N=TL

AOI 2: A Novel Access Control Blockchain
Paradigm for Cybersecure Sensor Infrastructure in
Fossil Power Generation Systems

Rahul Panat!, Vipul Goyal?

'Department of Mechanical Engineering, Carnegie Mello
2Computer Science Department, Carnegie Mellon Un

ersity, Pittsburgh PA
, Pittsburgh PA

Carnegie Mellon University

Outline

* Introduction and Background
—Team
—Project Goals and Objectives

—Tasks and Timelines
* Building Cybersecure Sensor Networks

—Strain Sensors
— Temperature Sensors

* Private Access Controlled Blockchain
* Progress on Deliverables and Conclusions

The Team

Lab-scale Sensor Network Blockchain Design and Coding

Vipul Goyal
Rahul Panat Project Co-PI

Project Lead PI

; 3}!_‘}’
Mrunal Vaze Sandra Ritchie (PhD) Dr. Ali (Postdoc)- Mert Elisaweta Masserova Anirudh Baddepudi Justin Raizes
MS) now Asst Prof at (PhD) (PhD) (MS) (PhD)
Joined a Robotics V1rg111<1.13 Tech
Company in working on Joining Google Inc

SE€nsors

Pittsburgh, PA

Sensing Applications

@ : | S0,, NO, =
{ NO,, NH,,

SR : (— co0’co

() | ; . , o

.r T | Hg N,0
i 0,,H,0, =

urbine
Flow, T, p
;‘

te

Data Acquisition and
Processing System

» Power generation and distribution infrastructure can
experience both external or internal cyberattacks

« Novel methods are required to secure the data, while also
controlling its access

Photo Source: S.R. Thermonix Technologies ;

Objective of the Project

To design, characterize, and demonstrate a breakthrough secure
blockchain protocol, namely smart private ledger with hierarchical
access control for fossil power generation systems

&
S
»
Q
3 %
\b%%ﬁ blockchai b
S uild sensor network ockchaln 2,
S simulating SCADA |~ @lgorithms and %
system of FE power codes for smart
plant / private ledger
Simulated Train Students and &
cyberattack to test | deliver functioning éé ©
% the established | ,private blockchain N
R : %
% blockchain N

Project Timelines and Deliverables

Tasks and Timelines

Year-1 Year-2

Tasks Owner
Task 1.0: Project Management and Planning Panat
Task 2.0: Create a Sensor Network to Generate Data Panat
Task 3.0: Data Transmission to Blockchain Nodes Panat
Task 4.0: Development of Blockchain with Computers as Simulated

Goyal
Nodes
Task 5.0: Create Hierarchical Access Control for Data Retrieval Goyal
Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of
. Panat/Goyal

the Blockchain

* Project period: 2 years + lyear NCE
— Data acquisition and transmission system
— Creation of blockchain protocols
— Simulate cyberattacks and demonstration lab-scale system

Task-1

 Project Management and Planning

— The PIs will shall manage and direct the project in accordance with a
Project Management Plan to meet all technical, schedule and budget
objectives and requirements. The PIs will coordinate activities in order
to effectively accomplish the work. The PIs will ensure that project
plans, results, and decisions are appropriately documented and project
reporting and briefing requirements are satisfied.

Year-1 Year-2
Tasks Owner
Task 1.0: Project Management and Planning Panat \/
Task 2.0: Create a Sensor Network to Generate Data Panat
Task 3.0: Data Transmission to Blockchain Nodes Panat ONGOING

Task 4.0: Development of Blockchain with Computers as Simulated
Nodes Goyal

Task 5.0: Create Hierarchical Access Control for Data Retrieval Goval
Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of

. Panat/Goyal
the Blockchain

Task-2

* Create a Sensor Network to Generate Data

— This task will involve the development of sensor networks for the

development of the proposed technology. The task will be performed
by Panat group

Year-1 Year-2
Tasks Owner
Ql |2 Q3| Q4| Q5| a6 | Q7 | Q8
Task 1.0: Project Management and Planning Panat
Task 2.0: Create a Sensor Network to Generate Data Panat
Task 3.0: Data Transmission to Blockchain Nodes Panat

Task 4.0: Development of Blockchain with Computers as Simulated
Nodes Goyal

Task 5.0: Create Hierarchical Access Control for Data Retrieval

Goyal

Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of

the Blockchain Panat/Goyal ’ ‘ ‘ ‘ ‘ ‘ ‘ ’ ‘

Task-3

e Data Transmission to Blockchain Nodes

— This task will involve the development of wireless transmission of the
signal to the blockchain nodes. The task will be performed by Panat

group

Year-1 Year-2
Tasks Owner
Task 1.0: Project Management and Planning Panat
Task 2.0: Create a Sensor Network to Generate Data Panat
ask 3.0: Data Transmission to Blockchain Nodes Panat
Task 4.0: Development of Blockchain with Computers as Simulated
Goyal
Nodes
Task 5.0: Create Hierarchical Access Control for Data Retrieval Goyal

Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of

the Blockchain Panat/Goyal ‘ ‘ ’ ‘ ’ ‘ ‘

Task-4

* Development of Blockchain with Computers as Simulated
Nodes

— This task will involve the development of the smart private ledger
blockchain with hierarchical access control and secret sharing
protocols and will be performed by the Goyal group.

Year-1 Year-2

Tasks Owner

Task 1.0: Project Management and Planning

Task 2.0: Create a Sensor Network to Generate Data

Task 3.0: Data Transmission to Blockchain Nodes

Task 4.0: Development of Blockchain with Computers as Simulated
Nodes

Task 5.0: Create Hierarchical Access Control for Data Retrieval Goyal

Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of
the Blockchain

raucert || |[1]]]

Task-5

» Create Hierarchical Access Control for Data Retrieval

— This task will develop algorithms to retrieve the data from the
blockchain and will be performed by the Goyal group

Year-1 Year-2
Tasks Owner
Ql | Q2 | Q3 | Q4| Q5 | a6 | Q7 | Q8
Task 1.0: Project Management and Planning Panat
Task 2.0: Create a Sensor Network to Generate Data Panat
Task 3.0: Data Transmission to Blockchain Nodes Panat

Task 4.0: Development of Blockchain with Computers as Simulated

Goval
Task 5.0: Create Hierarchical Access Control for Data Retrieval Goyal
mpl
asl .0: Simulate yberattacks an emonstration o obustness o Co p eted
. Panat/Goyal

the Blockchain

Task-6

« Simulated Cyberattacks and Demonstration of Robustness of
the Blockchain

— PIs will simulate cyberattacks to harden the blockchain system for real
world secure deployment

— Common strategies such as those used during the Ukranian power grid
attack will be studied and the blockchain system will be subjected to
similar attacks.

— Any changes if needed will be made and the entire process will be
repeated. We expect our system to provide very high level of security
against such attacks by eliminating a single point of failure.

Year-1 Year-2
Tasks Owner
Task 1.0: Project Management and Planning Panat
Task 2.0: Create a Sensor Network to Generate Data Panat
Task 3.0: Data Transmission to Blockchain Nodes Panat

Task 4.0: Development of Blockchain with Computers as Simulated
Nodes Goyal

Task 5.0: Create Hierarchical Access Control for Data Retrieval Go;:al

Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of

\/Ongoing

Panat/Goyal

Building Sensor Network

High Temperature Sensor Fabrication

Passive wireless
-

Strain Sensor

CMU has developed sensor fabrication methods and testing
systems for fossil power plants that can work at temperatures up

to 500 C

High Temperature Sensor Testing

MCROBRISE H&0 Stepper Motor T = 500 OC

Schematic of the Strain Sensing Apparatus

High Temperature Data Acquisition System

* Able to provide 1000 micro
strain on the beam

High Temperature Dynamic * Deflection frequency: up to 10 Hz
Strain Sensor Test Set up

Strain Measurement Apparatus

Strain Measurement

Successfully demonstrated
strain measurement using
Mantracourt T24

telemetry system

* Installed a commercial strain sensor (VY4 Shear/Torsion
full bridge strain gauge) acquired from HBM, USA

* Integrated the strain sensor with transmitter and base station

* Data acquisition at 3 readings/sec — compatible with power
plant sensing systems

Strain Measurement

. Strain sensor Strain sensor
Stainless steel showing good integrated with
beam adhesion to beam transmitter
surface module

Temperature Measurement

* We chose commercial RTD temperature sensor for the project

* Temperature sensor integrated with Mantracourt T24
acquisition and wireless transmission system

Electrochemical Sensors

RE WE CE

* A third type of sensor was electrochemical sensor for high
throughput data collection

* Sensor signal was captured and sent to a cell phone-based
interface

Data Transmission: Mantracourt System

Data transmitted via i

(((T))) radio technology

. . . . |
i Monitoring and notification |
' system to take corrective
| action

« Chose mantracourt system for secure data transmission

« Commercially available system with low cost
« Aim was to create software compatible with commercial

technologies for adaptability and lowering of cost

Data Transmission: Mantracourt System

Transmitting End Receiving End

Base station

Strain transmitter | mounted in a USB

module

4W connection Wireless Direct connection

* All types of sensors can be attached to the system reading voltage or current

* 600 m range in an open field site w/ license free 2.4 GHz direct sequence
spread spectrum (DSSS) radio technology

® Data Encryption for complete security (128-bit AES)

® Proprietary protocol based on 802.15.4 chip allowing T24 range to co-exist
with Bluetooth, Zigbee & Wi-Fi devices w/o conflicts

Data Transmission

* Blockchain coding required the data to be in readable txt format

* One transmitter can be connected to up to 15 sensors — data
transmitted to a USB base station connected to a computer in
.csv file

* Frequency control to save power with this platform

B 724 Toolkit '
;h;nnel M‘onito'r ﬁlll >)© ;G_Q m

[3 1 T) 9 L A e 3 Help
Data T smission Rate LaQl Value Warnings

Data Tag/ID Total Trar

FF430A 10 not transmitting 100 SLEEPING
430A 1 waiting... 100 -0.001118

Example: Temperature Measurement

DataTag msElapseValve Time Stamp
CE3A 255 28.60511 Sunday Apeid 12 2020 10:56:26 AM 860
CE3A 592 2858919 Sunday Aprid 12 2020 10:56:27 AM:197
CE3A 927 2862245 Sunday Aprid 12 2020 10:56:27 AM:533
CE3A 1263 2858334 Sunday April 12 2020 10:56:27 AM 868
CE3A 1588 28.62991 Sunday Aprid 12 2020 10:56:28 AM:203
CE3A 1935 2861842 Sunday Aped 12 2020 10.56:28 AM 540
2271 2859906 Sunds Aprid 12 2020 10:56:28 AM 876 .

CE3A 2607 236@685«"'4:: A::J 12 2020 10:56:29 AM:212 DataTas ms Elapse Value Tlme Stamp
CE3A 1 2862083 Sunday April12 2020 10:56:29 AM:546 CE3A 255 28.60511 Sunday April12 2020 10:56:26 AM:860

A undy 56 &
=5 e CE3A 592 28.58919 Sunday April 12 2020 10:56:27 AM:197
CEA 951 2MBWMgundyy A2 2020105630AMSS? CE3A 927 28.62245 Sunday April 12 2020 10:56:27 AM:533
CE3A 4286 2864886 Su Apei 12 2020 10:56:30 AM:891)
CE3A 4621 2865369 Sunday ™\ Apd 12 2020 10:56:31 AM226 CE3A 1263 28.58334 Sunday April12 2020 10:56:27 AM:868
M| 657 26000ndey [Nhid | 2000003631 NI CE3A 1598 28.62991 Sunday April 12 2020 10:56:28 AM:203
CE3A S291 2861842 Sunday Apri 2020 10:56:31 AM 897
CE3A 5627 2863736 Sunday Apri 12 10:56:32 AM:232 CE3A 1935 28.61842 Sunday April 12 2020 10:56:28 AM:540
CE3A 5963 2863555 Sundy Apri 12 2020 32 AM 568 . = ¥ .
= o Sheaa sw': A:‘ Y T T CE3A 2271 28.59906 Sunday April 12 2020 10:56:28 AM:876
CEA 6637 2864764 Sunday Apel 12 2020 10:56:33 ADNE CE3A 2607 28.60068 Sunday April12 2020 10:56:29 AM:212
CE3A G970 2866216 Sund Aped 12 2020 10:56:33 AM575 -
CEIA %8 n“,:,sw: ‘:, 12 2000 10:56:33 AM913 CE3A 2941 28.62083 Sunday April 12 2020 10:56:29 AM:546
CEA 764 2064603 Sunday Aprdl2 2020105634 AM249 CE3A 3279 28.62991 Sunday April 12 2020 10:56:29 AM:884
CE3A 7979 2866337 Sunday Apeid 12 2020 10:56:34 AM 584 .
CE3A 8314 2863998 Sunday Apell12 2020 10:56:34 AM919 CE3A 3614 28.61963 Sunday April 12 2020 10:56:30 AM:220
|60 000 Suadey _1Aps81) | 20001005 MAISA CE3A 3951 28.62547 Sunday April 12 2020 10:56:30 AM:557
CE3A 8984 2865369 Sunday Apri 12 2020 10:56:35 AM:589

* Snapshot of temperature data collected in a .csv file

 This data directly feeds into the smart private ledger

blockchain as discussed next

Example: Temperature Measurement

Sensorl Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10
Voltage (V] Current (A) | Current (A) | Current (A) Current (A) Current (A) Current (A) Current (A) Current (A) Current (A) Current (A)
-0.4 7.45E-14 7.47E-14 7.57E-14 8.66E-14 9.19E-14 9.46E-14 9.71E-14 9.79E-14 1.00E-13 1.00E-13
-0.39 1.11E-13 1.11E-13 1.13E-13 1.29E-13 1.37E-13 1.41E-13 1.44E-13 1.45E-13 1.49E-13 1.49E-13
-0.38 1.64E-13 1.65E-13 1.67E-13 1.91E-13 2.03E-13 2.09E-13 2.14E-13 2.16E-13 2.21E-13 2.21E-13
-0.37 2.44E-13 2.45E-13 2.48E-13 2.84E-13 3.01E-13 3.10E-13 3.18E-13 3.21E-13 3.28E-13 3.28E-13
-0.36 3.63E-13 3.64E-13 3.69E-13 4.22E-13 4.48E-13 4.61E-13 4.73E-13 4.77E-13 4.87E-13 4.88E-13
-0.35 5.39E-13 5.40E-13 5.48E-13 6.27E-13 6.65E-13 6.85E-13 7.03E-13 7.08E-13 7.24E-13 7.24E-13
-0.34 8.01E-13 8.03E-13 8.14E-13 9.31E-13 9.88E-13 1.02E-12 1.04E-12 1.05E-12 1.08E-12 1.08E-12
-0.33 1.19E-12 1.19E-12 1.21E-12 1.38E-12 1.47E-12 1.51E-12 1.55E-12 1.56E-12 1.60E-12 1.60E-12
-0.32 1.77E-12 1.77E-12 1.80E-12 2.06E-12 2.18E-12 2.25E-12 2.30E-12 2.32E-12 2.37E-12 2.38E-12
-0.31 2.63E-12 2.63E-12 2.67E-12 3.05E-12 3.24E-12 3.34E-12 3.42E-12 3.45E-12 3.53E-12 3.53E-12
-0.3 3.90E-12 3.91E-12 3.97E-12 4.54E-12 4.81E-12 4.96E-12 5.09E-12 5.13E-12 5.24E-12 5.24E-12
-0.29 5.79E-12 5.81E-12 5.89E-12 6.74E-12 7.15E-12 7.36E-12 7.56E-12 7.62E-12 7.78E-12 7.79E-12
-0.28 8.61E-12 8.63E-12 8.76E-12 1.00E-11 1.06E-11 1.09E-11 1.12E-11 1.13E-11 1.16E-11 1.16E-11
-0.27 1.28E-11 1.28E-11 1.30E-11 1.49E-11 1.58E-11 1.63E-11 1.67E-11 1.68E-11 1.72E-11 1.72E-11
-0.26 1.90E-11 1.90E-11 1.93E-11 2.21E-11 2.35E-11 2.41E-11 2.48E-11 2.50E-11 2.55E-11 2.55E-11
-0.25 2.82E-11 2.83E-11 2.87E-11 3.28E-11 3.48E-11 3.59E-11 3.68E-11 3.71E-11 3.79E-11 3.79E-11
-0.24 4.19E-11 4.20E-11 4.27E-11 4.88E-11 5.18E-11 5.33E-11 5.47E-11 5.51E-11 5.63E-11 5.64E-11
-0.23 6.23E-11 6.25E-11 6.34E-11 7.25E-11 7.69E-11 7.92E-11 8.13E-11 8.19E-11 8.36E-11 8.37E-11
-0.22 9.26E-11 9.28E-11 9.41E-11 1.08E-10 1.14E-10 1.18E-10 1.21E-10 1.22E-10 1.24E-10 1.24E-10
-0.21 1.37E-10 1.38E-10 1.40E-10 1.60E-10 1.70E-10 1.75E-10 1.79E-10 1.81E-10 1.85E-10 1.85E-10
-0.2 2.04E-10 2.05E-10 2.08E-10 2.38E-10 2.52E-10 2.60E-10 2.66E-10 2.68E-10 2.74E-10 2.74E-10
« Data collected 1n a .csv file

* Directly feeds into the smart private ledger blockchain as

discussed next

Smart Private Ledger: Blockchains with
Private Computation

The Overall Vision: Create Smart Private Ledger

| Secret Sharing Based Consensus

Blockchain Node-1 Blockchain Node-2 Blockchain Node-3 Blockchain Node-n

Data storage 1 Data storage 2 Data storage 3 Data storage n
linked to SCADA linked to SCADA linked to SCADA | """ linked to SCADA

i Sensor-4 I | Sensor-5 I

Integration in Data Acquisition System

Smart private ledger Blockchain

Oven for High Temperature Node-1
Sensors sensor Network o
] o
@
Strain 8
Sensor A2
, Node-3 g C:?
X - A .
R == | ic
c 02
vy
Temperature Strain 3
—
o
SeNsot sensor @

Need for Private Data

o As of today:

m All data on public ledger = public
m Private, access controlled data?

- Build an intelligent access controlled ledger
m Different data visible to different parties
m Even do computation on private data
m 3rd gen Blockchain tech

Development of Smart Private Ledger

Our system flow i1s as follows:

e Generating secret key (for efficiency)
e [oading and encrypting csv file containing the data from sensor
network (using AES)

Symmetric Key Encryption

SECRET
DOUBLE
0CTOPUS

Development of Smart Private Ledger

Generating secret key shares

Encrypting shares (using RSA) under miner public keys
Later: decrypting secret key shares

Reconstructing secret key

Decrypting ciphertext to obtain original file containing data

Smart contract to store/retrieve data from blockchain

Shar holder 'S" |

3
|
Shareholder (8;)
ecret () Reconstructed
. % ¥ secret [s)
-

'«%

Yhareholder (S,)

System Design

e Secret sharing and file encryption is
implemented to be run locally on a given miner’s
machine.

* Once this data is generated, it is stored in the
smart contract which is deployed on the
blockchain (Ethereum).

 Any miner is then able to access the data from
the smart contract, decrypt their respective
shares

Loading in the CSV File

 We first load in the CSV file and convert it to
byte[] form. Pictures of this are shown below:

CE3A,10133102,127.9730,Friday, March 13, 2020 6:15:25 PM:689

CE3A,10133436,127.9682, Friday, March 13, 2020 6:15:26 PM:24

CE3A,10133771,127.9411,Friday, March 13, 2020 6:15:26 PM:359

CE3A,10134108,127.9202,Friday, March 13, 2020 6:15:26 PM:696 - Above is the CSV file, and below is the
CE3A,10134445,127.9365, Friday, March 13, 2020 6:15:27 PM:32 converted byte[] form. We require the file to
CE3A,10134781,127.9551,Friday, March 13, 2020 6:15:27 PM:368 :
CE3A,10135118,127.9278,Friday, March 13, 2020 6:15:27 PM:705 be in this format for encryption/decryption,
CE3A,10135453,127.9365,Friday, March 13, 2020 6:15:28 PM:41 and W|” be able to Convert back as Shown
CE3A,10135786,127.9202, Friday, March 13, 2020 6:15:28 PM:374 lat

CE3A,10136125,127.9411, Friday, March 13, 2020 6:15:28 PM:712 ater.

CE3A,10136460,127.9020, Friday, March 13, 2020 6:15:29 PM:47

CE3A,10136795,127.9305, Friday, March 13, 2020 6:15:29 PM:383

CE3A,10137132,127.9232,Friday, March 13, 2020 6:15:29 PM:720

CE3A,10137469,127.9051, Friday, March 13, 2020 6:15:3@ PM:57

CE3A,10137804,127.8869, Friday, March 13, 2020 6:15:30 PM:391

CE3A,10138140,127.8946, Friday, March 13, 2020 6:15:30 PM:727

CE3A,10138475,127.8674,Friday, March 13, 2020 6:15:31 PM:62

[B@511d50c0

Generating the secret key

 The next step is to generate the secret key and encrypt the CSV file
(converted to byte[] form) using the secret key. A picture of this code
execution is shown below:

 We use the AES symmetric encryption scheme for file
encryption/decryption.

& Share.java = Mar_13_Temperature_Data.csv € GF256.java

Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
byte[] byteCipherText = cipher.doFinal(bArray); The ﬁrSt tWO byte[] ValueS are the
System.out.printn(bArray); original file (bArray), and the third is the

System.out.println(byteCipherText);| encrypted VerSion (byteCI pherTeXt)

Share main()
Share

/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/bin/java ...
objc[26839]: Class JavalLaunchHelper is implemented in both /Library/Java/Jav
[B@511d50¢0

[B@511d50¢0

[B@2bBedsef

Hello

m d & Y

Process finished with exit code @

(O8]
|

Secret Sharing

* We implement a function that generates the shares and
reconstructs the secret key given the shares. The shares are
output as a HashMap.

 The Dealer (person who owns the secret) does the following in
order:
1) Encrypts the data file using a generated secret key

2) Generates the shares of the secret key using the Shamir secret sharing
scheme

3) Signs the shares so that we are able to identify dishonest miners
4) Encrypts the shares using the corresponding miner public keys

5) Posts the encrypted data file and shares on the blockchain (currently
implemented using a smart contract).

Overview of Shamir Secret Sharing

® Mathematically, a (K,N) threshold Shamir Secret Sharing scheme is implemented using polynomial
interpolation. Let the secret be S. We then construct a random polynomial, f(x) =s+sx +5x" +.+s,_x" where
the secret is the constant term.

e A share is defined as a tuple (i,f(i1)) for some i Z. Note that the degree of the polynomial is K-1, it is a known
result that we require k+1 points to uniquely recover a k-degree polynomial, and we require K out of the N

shares to recover the secret S.

e FEach participant is given a unique share (1,f(i)), done by assigning a unique i to each participant.

\
=

Overview of Shamir Secret Sharing

Given K shares, polynomial interpolation (Lagrange interpolation) is used to recover the
constructed polynomial f. Let the K shares be (x Y 1),..., (x e yK). Define the Lagrange basis

functionsfj
m=K X — xm
feo=JI »—=
' m=1,m# j xj_ X

Then, the originally generated polynomial f is

K
REEDWIE
j=1

Overview of Shamir Secret Sharing

® Now that we are able to uniquely interpolate the polynomial f with the K shares, the secret is
recovered as the constant term in f. Note that the dealer uses the K threshold to generate the random
polynomial, which is then used to create the secret shares.

® The security of this scheme is dependent on the random generation of the sharing polynomial and
that the polynomial is generated uniquely each time secret shares are created.

e The result that K shares uniquely generate a polynomial in a finite field ensures that if an adversary
had access to fewer than Kshares (assume K-1 shares), then all viable values of the secret are
possible and equally likely to be the constant term in the interpolated polynomial. This therefore
provides the adversary with no additional information regarding the secret.

Share Generation Output

* A screenshot of the secret sharing map printed (after execution)

is shown below. We map index to polynomial evaluated at that
index:

Share

/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home,

objc[25909]: Class JavalLaunchHelper is implemented in both /Libi
(%)

[B@2aafb23c
#
[B@2b8edsef
2
[B@3ab39c39
3
[B@2eee9593
4
(B@7907ec20
5
[B@546a@3af
Hello

m g & Yl

Process finished with exit code @

Encrypting Miner shares with Public Keys

We encrypt the miner public keys using RSA encryption
scheme. A screenshot of the public keys and encrypted shares
when the code is executed is shown below (Where n=6):

Sun RSA public key, 2048 bits
modulus: 219084920611870871167976302916898095461197128807723353200447081208369877548817
public exponent: 65537

Sun RSA public key, 2048 bits
modulus: 18221857587862142996804905346227121797752811459652580692211018511826417857770¢€
public exponent: 65537

Sun RSA public key, 2048 bits
modulus: 26696865874762141346952260393559358563908733033564026573578760239845496127277%
public exponent: 65537

Sun RSA public key, 2048 bits
modulus: 283199915525759934130881334609486910530772956822142895684866312782098577129304
public exponent: 65537

Sun RSA public key, 2048 bits
modulus: 16209097655921872419352461845183266099406267396336261978597955500381834300487¢€
public exponent: 65537

Sun RSA public key, 2048 bits
modulus: 20138285405332811292368533791625834006172347076137091651992846574952958278304¢
public exponent: 65537

e mr e e e e = ————— e

Share

/Library/Java/JavaVirtualMachines/jdk1.8.0_
objc[26057]: Class JavaLaunchHelper is impl
[B@3ab39¢c39

[B@2eee9593

[B@7907ec20

[B@546a03af

[B@721e0f4f

[B@28864e92

Hello

Encrypting Miner shares with Public Keys

 We create a smart contract which stores a
mapping from miner address to secret key share
(of type bytes) with the following functions:

— Add a share to the map

— Store the encrypted file

— Retrieve the share of a given miner address
— Check if an address is in the map

Smart Contract:

Q @ %% Home 1_Storage.sol

.sol
DEPLOY & RUN TRANSACTIONS & . i \

3 A e N
5 * @dev Store & retreive value in a variable
6 =/
Transactions recorded € ~ 7 - contract Storage {
8

All transactions (deployed contracts and function

[S+]

mapping(address => bytes32) internal map;

executions) in this environment can be saved and 10 bytes encryptedFile;

replayed in another environment.e.g 11

Transactions created in Javascript VM can be 12

replayed in the Injected Web3. 13~ function add(address _key, bytes32 _value) public {
14 map[_key] = _value;

e b 15 }

16

Deployed Contracts 0] 7 function contains(address _key) public view returns (bool) {
18 return map[_key] != 0;

v STORAGE AT 0X47E...00658 (MEMORY) ;Z }
215~ function storeFile(bytes memory encFile) public {
22 encryptedFile = encFile;

n address _key, bytes32 value v 23 }
24
25~ function retrieveFile() public view returns (bytes memory) {

storeFile bytes encFile v 26 return encryptedFile;
27 }
28
contains address _key v 29 ~ 7
30 * @dev Return value
31 * @return the key, mapping value
retreiveMap address _key v 32 o

33~ function retreiveMap(address _key) public view returns (address,bytes32){
34 return (_key,map[_key]);
36 }
37

- We use the RemixIDE to test the smart contract. We are able to run these functions
implemented in the smart contract using the user interface on the left of the picture.

Miner Share Decryption

* Once miners take their shares from the blockchain, they are able to decrypt
them using their private key. A picture of this code execution is shown below,
with the encrypted share and then original share for each miner. In reality,
each miner will only have to do this for their own share, but we implement for
all for testing purposes.

Run: Share

> /Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Conteni
objc[26150]: Class JavalLaunchHelper is implemented in bo!
Encrypted share:
[B@3ab39¢39
Decrypted Share
[B@2eee9593
Encrypted share:
[B@7907ec20
Decrypted Share
[B@546a0@3af
»r Encrypted share:
[B@721e0faf
Decrypted Share
[B@28864e92
Encrypted share:
[B@6eabdlde
Decrypted Share
[B@bad5cede
Encrypted share:
[B@6833ce2c
Decrypted Share
[B@725bef66
Encrypted share:
[B@2aaf7cc2
Decrypted Share
[B@Ge3cleh9
Hello

m g & Yl

Recovering the Secret Key

* We then use this these decrypted miner shares to recover the secret key.
Proof of working program is shown below, where we first print the original
secret key (secretKey) and then the reconstructed secret key (secretKeyl). If
the prograﬂr\f\ hahaviac rAarracthvv thaca chnnilld ha annial

309 System.out.println(secretKey);
System.out.println(secretKeyl);

=
ngP

312 Cipher dcipher = Cipher.getInstance("AES");

313 dcipher.init(Cipher.DECRYPT_MODE, secretKeyl);

4 byte[] bytePlainText = dcipher.doFinal(byteCipherText);
15 //String out = new String(bytePlainText);

6 //System.out.printin(out);

318 System.out.println("Hello");

Share > main()

Share

/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home/bin/java
obic[26214]: Class JavaLaunchHelper is implemented in both /Library/Java
javax.crypto.spec.SecretKeySpec@fffe9a8e
javax.crypto.spec.SecretKeySpec@fffe9a8e

Hello

= 4l

Process finished with exit code ©

=

Decrypting ciphertext to retrieve private data

* With the secret key recovered, we are able to then decrypt the data and
recover the original CSV file. A picture of the code execution is shown below.
We first print the decrypted file (CSV) and then the encrypted byte[] version.

= CE3A,10131423,127.9819,Friday, March 13, 2020 6:15:24 PM:10

= CE3A,10131758,127.9863,Friday, March 13, 2020 6:15:24 PM:345
CE3A,10132096,127.9730,Friday, March 13, 2020 6:15:24 PM:683
CE3A,10132431,127.9744,Friday, March 13, 2020 6:15:25 PM:19
CE3A,10132766,127.9488,Friday, March 13, 2020 6:15:25 PM:353
CE3A,10133102,127.9730,Friday, March 13, 2020 6:15:25 PM:689
CE3A,10133436,127.9682,Friday, March 13, 2020 6:15:26 PM:24
CE3A,10133771,127.9411,Friday, March 13, 2020 6:15:26 PM:359
CE3A,10134108,127.9202,Friday, March 13, 2020 6:15:26 PM:696
CE3A,10134445,127.9365,Friday, March 13, 2020 6:15:27 PM:32
CE3A,10134781,127.9551,Friday, March 13, 2020 6:15:27 PM:368
CE3A,10135118,127.9278,Friday, March 13, 2020 6:15:27 PM:7@5
CE3A,10135453,127.9365,Friday, March 13, 2020 6:15:28 PM:41
CE3A,10135786,127.9202,Friday, March 13, 2020 6:15:28 PM:374
CE3A,10136125,127.9411,Friday, March 13, 2020 6:15:28 PM:712
CE3A,10136460,127.9020,Friday, March 13, 2020 6:15:29 PM:47
CE3A,10136795,127.9305,Friday, March 13, 2020 6:15:29 PM:383
CE3A,10137132,127.9232,Friday, March 13, 2020 6:15:29 PM:720
CE3A,10137469,127.9051,Friday, March 13, 2020 6:15:3@ PM:57
CE3A,10137804,127.8869,Friday, March 13, 2020 6:15:30 PM:391
CE3A,10138140,127.8946,Friday, March 13, 2020 6:15:30 PM:727
CE3A,10138475,127.8674,Friday, March 13, 2020 6:15:31 PM:62

[B@zbsedsef
Hello

Further Completed Work

® Smart contract development with the Remix IDE
e User interface development
e Efficiency measurements

Miners vs Time Taken (Generating Miner Shares)
25

20

Time Taken (s)
[}

Miners

File Size vs Time Taken

Time Taken (s)

0.65

0.60

0.55

0.50

0.45

0.40

5 10 20

File Size (MB)

50

Deliverables and Timelines

Task / Subtask
/5u Deliverable Title Due Date
Number

Update due 30 days after award. Revisions to
Project Management Plan the PMP shall be submitted as requested by
the NETL Project Manager.
Sensor Networks for Fossil Delivery to NETL 6 months after the start of
Power Generation System the project.
Secure transmission of Delivery to NETL 3 months after Task-2.0, i.e.,
sensors to blockchain nodes 9 months after the start of the project.
Smart Private Ledger Delivery to NETL 12 months after the start of
Blockchain (codes and the project.
algorithms)
Hierarchical Access Control Delivery to NETL 3 months after the Task-4.0,
for Data Retrieval (codes and i.e., 15 months after the start of the project
algorithms)
Robust Blockchain Including Delivery to NETL 9 months after the Task-5.0,
Necessary Modifications i.e.,24 months after the start of the project
Ready to be Implemented in
the Field

Challenges and Risks

Delay in the formation of sensor networks:
The Pls propose to create high
temperature sensor networks at CMU by
leveraging a prior NETL project on sensors
and using aerosol jet printing technology.
There is a risk for equipment breakdown
and the sensor networks not being ready
by the end of the third quarter

Risk for wireless transmission: There is a
low probability that the sensor networks
cannot send the signal wirelessly to the
blockchain nodes.

Risk for formation of Blockchains: there is a
small probability that the continuous
stream of data coming from sensor
readings will cause scalability issues in the
blockchain

Risk for data retrieval: there is a risk that if
a number of nodes on the Blockchain go
offline, the data stored could become
inaccessible

Low

Low

Low

Low

High

Moderate

Moderate

Moderate

_No | Risks | Probability | Impact | Mitigation

1.

Warranties/service agreements with the
manufacturers are in place for the equipment.

The PlIs will use individual commercial temperature
sensors in case the sensor network fabrication is
delayed.

The Pls will use commercial wireless sensors (two) as
a back-up to demonstrate the concept

Multiple suppliers are available in the market with
wireless sensors and will be utilized as necessary.

The Pls will increase the block size to handle a larger
number of transactions per second

The number of new blocks per unit time could also

be increased to improve the scalability of the system

This risk can be mitigated by increasing the number of
nodes. The higher the number of nodes, the better
the availability of the system would be. In any case,
compared to a centralized data storage, the system
will provide much higher level of anonymity.

Acknowledgements

 Mary Underwood, Robie Lewis, Dr. Vito Cedro, and Dr.
Sydni Credle for help on guidance of the project

Acknowledgement and Disclaimer

Acknowledgment: "This material is based upon work supported by the
Department of Energy Award Number DE-FE0031770."

Disclaimer: "This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof."

Questions?

\ | : |
N

|l
.

