td>0.0104</td>
<td>-42e-6</td>
<td>1.25×10⁻⁶</td>
<td>0.2</td>
<td>7.0×10¹¹</td>
</tr>
</tbody>
</table>

Design parameters for 900 MHz filter

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Thickness (mm)</th>
<th>Width (mm)</th>
<th>CTE (/K)</th>
<th>Meq (kg)</th>
<th>e31 (C/m²)</th>
<th>E (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>0.2</td>
<td>0.0285</td>
<td>-42e-6</td>
<td>1.25×10⁻⁶</td>
<td>0.2</td>
<td>7.0×10¹¹</td>
</tr>
</tbody>
</table>
Methods

Broadband antenna

Antenna design parameters using Antenna Magus and CST Microwave Studio®.

- Antenna coupling

\[
S_{11} = \frac{Z_L - Z_0}{Z_L + Z_0} \quad \quad Z_L = Z_0 \frac{1 + \Gamma e^{-j\beta L}}{1 - \Gamma e^{-j\beta L}}
\]

\[
\Gamma = \frac{(Z_{\text{filter}}Z_{\text{antenna}} - Z_0)}{(Z_{\text{filter}} + Z_{\text{antenna}} - Z_0)}/\left(\frac{Z_{\text{filter}}Z_{\text{antenna}}}{Z_{\text{filter}} + Z_{\text{antenna}} + Z_0}\right)
\]

Simulated 3dB bandwidth. A broadband operation of 800 MHz can be achieved.
2.4 GHz Antenna design

2.4 GHz antenna S11

<table>
<thead>
<tr>
<th>Substrate thickness</th>
<th>Relative permittivity</th>
<th>La</th>
<th>Wa</th>
<th>Lp</th>
<th>Wp</th>
<th>Lg</th>
<th>Wgi</th>
<th>Wgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>9.66</td>
<td>33.3</td>
<td>40.5</td>
<td>90</td>
<td>90</td>
<td>66.6</td>
<td>3.2</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Lp = 103 mm
Lp = 90 mm
2.4 GHz Antenna design

2.4 GHz antenna gain

<table>
<thead>
<tr>
<th>Substrate thickness</th>
<th>Relative permittivity</th>
<th>La</th>
<th>Wa</th>
<th>Lp</th>
<th>Wp</th>
<th>Lg</th>
<th>Wgi</th>
<th>Wgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>9.66</td>
<td>33.3</td>
<td>40.5</td>
<td>90</td>
<td>90</td>
<td>66.6</td>
<td>3.2</td>
<td>5.2</td>
</tr>
</tbody>
</table>

![Graph showing antenna gain for two different lengths of Lp: 103 mm and 90 mm.](image)
2.4 GHz Antenna design

VSWR

- \(L_p = 103\) mm
- \(L_p = 90\) mm
2.4 GHz Antenna design

3D antenna pattern (dBi)

Smith chart
Task 2.2 WSN optimization

Simulate and optimize the wireless high-temperature sensor network
Task 2.2 WSN optimization

- Data packets: IEEE 802.15.4 Data transmission rate 250 kbps

<table>
<thead>
<tr>
<th>Response time</th>
<th>Data packet</th>
<th>Guard time</th>
<th>Guard time</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-byte ACK</td>
<td>20-120 byte header data</td>
<td>8-byte header</td>
<td>T_r = 100 μs</td>
</tr>
</tbody>
</table>

\[T_{ACK} = 384 \, \mu s \]

\[T_{Data} = 32 M_D \, \mu s \]

\[T_{Slot} = (684 + 32 M_D) \, \mu s \]

- Power consumption for each sensor node

\[P_{Proc.} = 5.4 \, mW, \quad P_{PCB} = 6.0 \, mW \]

\[P_{Total} = 11.4 \, mW \]
Task 2.2 WSN optimization

- Loss
 \[L_{ij} (dB) = -20 \log_{10}(D_{ij}/D_0) \quad P_N (dBm) = -93 \]

- SNR
 \[SNR_r (l) = P_{tr} (l) - L_{ij} - P_N \]

- Bit error rate
 \[p_e (l) = Q(\sqrt{2SNR_r}) \quad p_{ij} (k) = 1 - Q(\sqrt{2SNR_r}) \]

- Successful probability for a n-byte packet
 \[p_{ij} (l, n) = [1 - Q(\sqrt{2SNR_r})]^{8n} \]

- Successful probability for an AKC packet
 \[p_{j,i} (k, 12) = [1 - Q(\sqrt{2SNR_r})]^{96} \]
Task 2.2 WSN optimization

• Repeat times for a n-byte packet

\[M = \frac{1}{p_{ij}(l,n)p_{j,i}(k,12)} \]

• Energy consumption for one n-byte packet

\[E_{tr} = 11.4 \text{ mW} \times (32 \times 120) \mu s + M[P_{tx}(l)T_{data} + P_{rx}(l)(T_{Slot} - T_{data})] \]

\[= 43.8 \ \mu J + M[P_{tx}(l)T_{data} + P_{rx}(l)(T_{Slot} - T_{data})] \]
Task 2.2 WSN optimization with Tx power and packet sizes
Future work

• Continue set up the WSN using the optimized parameters
• Evaluate the sensor material
• Start the fabrication of the high-temperature sensor
Team members

- **Dr. Xingwei Wang, US Citizen**
 - Ph.D. in Electrical Engineering, Virginia Tech 2006
 - Research experience in optical fiber sensors and high temperature sensors

Selected Publications of Dr. Wang

Team members

• Dr. Tricia Chigan, US Permanent Resident (subject to DOE’s approval)
 ❑ Ph.D. in Electrical Engineering, State University of New York at Stony Brook 2002
 ❑ 18 years research experience in wireless networking

Selected Publications of Dr. Chigan
Team members (pending for approval)

- Students pending for DOE approval
 - Lidan Cao
 - Boyang Xiang
 - Andres Biondi
 - Rui Wu
Thank you!