Embedded sensors integrated into critical components for *in situ* health monitoring of steam turbines

Anand Kulkarni, Siemens Corporation

DOE Award: DE-FE-0031832

Joseph Mantese, Gurkan Gok, Joe Zacchio – Raytheon Technology Research Corporation
Acknowledgements

This material is based upon work supported by the Department of Energy Award Number DE- DE-FE-0031832. Siemens would sincerely thank the support of Sarah Nathan, DOE FPM for this project.

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Outline

Introduction

Project Objective

Project Approach to Meet Technical Targets

Project Schedule and Milestones

Task 2.0 - Demonstrate component scale up efforts for embedded sensors

Task 3.0 – RF Communications package development

Task 4.0 – Integration into Blade Health Monitoring and Power Diagnostics®

Task 5.0 - Define and Manufacturing Test Article for engine test

Task 6.0 - Conduct Engine testing of Instrumented Turbine blades
Project Objectives to Meeting FOA Requirements

Project information

PI: Anand Kulkarni
Funder: DOE Office of Fossil Energy (FE) – NETL Crosscutting
Strategic Partner: Siemens Gas and Power, RTRC
Total Project Funding: $1.25M ($1M Federal/$250K Cost share)

Project Details

- Design and develop embedded elements and communication/sensing circuitry for blade health monitoring of steam turbine.
- Baseline the performance of RF sensor/communication with current multi-probe blade vibration monitor utilized in service on a test rig.
- Integrate the novel RF-based blade vibration monitoring within Siemens Power Diagnostics ® for remote real-time monitoring of blade health.
- Technology validate an integrated blade with embedded sensor/wireless communications device in an extreme-environment steam turbine.

Technical Highlights

<table>
<thead>
<tr>
<th>Funding Opportunity Objective</th>
<th>Objective of the proposed work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricate and assemble a component with embedded sensor technology</td>
<td>Design and develop embedded elements utilizing additive manufacturing and RF communication/sensing circuitry for blade health monitoring of steam turbine.</td>
</tr>
<tr>
<td>Develop methodologies that merge in-situ component health monitoring</td>
<td>Integrate the novel RF-based blade vibration monitoring within Siemens Power Diagnostics ® for remote real-time monitoring of blade health.</td>
</tr>
<tr>
<td>Conduct testing and demonstration of a fully integrated ‘smart’ prototype applicable to a fossil-based energy system process</td>
<td>Technology validation of an integrated blade with embedded sensor/wireless communications device in an extreme-environment steam turbine.</td>
</tr>
</tbody>
</table>

NASA GRC high precision spin rig microwave sensor.

Blade tip clearance and timing testing on the sensor Calibration Rig
Project Overview and Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
</table>
| Demonstrate component scale up efforts for embedded sensors | • Establish sensor specification
• Sensor selection and localization
• Sensor and circuitry design
• Benchmark criteria selection | RTRC
Siemens CT |
| RF Communications package development | • Communication requirements
• Layout of communication circuitry
• Assembly of test rig
• Functional tests | RTRC
Siemens CT |
| Integration into blade Health monitoring and power diagnostics | • Interface specification to Siemens Power Diagnostics
• Calibration Model
• Develop Observers | Siemens CT
Siemens Energy |
| Define and manufacturing test article for engine test | • Define test scenario
• Localization of sensor on steam turbine
• Integration of sensor and steam turbine | Siemens Energy
RTRC |
| Conduct engine testing of instrumented turbine blades | • Simulate Engine test to provide predictions
• Run an engine test that follows the predictions
• Evaluate the sensing | Siemens Energy |

The technical team is strong and has the capability for successful demonstration.
Project Approach for Embedded Sensors for Steam Turbine Blade Vibration Monitoring

Year 1
- **Embedded AM Sensors, RF Communications, Health Monitoring (HM) Tool**

Technical Progress
- Develop RF sensors and communication circuitry for bench testing
- Develop health monitoring tool
- Collect baseline blade monitoring data for specifications

Go / No-Go
- AM deposition for embedded sensors
- RF Sensor/ Wireless telemetry demonstrated on lab rig setup
- Health monitoring framework

Year 2
- **Smart blade component, Develop HM Approach, Engine testing of integrated blade**

Technical Progress
- Robust embedded RF sensor/Communications demonstrated
- Integrated sensor/communication on steam turbine blade
- Integration with power diagnostics

Go / No-Go
- Spin test miniature embedded sensor wireless telemetry system
- Demo high throughput
- Embedded sensor manufacturing process
- Engine test validation of novel approach vs non-contact blade monitoring
Need for Real-time Online Monitoring for Blade Vibration Monitoring

Water droplet induced blade root cracking for L0 blades in steam turbine

Detection of cracks in turbomachinery blade via online monitoring

Life limiting locations in blade root

A: acceptable
B: limiting
C: unacceptable

Increasing crack size

0
A
B
C
1.0

Life limiting locations in blade root

(1) Measure frequency response
(2) Identify frequencies, force and damping
(3) Validate model

Fundamental Properties of Bladed Disk Define Reduced Order Mistuning Model

(1) Frequency Response
Test Data

(2) Nodal diameter plot
Force

(3) Young's Modulus
Damping
Task 2.0 – Demonstrate component scale up efforts for embedded sensors
RF-based Blade Tip Timing Sensor

- Blade vibration monitoring system aims to assess changes in vibration frequency of blades over time.
- RF/MW based blade tip timing sensor hardware consists of a transceiver, a waveguide and sensor.
- Received signal waveform provides information about the position of the blade with respect to aperture.

Waveform

$$E_r \sim E_{ra} + E_{rb}(\phi)$$

Carries blade position information

Functional block diagram of a generic blade vibration monitoring system

Schematic of an RF-based sensor for blade vibration monitoring

Unrestricted © Siemens AG 2022
Page 9
Benchtop Model for Technology Validation

- Aims to record the return signal variation with respect to various blade tip positions.
- Able to test the detectability of blade tip by the microwave sensor at various positions with respect to aperture, while preserving compact size and reasonable data rotor speed and data sampling speed.
- The setup will preserve the followings from the actual model: (1) blade cross section width, (2) number of data points collected per arch length, (3) arc length distance between the blades, and (4) sensor aperture size and location.
- Rpm, radius and number of blades are adjusted as shown in the table below.
- The setup will allow the adjustment of clearance distance between 1mm - 10mm.
- The setup will not allow to replicate the vibrational modes observed in actual set up due to reduced rpm and reduced length.
- As blade tips, aluminum rectangular cross sections with 3.1mm width and 80mm length will be used. Tilt angle is 15.4°.

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Benchtop</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm</td>
<td>NA</td>
<td>3600</td>
</tr>
<tr>
<td>r</td>
<td>m</td>
<td>1.6</td>
</tr>
<tr>
<td>N (number of blades)</td>
<td>NA</td>
<td>64</td>
</tr>
<tr>
<td>Ns over blade width</td>
<td>NA</td>
<td>321</td>
</tr>
<tr>
<td>Blade cross section width</td>
<td>m</td>
<td>0.0031</td>
</tr>
<tr>
<td>Blade to blade angle</td>
<td>degree</td>
<td>5.625</td>
</tr>
<tr>
<td>w</td>
<td>rad/s</td>
<td>376.991184</td>
</tr>
<tr>
<td>Fs</td>
<td>MHz</td>
<td>62.459</td>
</tr>
<tr>
<td>Tip speed</td>
<td>m/s</td>
<td>603.1857895</td>
</tr>
<tr>
<td>Arc length between blades</td>
<td>mm</td>
<td>157.0796327</td>
</tr>
<tr>
<td>Blade to blade arc length/blade width</td>
<td>NA</td>
<td>50.67084925</td>
</tr>
</tbody>
</table>

Keep same between actual system and benchtop
Complete transceiver
- Synthesizers (selected, lead time)
- Mixers (selected, no significant lead time)
- Detector (selected, no significant lead time)
- DAQ/Processor (not selected yet)

Supplemental items
- One per revolution sensor
- Sensor calibration setup on micrometer platform

Environment evaluations
- Propagation loss in humid environment (10%) with a network analyzer setup
- Temperature evaluation in simulation or experiment.

Sensor design (open points)
- Sensor apertures
- Aperture covering/housing, sealed front-end
- Sensor material for environment
- Effect of lens

Stable platform

Sensor aperture and small representative rim
Measurement Setup
Collected Sensor Data from Benchtop Model

Collected data from optical sensors (displacement and one per revolution sensor) by the scope.

- **Time of Arrival (TOA):** Middle point of the waveform decided by intersecting the selected the raising and falling edge of sensor output

- **Clearance:** Averaging the displacement value around TOA within ±1ms (100 data points)

- mm-Wave sensor data captured with network analyzer and extracted blade reflection are shown.
Data Analysis: mm-wave vs. optical sensor

Comparison for TOA and tip clearance data obtained by mm-wave (62.5 GHz) and optical sensors when blade is 7.5mm away from the mm-Wave sensor aperture

Root mean square deviation between mm-wave and optical sensor

\[
\Delta_{\text{rms}} = \sqrt{\frac{\sum_{i=1}^{N}(x_{\text{mm}} - x_{\text{opt}})^2}{N}}
\]

- \(x_{\text{mm}}\): mm-Wave sensor data
- \(x_{\text{opt}}\): optical sensor data
- \(N\): number of blades, \(N=16\)
Task 3.0 – RF Communications package development
Benchtop Model and RF Communication Package Development

Preliminary design of bench-top model for testing sensor and communication/sensing circuitry

Communication/sensing circuitry for benchtop model

Millimeter wave parts on PCB

Waveguide design/manufacturing at RTRC

Unrestricted © Siemens AG 2022
Page 16
Task 4.0 – Integration into Blade Health Monitoring and Power Diagnostics®

- Nodal diameter plot
- Mistuning ratios
- Forces
- Damping

Blade Health Monitoring Analysis

Reported Frequency Change (Hz)

Threshold -> Flagged for investigation

Time -> Analysis every ~1hr

Unrestricted © Siemens AG 2022
Task 5.0/6.0 - Manufacturing Test Article and Engine Testing for Comparison with Existing Blade Vibration Monitoring

- Probe installation features
 - Ease of access for maintenance
 - Probes can be removed / replaced in-service
 - Probe(s) in upper half to be removed for casing lifts
- Recommend to install 3 probes, equally-spaced (120 deg apart) around circumference of casing

- Stationary pickups (magnetic sensors) sense time of arrival for each blade tip
- Difference between actual and expected times represents tip deflection (a_u)
RTRC is concentrating on modifying the relevant dimension of the mm-wave sensor to fit into the housing for minimal effort.

Leak testing is critical before engine testing.

Engine opportunity identified for May to August timeframe
Progress Highlights

(i) Simulation model and performance
(ii) Benchtop model and testing

Potential next steps

• Integration with Siemens’ leak testing rig
• Demonstration of sensor/wireless telemetry on existing probe at customer site
• Evaluating the waveform data with Siemens’ data analysis algorithms
• Sensor design for steam turbine environment (high temperature and humidity)
• Dedicated low SWaP mm-Wave transceiver design
Conclusions

- Team has focused on studying the blade characteristics and sensor hardware which consists of RF-based sensor components and communication/sensing circuitry.
- A comparison of optical sensor data with mm-wave sensor based on reflectometry at 62.5 GHz band showed less than 5% variation in blade tip timing and tip clearance.
- Sensor utilizes linear polarization. Alignment of the polarization along the blade chord axis is best location, but the results are not sensitive to this orientation.
- Clearance measurements with high resolution (±1mil) at high data speed is possible.
- Currently leak testing planned before data collection on Steam turbine at customer location (planned May-July 2022) to demonstrate big data analysis for real time monitoring
- Detection of tip timing accuracy needs to be evaluated with Siemens’ existing data analytics algorithm to evaluate the waveform and data processing approaches with uncertainties to estimate the detection resolution and applicable algorithms.