AOI 2: A Novel Access Control Blockchain Paradigm for Cybersecure Sensor Infrastructure in Fossil Power Generation Systems

Rahul Panat1, Vipul Goyal2

1Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA
2Computer Science Department, Carnegie Mellon University, Pittsburgh PA

Carnegie Mellon University
Outline

• Introduction and Background
 – Team
 – Project Goals and Objectives
 – Tasks and Timelines
• Building Cybersecure Sensor Networks
 – Strain Sensors
 – Temperature Sensors
• Private Access Controlled Blockchain
• Progress on Deliverables and Conclusions
The Team

Lab-scale Sensor Network

Rahul Panat
Project Lead PI

Blockchain Design and Coding

Vipul Goyal
Project Co-PI

Mrunal Vaze (MS)
Joined a Robotics Company in Pittsburgh, PA

Sandra Ritchie (PhD)

Dr. Ali (Postdoc)-now Asst Prof at Virginia Tech working on sensors

Mert (PhD)

Elisaweta Masserova (PhD)

Anirudh Baddepudi (MS)
Joining Google Inc

Justin Raizes (PhD)
• Power generation and distribution infrastructure can experience both external or internal cyberattacks
• Novel methods are required to secure the data, while also controlling its access

Photo Source: S.R. Thermonix Technologies
Objective of the Project

To design, characterize, and demonstrate a breakthrough secure blockchain protocol, namely smart private ledger with hierarchical access control for fossil power generation systems

- Build sensor network simulating SCADA system of FE power plant
- Develop blockchain algorithms and codes for smart private ledger
- Simulated cyberattack to test the established private blockchain
- Train Students and deliver functioning private blockchain
- Build SCADA System of FE power plant at CMU
- Student training and Deliver secure blockchain system to NETL
Project Timelines and Deliverables
Tasks and Timelines

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Owner</th>
<th>Year-1</th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0: Project Management and Planning</td>
<td>Panat</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Task 2.0: Create a Sensor Network to Generate Data</td>
<td>Panat</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>Task 3.0: Data Transmission to Blockchain Nodes</td>
<td>Panat</td>
<td>Q5</td>
<td>Q6</td>
</tr>
<tr>
<td>Task 4.0: Development of Blockchain with Computers as Simulated Nodes</td>
<td>Goyal</td>
<td>Q7</td>
<td>Q8</td>
</tr>
<tr>
<td>Task 5.0: Create Hierarchical Access Control for Data Retrieval</td>
<td>Goyal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain</td>
<td>Panat/Goyal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Project period: 2 years + 1 year NCE**
 - Data acquisition and transmission system
 - Creation of blockchain protocols
 - Simulate cyberattacks and demonstration lab-scale system
Task-1

- Project Management and Planning
 - The PIs will manage and direct the project in accordance with a Project Management Plan to meet all technical, schedule and budget objectives and requirements. The PIs will coordinate activities in order to effectively accomplish the work. The PIs will ensure that project plans, results, and decisions are appropriately documented and project reporting and briefing requirements are satisfied.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Owner</th>
<th>Year-1</th>
<th></th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0: Project Management and Planning</td>
<td>Panat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.0: Create a Sensor Network to Generate Data</td>
<td>Panat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3.0: Data Transmission to Blockchain Nodes</td>
<td>Panat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4.0: Development of Blockchain with Computers as Simulated Nodes</td>
<td>Goyal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5.0: Create Hierarchical Access Control for Data Retrieval</td>
<td>Goyal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain</td>
<td>Panat/Goyal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task-2

- Create a Sensor Network to Generate Data
 - This task will involve the development of sensor networks for the development of the proposed technology. The task will be performed by Panat group
Task-3

• Data Transmission to Blockchain Nodes
 – This task will involve the development of wireless transmission of the signal to the blockchain nodes. The task will be performed by Panat group

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Owner</th>
<th>Year-1</th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0: Project Management and Planning</td>
<td>Panat</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Task 2.0: Create a Sensor Network to Generate Data</td>
<td>Panat</td>
<td>Q4</td>
<td>Q5</td>
</tr>
<tr>
<td>Task 3.0: Data Transmission to Blockchain Nodes</td>
<td>Panat</td>
<td>Q6</td>
<td>Q7</td>
</tr>
<tr>
<td>Task 4.0: Development of Blockchain with Computers as Simulated Nodes</td>
<td>Goyal</td>
<td>Q8</td>
<td>Q7</td>
</tr>
<tr>
<td>Task 5.0: Create Hierarchical Access Control for Data Retrieval</td>
<td>Goyal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain</td>
<td>Panat/Goyal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task-4

- Development of Blockchain with Computers as Simulated Nodes
 - This task will involve the development of the smart private ledger blockchain with hierarchical access control and secret sharing protocols and will be performed by the Goyal group.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Owner</th>
<th>Year-1</th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0: Project Management and Planning</td>
<td>Panat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.0: Create a Sensor Network to Generate Data</td>
<td>Panat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3.0: Data Transmission to Blockchain Nodes</td>
<td>Panat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4.0: Development of Blockchain with Computers as Simulated Nodes</td>
<td>Goyal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5.0: Create Hierarchical Access Control for Data Retrieval</td>
<td>Goyal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain</td>
<td>Panat/Goyal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task-5

• Create Hierarchical Access Control for Data Retrieval
 – This task will develop algorithms to retrieve the data from the blockchain and will be performed by the Goyal group
Task-6

• Simulated Cyberattacks and Demonstration of Robustness of the Blockchain
 - PIs will simulate cyberattacks to harden the blockchain system for real world secure deployment
 - Common strategies such as those used during the Ukrainian power grid attack will be studied and the blockchain system will be subjected to similar attacks.
 - Any changes if needed will be made and the entire process will be repeated. We expect our system to provide very high level of security against such attacks by eliminating a single point of failure.
Building Sensor Network
CMU has developed sensor fabrication methods and testing systems for fossil power plants that can work at temperatures up to 500°C.
High Temperature Sensor Testing

Schematic of the Strain Sensing Apparatus

$T = 500 \, ^{\circ}\text{C}$
High Temperature Data Acquisition System

Strain Measurement Apparatus

• Able to provide 1000 micro strain on the beam
• Deflection frequency: up to 10 Hz
Strain Measurement

Successfully demonstrated strain measurement using Mantracourt T24 telemetry system

- Installed a commercial strain sensor (VY4 Shear/Torsion full bridge strain gauge) acquired from HBM, USA
- Integrated the strain sensor with transmitter and base station
- Data acquisition at 3 readings/sec – compatible with power plant sensing systems
Strain Measurement

Stainless steel beam

Strain sensor showing good adhesion to beam surface

Strain sensor integrated with transmitter module
Temperature Measurement

- We chose commercial RTD temperature sensor for the project
- Temperature sensor integrated with Mantracourt T24 acquisition and wireless transmission system
• A third type of sensor was electrochemical sensor for high throughput data collection
• Sensor signal was captured and sent to a cell phone-based interface
Data Transmission: Mantracourt System

- Chose mantracourt system for secure data transmission
- Commercially available system with low cost
- Aim was to create software compatible with commercial technologies for adaptability and lowering of cost

Data transmitted via radio technology

Monitoring and notification system to take corrective action
Data Transmission: Mantracourt System

- All types of sensors can be attached to the system reading voltage or current
- 600 m range in an open field site w/ license free 2.4 GHz direct sequence spread spectrum (DSSS) radio technology
- Data Encryption for complete security (128-bit AES)
- Proprietary protocol based on 802.15.4 chip allowing T24 range to co-exist with Bluetooth, Zigbee & Wi-Fi devices w/o conflicts
Data Transmission

• Blockchain coding required the data to be in readable txt format
• One transmitter can be connected to up to 15 sensors – data transmitted to a USB base station connected to a computer in .csv file
• Frequency control to save power with this platform
Example: Temperature Measurement

- Snapshot of temperature data collected in a .csv file
- This data directly feeds into the smart private ledger blockchain as discussed next
Example: Temperature Measurement

<table>
<thead>
<tr>
<th>Sensor 1</th>
<th>Sensor 2</th>
<th>Sensor 3</th>
<th>Sensor 4</th>
<th>Sensor 5</th>
<th>Sensor 6</th>
<th>Sensor 7</th>
<th>Sensor 8</th>
<th>Sensor 9</th>
<th>Sensor 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (V)</td>
<td>Current (A)</td>
</tr>
<tr>
<td>-0.4</td>
<td>7.45E-14</td>
<td>7.47E-14</td>
<td>7.57E-14</td>
<td>8.66E-14</td>
<td>9.19E-14</td>
<td>9.46E-14</td>
<td>9.71E-14</td>
<td>9.79E-14</td>
<td>1.00E-13</td>
</tr>
<tr>
<td>-0.39</td>
<td>1.11E-13</td>
<td>1.11E-13</td>
<td>1.13E-13</td>
<td>1.29E-13</td>
<td>1.37E-13</td>
<td>1.41E-13</td>
<td>1.44E-13</td>
<td>1.45E-13</td>
<td>1.49E-13</td>
</tr>
<tr>
<td>-0.38</td>
<td>1.64E-13</td>
<td>1.65E-13</td>
<td>1.67E-13</td>
<td>1.91E-13</td>
<td>2.03E-13</td>
<td>2.09E-13</td>
<td>2.14E-13</td>
<td>2.16E-13</td>
<td>2.21E-13</td>
</tr>
<tr>
<td>-0.37</td>
<td>2.44E-13</td>
<td>2.45E-13</td>
<td>2.48E-13</td>
<td>2.84E-13</td>
<td>3.01E-13</td>
<td>3.01E-13</td>
<td>3.18E-13</td>
<td>3.21E-13</td>
<td>3.28E-13</td>
</tr>
<tr>
<td>-0.34</td>
<td>8.01E-13</td>
<td>8.03E-13</td>
<td>8.14E-13</td>
<td>9.31E-13</td>
<td>9.88E-13</td>
<td>1.02E-12</td>
<td>1.04E-12</td>
<td>1.05E-12</td>
<td>1.08E-12</td>
</tr>
<tr>
<td>-0.33</td>
<td>1.19E-12</td>
<td>1.19E-12</td>
<td>1.21E-12</td>
<td>1.38E-12</td>
<td>1.47E-12</td>
<td>1.51E-12</td>
<td>1.55E-12</td>
<td>1.56E-12</td>
<td>1.60E-12</td>
</tr>
<tr>
<td>-0.32</td>
<td>1.77E-12</td>
<td>1.77E-12</td>
<td>1.80E-12</td>
<td>2.06E-12</td>
<td>2.18E-12</td>
<td>2.25E-12</td>
<td>2.30E-12</td>
<td>2.32E-12</td>
<td>2.37E-12</td>
</tr>
<tr>
<td>-0.31</td>
<td>2.63E-12</td>
<td>2.63E-12</td>
<td>2.67E-12</td>
<td>3.05E-12</td>
<td>3.24E-12</td>
<td>3.34E-12</td>
<td>3.42E-12</td>
<td>3.45E-12</td>
<td>3.53E-12</td>
</tr>
<tr>
<td>-0.3</td>
<td>3.90E-12</td>
<td>3.91E-12</td>
<td>3.97E-12</td>
<td>4.54E-12</td>
<td>4.81E-12</td>
<td>4.96E-12</td>
<td>5.09E-12</td>
<td>5.13E-12</td>
<td>5.24E-12</td>
</tr>
<tr>
<td>-0.29</td>
<td>5.79E-12</td>
<td>5.81E-12</td>
<td>5.89E-12</td>
<td>6.74E-12</td>
<td>7.15E-12</td>
<td>7.36E-12</td>
<td>7.56E-12</td>
<td>7.62E-12</td>
<td>7.78E-12</td>
</tr>
<tr>
<td>-0.28</td>
<td>8.61E-12</td>
<td>8.63E-12</td>
<td>8.76E-12</td>
<td>1.00E-11</td>
<td>1.06E-11</td>
<td>1.09E-11</td>
<td>1.12E-11</td>
<td>1.13E-11</td>
<td>1.16E-11</td>
</tr>
<tr>
<td>-0.27</td>
<td>1.28E-11</td>
<td>1.28E-11</td>
<td>1.30E-11</td>
<td>1.49E-11</td>
<td>1.58E-11</td>
<td>1.63E-11</td>
<td>1.67E-11</td>
<td>1.68E-11</td>
<td>1.72E-11</td>
</tr>
<tr>
<td>-0.26</td>
<td>1.90E-11</td>
<td>1.90E-11</td>
<td>1.93E-11</td>
<td>2.21E-11</td>
<td>2.35E-11</td>
<td>2.41E-11</td>
<td>2.48E-11</td>
<td>2.50E-11</td>
<td>2.55E-11</td>
</tr>
<tr>
<td>-0.24</td>
<td>4.19E-11</td>
<td>4.20E-11</td>
<td>4.27E-11</td>
<td>4.88E-11</td>
<td>5.18E-11</td>
<td>5.33E-11</td>
<td>5.47E-11</td>
<td>5.51E-11</td>
<td>5.63E-11</td>
</tr>
<tr>
<td>-0.22</td>
<td>9.26E-11</td>
<td>9.28E-11</td>
<td>9.41E-11</td>
<td>1.08E-10</td>
<td>1.14E-10</td>
<td>1.18E-10</td>
<td>1.21E-10</td>
<td>1.22E-10</td>
<td>1.24E-10</td>
</tr>
<tr>
<td>-0.21</td>
<td>1.37E-10</td>
<td>1.38E-10</td>
<td>1.40E-10</td>
<td>1.60E-10</td>
<td>1.70E-10</td>
<td>1.75E-10</td>
<td>1.79E-10</td>
<td>1.81E-10</td>
<td>1.85E-10</td>
</tr>
<tr>
<td>-0.2</td>
<td>2.04E-10</td>
<td>2.05E-10</td>
<td>2.08E-10</td>
<td>2.38E-10</td>
<td>2.52E-10</td>
<td>2.60E-10</td>
<td>2.66E-10</td>
<td>2.68E-10</td>
<td>2.74E-10</td>
</tr>
</tbody>
</table>

- Data collected in a .csv file
- Directly feeds into the smart private ledger blockchain as discussed next
Smart Private Ledger: Blockchains with Private Computation
Integration in Data Acquisition System

Oven for High Temperature sensor Network

Temperature sensor

Strain sensor

Wireless encrypted signal

Node-1

Node-2

Node-3

Node-N

Secret Sharing Based Consensus

Smart private ledger Blockchain

T = 500 °C
Need for Private Data

- As of today:
 - All data on public ledger = public
 - Private, access controlled data?

- Build an intelligent access controlled ledger
 - Different data visible to different parties
 - Even do computation on private data
 - 3rd gen Blockchain tech
Development of Smart Private Ledger

Our system flow is as follows:

- Generating secret key (for efficiency)
- Loading and encrypting csv file containing the data from sensor network (using AES)
Development of Smart Private Ledger

- Generating secret key shares
- Encrypting shares (using RSA) under miner public keys
- Later: decrypting secret key shares
- Reconstructing secret key
- Decrypting ciphertext to obtain original file containing data
- Smart contract to store/retrieve data from blockchain
System Design

• Secret sharing and file encryption is implemented to be run locally on a given miner’s machine.
• Once this data is generated, it is stored in the smart contract which is deployed on the blockchain (Ethereum).
• Any miner is then able to access the data from the smart contract, decrypt their respective shares
Loading in the CSV File

• We first load in the CSV file and convert it to byte[] form. Pictures of this are shown below:

- Above is the CSV file, and below is the converted byte[] form. We require the file to be in this format for encryption/decryption, and will be able to convert back as shown later.
Generating the secret key

- The next step is to generate the secret key and encrypt the CSV file (converted to byte[] form) using the secret key. A picture of this code execution is shown below:
- We use the AES symmetric encryption scheme for file encryption/decryption.

The first two byte[] values are the original file (bArray), and the third is the encrypted version (byteCipherText).
Secret Sharing

• We implement a function that generates the shares and reconstructs the secret key given the shares. The shares are output as a HashMap.

• The Dealer (person who owns the secret) does the following in order:
 1) Encrypts the data file using a generated secret key
 2) Generates the shares of the secret key using the Shamir secret sharing scheme
 3) Signs the shares so that we are able to identify dishonest miners
 4) Encrypts the shares using the corresponding miner public keys
 5) Posts the encrypted data file and shares on the blockchain (currently implemented using a smart contract).
Overview of Shamir Secret Sharing

- Mathematically, a (K,N) threshold Shamir Secret Sharing scheme is implemented using polynomial interpolation. Let the secret be S. We then construct a random polynomial, \(f(x) = S + S_1x + S_2x^2 + \ldots + S_{K-1}x^{K-1} \), where the secret is the constant term.

- A share is defined as a tuple \((i,f(i))\) for some \(i \in \mathbb{Z}\). Note that the degree of the polynomial is \(K-1\), it is a known result that we require \(k+1\) points to uniquely recover a \(k\)-degree polynomial, and we require \(K\) out of the \(N\) shares to recover the secret \(S\).

- Each participant is given a unique share \((i,f(i))\), done by assigning a unique \(i\) to each participant.
Overview of Shamir Secret Sharing

Given K shares, polynomial interpolation (Lagrange interpolation) is used to recover the constructed polynomial f. Let the K shares be $(x_1, y_1), ..., (x_K, y_K)$. Define the Lagrange basis functions f_j

$$f_j(x) = \prod_{m=1, m \neq j}^{m=K} y_j \frac{x - x_m}{x_j - x_m}$$

Then, the originally generated polynomial f is

$$f(x) = \sum_{j=1}^{K} f_j(x)$$
Overview of Shamir Secret Sharing

- Now that we are able to uniquely interpolate the polynomial f with the K shares, the secret is recovered as the constant term in f. Note that the dealer uses the K threshold to generate the random polynomial, which is then used to create the secret shares.

- The security of this scheme is dependent on the random generation of the sharing polynomial and that the polynomial is generated uniquely each time secret shares are created.

- The result that K shares uniquely generate a polynomial in a finite field ensures that if an adversary had access to fewer than K shares (assume $K-1$ shares), then all viable values of the secret are possible and equally likely to be the constant term in the interpolated polynomial. This therefore provides the adversary with no additional information regarding the secret.
Share Generation Output

• A screenshot of the secret sharing map printed (after execution) is shown below. We map index to polynomial evaluated at that index:

```
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home,
objc[25909]: Class JavaLaunchHelper is implemented in both /Lib
0
[B@2aafb23c
1
[B@2b80d80f
2
[B@3ab39c39
3
[B@2eee9593
4
[B@7907ec20
5
[B@546a03af
Hello
Process finished with exit code 0
```
Encrypting Miner shares with Public Keys

We encrypt the miner public keys using RSA encryption scheme. A screenshot of the public keys and encrypted shares when the code is executed is shown below (Where n=6):
Encrypting Miner shares with Public Keys

• We create a smart contract which stores a mapping from miner address to secret key share (of type bytes) with the following functions:
 – Add a share to the map
 – Store the encrypted file
 – Retrieve the share of a given miner address
 – Check if an address is in the map
- We use the RemixIDE to test the smart contract. We are able to run these functions implemented in the smart contract using the user interface on the left of the picture.
Miner Share Decryption

- Once miners take their shares from the blockchain, they are able to decrypt them using their private key. A picture of this code execution is shown below, with the encrypted share and then original share for each miner. In reality, each miner will only have to do this for their own share, but we implement for all for testing purposes.
Recovering the Secret Key

- We then use these decrypted miner shares to recover the secret key. Proof of working program is shown below, where we first print the original secret key (secretKey) and then the reconstructed secret key (secretKey1). If the program behaves correctly, these should be equal.
Decrypting ciphertext to retrieve private data

• With the secret key recovered, we are able to then decrypt the data and recover the original CSV file. A picture of the code execution is shown below. We first print the decrypted file (CSV) and then the encrypted byte[] version.
Further Completed Work

- Smart contract development with the Remix IDE
- User interface development
- Efficiency measurements

Miners vs Time Taken (Generating Miner Shares)

File Size vs Time Taken
Deliverables and Timelines

<table>
<thead>
<tr>
<th>Task / Subtask Number</th>
<th>Deliverable Title</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Project Management Plan</td>
<td>Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the NETL Project Manager.</td>
</tr>
<tr>
<td>2.0</td>
<td>Sensor Networks for Fossil Power Generation System</td>
<td>Delivery to NETL 6 months after the start of the project.</td>
</tr>
<tr>
<td>3.0</td>
<td>Secure transmission of sensors to blockchain nodes</td>
<td>Delivery to NETL 3 months after Task-2.0, i.e., 9 months after the start of the project.</td>
</tr>
<tr>
<td>4.0</td>
<td>Smart Private Ledger Blockchain (codes and algorithms)</td>
<td>Delivery to NETL 12 months after the start of the project.</td>
</tr>
<tr>
<td>5.0</td>
<td>Hierarchical Access Control for Data Retrieval (codes and algorithms)</td>
<td>Delivery to NETL 3 months after the Task-4.0, i.e., 15 months after the start of the project</td>
</tr>
<tr>
<td>6.0</td>
<td>Robust Blockchain Including Necessary Modifications</td>
<td>Delivery to NETL 9 months after the Task-5.0, i.e., 24 months after the start of the project</td>
</tr>
<tr>
<td></td>
<td>Ready to be Implemented in the Field</td>
<td></td>
</tr>
</tbody>
</table>
Challenges and Risks

<table>
<thead>
<tr>
<th>No</th>
<th>Risks</th>
<th>Probability</th>
<th>Impact</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Delay in the formation of sensor networks: The PIs propose to create high temperature sensor networks at CMU by leveraging a prior NETL project on sensors and using aerosol jet printing technology. There is a risk for equipment breakdown and the sensor networks not being ready by the end of the third quarter</td>
<td>Low</td>
<td>High</td>
<td>1. Warranties/service agreements with the manufacturers are in place for the equipment. 2. The PIs will use individual commercial temperature sensors in case the sensor network fabrication is delayed.</td>
</tr>
<tr>
<td>ii.</td>
<td>Risk for wireless transmission: There is a low probability that the sensor networks cannot send the signal wirelessly to the blockchain nodes.</td>
<td>Low</td>
<td>Moderate</td>
<td>1. The PIs will use commercial wireless sensors (two) as a back-up to demonstrate the concept 2. Multiple suppliers are available in the market with wireless sensors and will be utilized as necessary.</td>
</tr>
<tr>
<td>iii.</td>
<td>Risk for formation of Blockchains: there is a small probability that the continuous stream of data coming from sensor readings will cause scalability issues in the blockchain</td>
<td>Low</td>
<td>Moderate</td>
<td>1. The PIs will increase the block size to handle a larger number of transactions per second 2. The number of new blocks per unit time could also be increased to improve the scalability of the system</td>
</tr>
<tr>
<td>iv.</td>
<td>Risk for data retrieval: there is a risk that if a number of nodes on the Blockchain go offline, the data stored could become inaccessible</td>
<td>Low</td>
<td>Moderate</td>
<td>1. This risk can be mitigated by increasing the number of nodes. The higher the number of nodes, the better the availability of the system would be. In any case, compared to a centralized data storage, the system will provide much higher level of anonymity.</td>
</tr>
</tbody>
</table>
Acknowledgements

• Mary Underwood, Robie Lewis, Dr. Vito Cedro, and Dr. Sydni Credle for help on guidance of the project
Acknowledgement and Disclaimer

Acknowledgment: "This material is based upon work supported by the Department of Energy Award Number DE-FE0031770."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Questions?