Embedded sensors integrated into critical components for *in situ* health monitoring of steam turbines Anand Kulkarni, Siemens Corporation DOE Award: DE-FE-0031832

Joseph Mantese, Gurkan Gok, Joe Zacchio – Raytheon Technology Research Corporation

SIEMENS

Ingenuity for life

Unrestricted © Siemens AG 2022

siemens.com

Acknowledgements

This material is based upon work supported by the Department of Energy Award Number DE- DE-FE-0031832. Siemens would sincerely thank the support of Sarah Nathan, DOE FPM for this project.

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Outline

Introduction

Project Objective

Project Approach to Meet Technical Targets

Project Schedule and Milestones

Task 2.0 - Demonstrate component scale up efforts for embedded sensors

Task 3.0 – RF Communications package development

Task 4.0 – Integration into Blade Health Monitoring and Power Diagnostics®

Task 5.0 - Define and Manufacturing Test Article for engine test

Task 6.0 - Conduct Engine testing of Instrumented Turbine blades

Project Objectives to Meeting FOA Requirements

SIEMENS

Project information

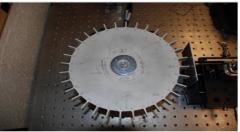
PI: Anand Kulkarni

Funder: DOE Office of Fossil Energy (FE) – NETL Crosscutting

Strategic Partner: Siemens Gas and Power, RTRC

Total Project Funding: \$1.25M (\$1M Federal/\$250K Cost share)

Project Details


- Design and develop embedded elements and communication/sensing circuitry for blade health monitoring of steam turbine.
- Baseline the performance of RF sensor/ communication with current multi-probe blade vibration monitor utilized in service on a test rig.
- Integrate the novel RF-based blade vibration monitoring within Siemens Power Diagnostics ® for remote real-time monitoring of blade health.
- Technology validate an integrated blade with embedded sensor/wireless communications device in an extreme-environment steam turbine.

Technical Highlights

Funding Opportunity Objective	Objective of the proposed work		
Fabricate and assemble a component with embedded	Design and develop embedded elements utilizing		
sensor technology	→ additive manufacturing and RF		
	communication/sensing circuitry for blade health		
	monitoring of steam turbine		
Develop methodologies that merge in-situ component	Integrate the novel RF-based blade vibration		
health monitoring	monitoring within Siemens Power Diagnostics ® for		
	$\stackrel{{}_{}_{}}{\rightarrow}$ remote real-time monitoring of blade health		
Conduct testing and demonstration of a fully integrated	Technology validation of an integrated blade with		
'smart' prototype applicable to a fossil-based energy	$\stackrel{\rm L}{\rightarrow}$ embedded sensor/wireless communications device in		
system process	an extreme-environment steam turbine.		

NASA GRC high precision spin rig microwave sensor.

Blade tip clearance and timing testing on the sensor Calibration Rig

Unrestricted © Siemens AG 2022

Page 4

Project Overview and Tasks

SIEMENS

Task	Description	Responsible
Demonstrate component scale up efforts for embedded sensors	 Establish sensor specification Sensor selection and localization Sensor and circuitry design Benchmark criteria selection 	RTRC Siemens CT
RF Communications package development	 Communication requirements Layout of communication circuitry Assembly of test rig Functional tests 	RTRC Siemens CT
Integration into blade Health monitoring und power diagnostics	 Interface specification to Siemens Power Diagnostics Calibration Model Develop Observers 	Siemens CT Siemens Energy
Define and manufacturing test article for engine test	 Define test scenario Localization of sensor on steam turbine Integration of sensor and steam turbine 	Siemens Energy RTRC
Conduct engine testing of instrumented turbine blades	 Simulate Engine test to provide predictions Run an engine test that follows the predictions Evaluate the sensing 	Siemens Energy

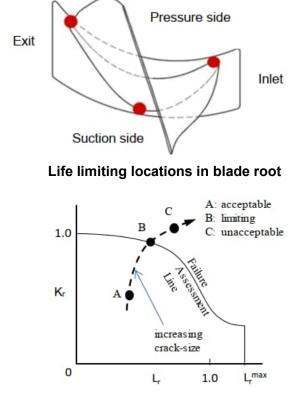
Unrestricted Siemen The technical team is strong and has the capability for successful demonstration

Project Approach for Embedded Sensors for Steam Turbine Blade Vibration Monitoring

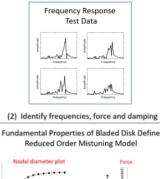
Year 1 Year 2 Embedded AM Sensors, RF Smart blade component, Develop HM Communications, Health Monitoring (HM) Approach, Engine testing of Tool integrated blade **Technical Progress Technical Progress** Develop RF sensors and Robust embedded RF sensor/ communication circuitry for Communications demonstrated bench testing Integrated sensor/communication Develop health monitoring tool on steam turbine blade Collect baseline blade monitoring Integration with power diagnostics data for specifications Go / No-Go Go / No-Go Spin test miniature embedded sensor wireless telemetry AM deposition for embedded sensors system RF Sensor/ Wireless telemetry demonstrated on Demo high throughput lab rig setup Embedded sensor manufacturing process Health monitoring framework Engine test validation of novel approach vs non-contact blade monitoring

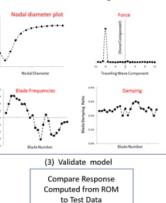
SIEMENS

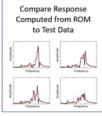
Need for Real-time Online Monitoring for Blade Vibration Monitoring


SIEMENS

(1) Measure frequency response




Water droplet induced blade root cracking for L0 blades in steam turbine

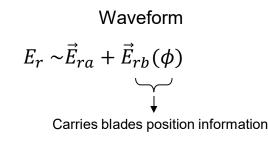


Life limiting locations in blade root

Unrestricted © Siemens AG 2022 Page 7 Detection of cracks in turbomachinery blade via online monitoring

Task 2.0 – Demonstrate component scale up efforts for embedded sensors

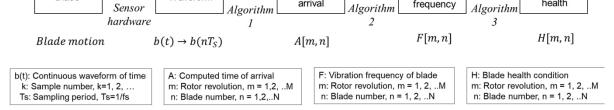
Define Key **Parameters of Interest** ¥Υ Materials & Ν AM Process Manufacturing Selection Requirements Meets Materials, To Sensor γ Sensor Selection Component, sensing& EM Requirements **Rig Testing** Performance Requirements Power & Wireless Wireless & Power N Requirements SubCom Selection Meets Materials, Mechanical and EM Model Siemens Component Y. Component, Sensing, **Fabrication & Testing Based Topology Optimization** & EM Performance **Requirements** Unrestricted © Siemens AG 2022 Page 8

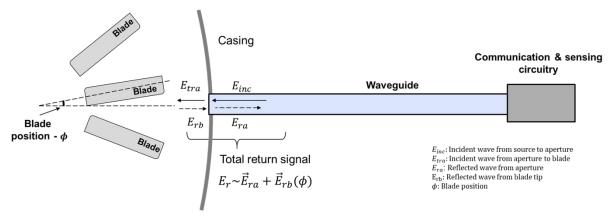

Kulkarni/ Siemens

SIEMENS

RF-based Blade Tip Timing Sensor

SIEMENS

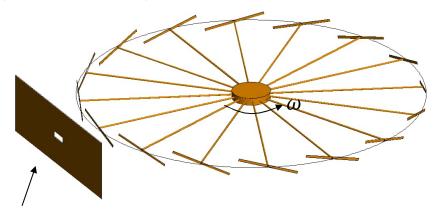

- Blade vibration monitoring system aims to assess changes in vibration frequency of blades over time.
- RF/MW based blade tip timing sensor hardware consists of a transceiver, a waveguide and sensor.
- Received signal waveform provides information about the position of the blade with respect to aperture.


 $\textbf{Unrestricted} \, \textcircled{\texttt{O}} \, \textbf{Siemens} \, \textbf{AG} \, \textbf{2022}$

Blade Waveform Unconsider Algorithm Blade vibration Blade health

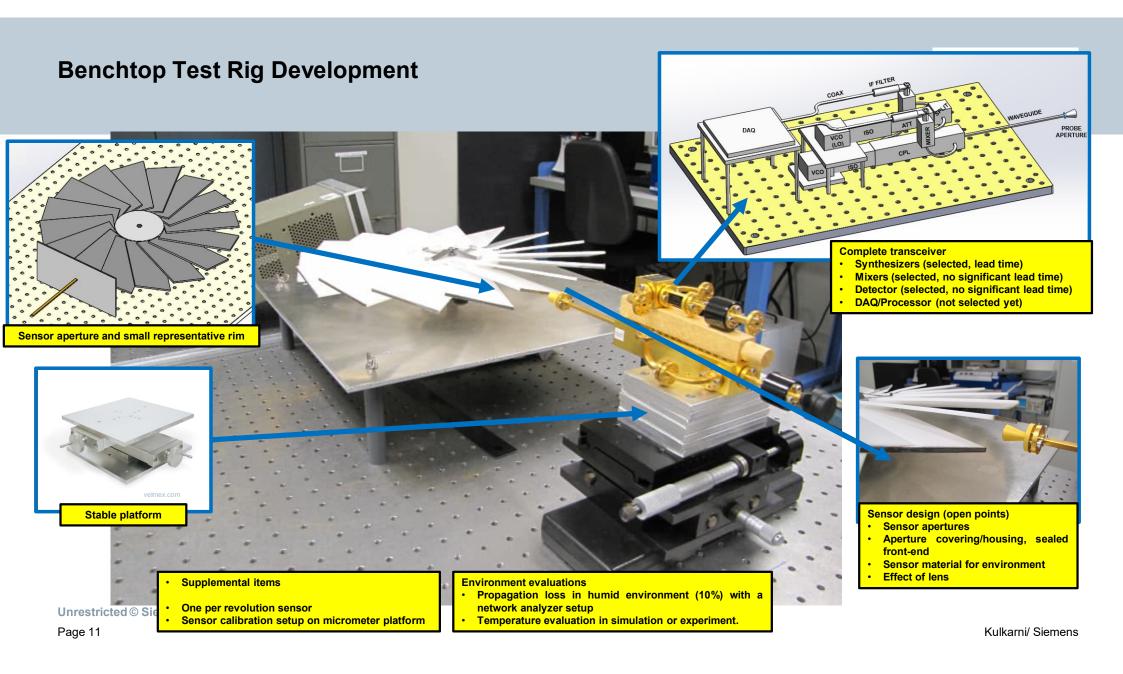
Functional block diagram of a generic blade vibration monitoring system

Schematic of an RF-based sensor for blade vibration monitoring


Page 9

Benchtop Model for Technology Validation

SIEMENS

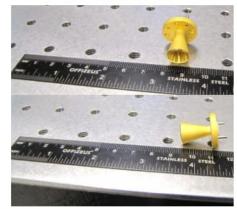

- Aims to record the return signal variation with respect to various blade tip positions.
- Able to test the detectability of blade tip by the microwave sensor at various positions with respect to aperture, while preserving compact size and reasonable data rotor speed and data sampling speed.
- The setup will preserve the followings from the actual model: (1) blade cross section width, (2) number of data points collected per arch length, (3) arc length distance between the blades, and (4) sensor aperture size and location.
- Rpm, radius and number of blades are adjusted as shown in the table below.
- The setup will allow the adjustment of clearance distance between 1mm 10mm.
- The setup will not allow to replicate the vibrational modes observed in actual set up due to reduced rpm and reduced length.
- As blade tips, aluminum rectangular cross sections with 3.1mm width and 80mm length will be used. Tilt angle is 15.4°.

		Actual	Benchtop
rpm	NA	3600	36
r	m	1.6	0.2
N (number of blades)	NA	64	8
Ns over blade width	NA	321	321
Blade cross section width	m	0.0031	0.0031
Blade to blade angle	degree	5.625	45
w	rad/s	376.9911184	3.769911184
fs	MHz	62.459	0.078
tip speed	m/s	603.1857895	0.753982237
Arc length between blades	mm	157.0796327	157.0796327
Blade to blade arc length/blade width	NA	50.67084925	50.67084925
Keep same between actual system and benchtop			

Sensor aperture and small representative rim Blade cross sections – Aluminum Rest of the structure will be made of relatively less reflective plastic material

Page 10

Measurement Setup


mm-Wave sensor data

> Optical sensor data

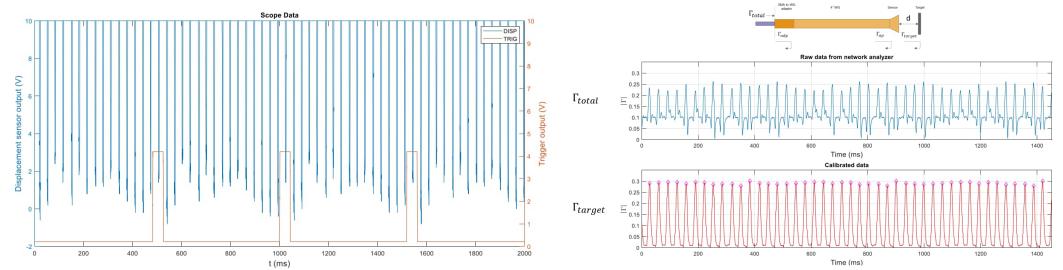
SIEMENS

mm-wave sensor

Metal plate as partial rim

mm-wave sensor placement

Optical sensor


Unrestricted © Siemens AG 2022 Page 12

.. -

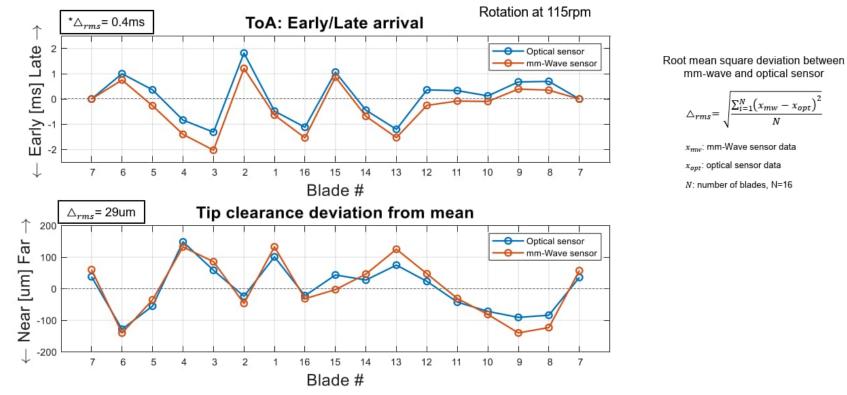
-

Collected Sensor Data from Benchtop Model

SIEMENS

Collected data from optical sensors (displacement and one per revolution sensor) by the scope.

• mm-Wave sensor data captured with network analyzer and extracted blade reflection are shown.

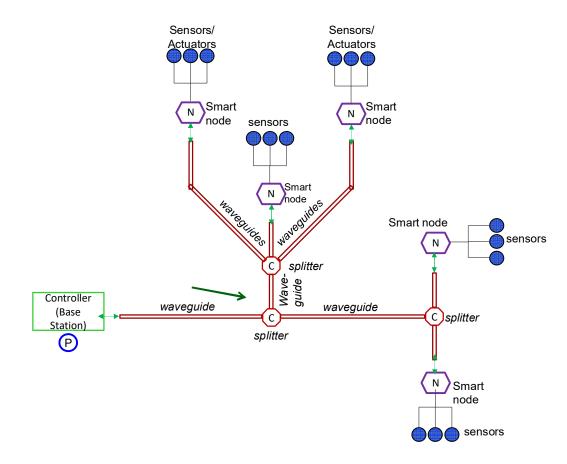

• Time of Arrival (TOA): Middle point of the waveform decided by intersecting the selected the raising and falling edge of sensor output

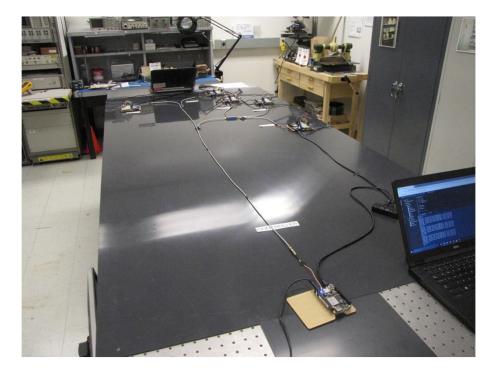
• Clearance: Averaging the displacement value around TOA within ±1ms (100 data points)

Data Analysis: mm-wave vs. optical sensor

SIEMENS

Comparison for TOA and tip clearance data obtained by mm-wave (62.5 GHz) and optical sensors when blade is 7.5mm away from the mm-Wave sensor aperture

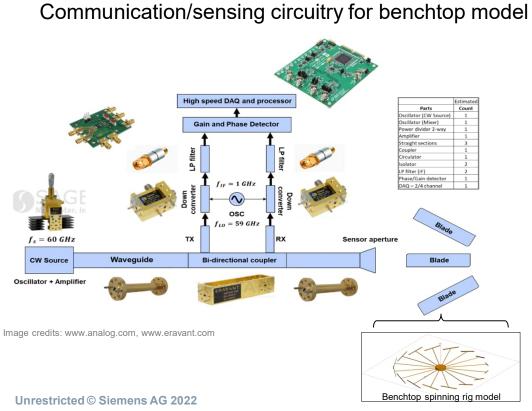



Unrestricted © Siemens AG 2022

Page 14

Task 3.0 – RF Communications package development

SIEMENS


Unrestricted © Siemens AG 2022

Page 15

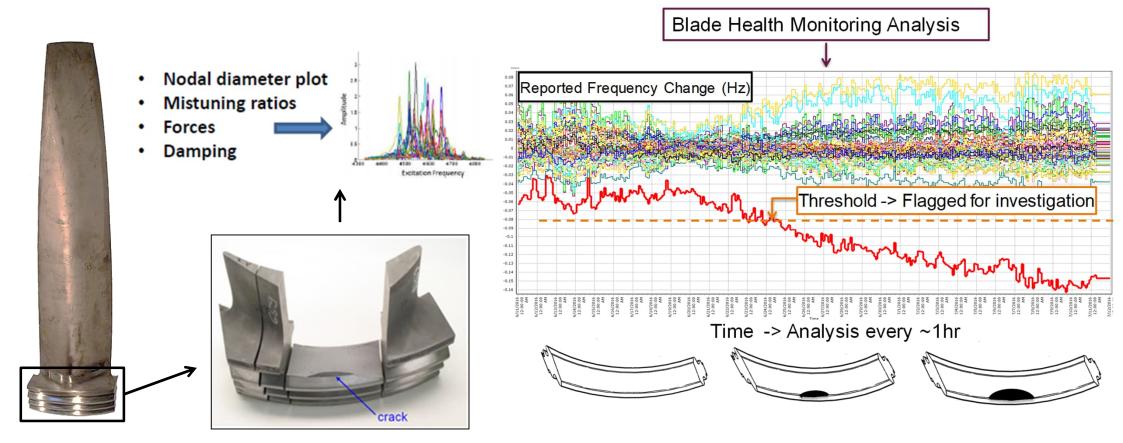
Benchtop Model and RF Communication Package Development

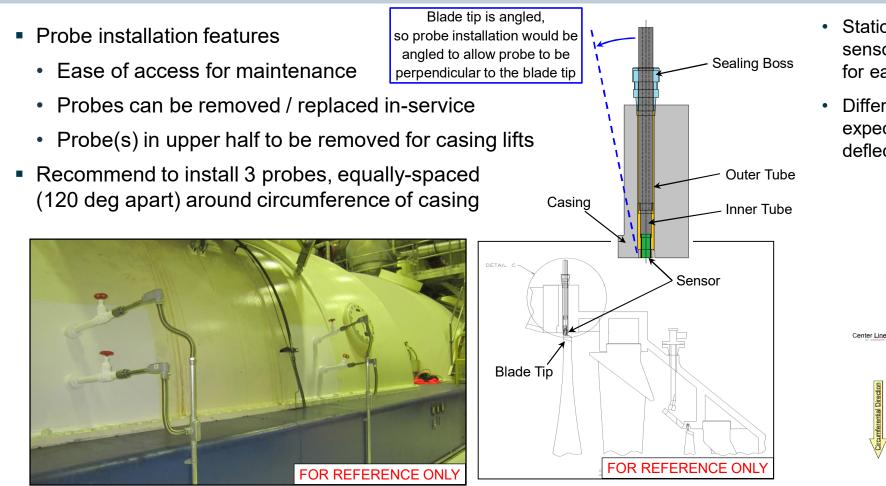
SIEMENS

Preliminary design of bench-top model for testing sensor and communication/sensing circuitry



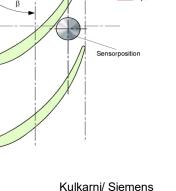
Millimeter wave parts on PCB


RX Waveguide design/manufacturing at RTRC


Page 16

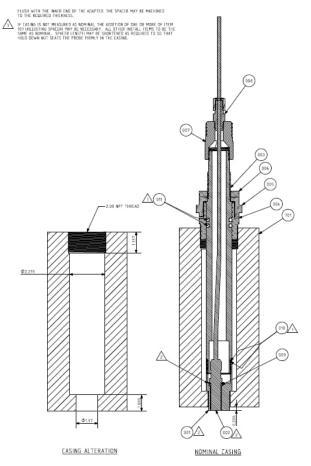
Task 4.0 – Integration into Blade Health Monitoring and Power Diagnostics®

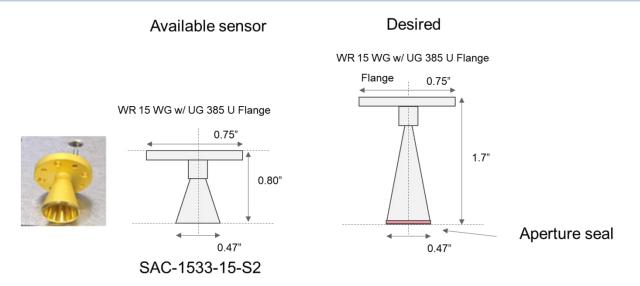
SIEMENS



Task 5.0/6.0 - Manufacturing Test Article and Engine Testing for Comparison with Existing Blade Vibration Monitoring

SIEMENS


- Stationary pickups (magnetic sensors) sense time of arrival for each blade tip
- Difference between actual and expected times represents tip deflection (a_u)



Blade Deflection

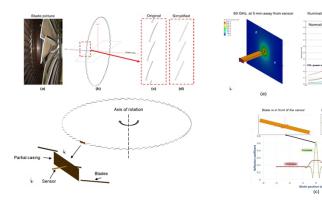
Leak Testing in Orlando

SIEMENS

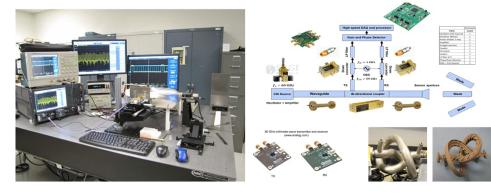
RTRC is concentrating of modifying the relevant dimension of the mm-wave sensor to fit into the housing for minimal effort.

Leak testing is critical before engine testing.

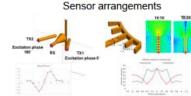
Engine opportunity identified for May to August timeframe


Unrestricted © Siemens AG 2022

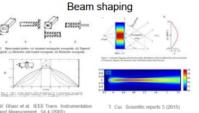
Page 19


Progress Highlights

SIEMENS


(i) Simulation model and performance




(iii) Benchtop model and testing

Low SWaP transceiver

Kulkarni/ Siemens

Potential next steps

- Integration with Siemens' leak testing rig
- Demonstration of sensor/wireless telemetry on existing probe at customer site
- Evaluating the waveform data with Siemens' data analysis algorithms
- Sensor design for steam turbine environment (high temperature and humidity)
- Dedicated low SWaP mm-Wave transceiver design

Unrestricted © Siemens AG 2022 Page 20

Conclusions

- Team has focused on studying the blade characteristics and sensor hardware which consists of RF-based sensor components and communication/sensing circuitry.
- A comparison of optical sensor data with mm-wave sensor based on reflectometry at 62.5 GHz band showed less than 5% variation in blade tip timing and tip clearance.
- Sensor utilizes linear polarization. Alignment of the polarization along the blade chord axis is best location, but the results are not sensitive to this orientation.
- Clearance measurements with high resolution (±1mil) at high data speed is possible.
- Currently leak testing planned before data collection on Steam turbine at customer location (planned May-July 2022) to demonstrate big data analysis for real time monitoring
- Detection of tip timing accuracy needs to be evaluated with Siemens' existing data analytics algorithm to evaluate the waveform and data processing approaches with uncertainties to estimate the detection resolution and applicable algorithms.

SIEMENS