RIC Advanced Sensors & Controls FWP Overview 2022

Dustin McIntyre, Michael Buric, Yuhua Duan, Dan Haynes, David Tucker, Larry Shadle, Sam Bayham, Erik Shuster, Joe Yip, Steve Richardson, Jeff Wuenschell, Dan Hartzler, Chet Bhatt, Juddha Thapa, Rupen Panday, Nari Soundarrajan, Jennie Stoffa, Nick Park, Swarom Kanitkar, Hari Paudel, Farida Harun, Ethan Linderman, Jeff Vipperman

Presenter: Benjamin Chorpening, Ph.D. Technology Portfolio Lead Benjamin.Chorpening@netl.doe.gov

- NETL Research & Innovation Center
- R&D Motivation and Challenges
- FWP Overview

Research Focus by Site

Multiple Sites Operating as One Lab System

- PENNSYLVANIA
- Functional Materials
 Environmental Sciences

Decision Science

Energy Systems Optimization

Process Systems Engineering

- WEST VIRGINIA
- Energy Conversion Devices
- Simulation-Based Engineering
- In-Situ Materials Characterization
- Supercomputer Infrastructure
- Microwave Reactors

- Materials Performance
- Multi-environment Materials Characterization
- Alloy Development/Manufacture

OREGON

Geospatial Data Analysis

NETL Core Competencies

EFFECTIVE RESOURCE DEVELOPMENT • EFFICIENT ENERGY CONVERSION • ENVIRONMENTAL SUSTAINABILITY

Computational Science & Engineering	Materials Engineering & Manufacturing	GEOLOGICAL & ENVIRONMENTAL SYSTEMS	Energy Conversion Engineering	Strategic Systems Analysis & Engineering	Research Planning & Delivery
High Performance Computing	Structural & Functional Materials	Geo-Analysis & Monitoring	Reaction Engineering	Energy Process & System Engineering	Technical Project Management
Multi-Scale Modeling Atomistic to Device	Design, Synthesis, & Performance	Reservoir Engineering	Design & Validation Thermal Sciences	Multi-scale Modeling, Simulations & Optimization	Business Management & Agreements
Artificial Intelligence & Machine Learning	Characterization	Geochemistry	Advanced System Engineering	Energy Markets Analysis	5

Technology Development Pathway

An Active Portfolio from Concept to Market Readiness

Getting to a Net-Zero Carbon Future

Increase Flexibility, Reduce CO₂ Emissions

Executive Order 14008 set a goal of a carbon pollution-free power sector by 2035

FECM 2022 Strategic Vision

- Focus on the future (2050)
- Role in ensuring graceful transition from fossil-fuel based system

Net-zero carbon power

- NG turbines with Point-Source Capture
- Hydrogen as bulk clean energy storage
- Hydrogen production from carbon-based fuels with carbon capture – support transition
- Hydrogen utilization
 - Hydrogen/NG blend turbines
 - Hydrogen hybrid systems

Sensors & Controls R&D Activities

- Sensors for hydrogen blend systems
- Dynamic controls for Integrated Energy Systems
- Optimized power plant and grid control strategies
- Sensors to assure environmental safety of carbon storage and hydrogen systems

Zero-net carbon, flexible and integrated energy systems are needed to complement renewables to provide reliable and resilient power and sharply reduce CO₂ emissions.

Technology Challenges for Sensors and Controls for Hydrogen and Carbon Management

Carbon Storage and Subterranean chemistry

- Assure CO₂ storage stability
- At the Wellhead
- Downhole
- High pressure water or brine

Hydrogen Production and Utilization

- Modular gasification
 - waste plastics / MSW
 - Sustainable biomass
 - Coal waste deposits
- Microwave fuel reforming
- Chemical Looping
- Hydrogen/Blend GT
- SOEC
- Ammonia systems

Hybrid NG/Hydrogen Systems

- 800°C in SOFC
- 1500°C in GT
- Transient controls
- + CO_2 storage

Novel Systems

- Direct Air Capture
- Supercritical CO₂ cycles

Overview of Adv Sensors & Controls FWP (EY22)

Sensors & Instruments

- High temperature optical fiber sensors
 - Crystalline fiber
 - Sensing materials
 - Interrogation
- Real-time gas composition analysis of hydrogen blends
- LIBS for subterranean sensing of fluid migration

Controls

 Cyber-physical systems as a zero-carbon integrated energy system development acceleration tool

<u>Cybersecurity and</u> <u>Novel Concepts</u>

- VLC Alternative to RF
- Al for screening and design of functional materials
- Quantum sensors for FECM applications

Optical Fiber Sensing for Harsh Environments

Developing materials and methods for fiberbased sensing concepts to provide spatially resolved chemical species and temperature measurements from an optical fiber at harsh conditions (>800°C)

U.S. DEPARTMENT OF

Material modeling

Commercial and novel multipoint interrogation

Fossil energy relevant gases

Dr. Michael Buric to present later

Fast Raman Gas Analyzer

•

- Prototype tested in pilot scale laboratory applications •
- Fast 1 second measurement time •
- Species concentrations measured to 0.1%
- Optical waveguide technology boosts Raman signal more than 1000X •
- No recalibration needed in normal operation •

NATIONAL

0

LIBS for Subterranean Sensing

Development, optimization and testing of a deployable miniaturized LIBS system for subterranean chemical sensing 2019 Optical Fiber, R&D 100 Demultiplexer <1 km Pump Laser n O Award Pulse detector Power, Storage Winner Proc LIBS spectrometer **ABOVE GROUND CONTROL UNIT Pump Beam** Laser Pulse FIBER OPTIC Spark Nd/Cr:YAG Pulsed Laser **Returning LIBS** Emission DOWNHOLE LASER MODULE MONITORING WELL Dr. Dustin McIntyre to present later

Advanced Controls and Cyber-physical Systems

Partner with Ames NL on design method and use of cyber-physical systems for accelerating development of Integrated Energy Systems and Hydrogen Hybrids

Develop and demonstrate advanced control methods such as online system identification, and agent-based control for integrated systems

Model-Free Control (Agent-Based)

- Multi-agents emulate intelligent control
- Agents can coordinate their behavior to achieve multiple objectives
- · Load following was achieved while minimizing the transient impact on efficiency

More in presentations by Dr. David Tucker (NETL) and Harry Bonilla-Alvarado (Ames Laboratory)

Visible Light Communication

I.S. DEPARTMENT OF

More secure alternative to RF communication for sensors?

Transmitter and receiver in testing

- Eye-safe, power LED based system
- Mounted onto poles separated by 100 yards on NETL site
- Battery powered with solar recharge

Data collection to evaluate weather impact

Early 2021 prototype

Quantum Sensing and Machine Learning / Al

Sensing Properties

Prediction

at Operating

Conditions

Functional Sensing

Materials

650 K

10.0

12.5

1000 k

SnO

Material

Quantum Sensing: Nanodiamonds with

Machine Learning for Functional Materials Development

Machine Learning

Model

Model

Finger Prints

Development

14

Modeling shows band gap

change affects optical

responses in SnO₂, SnO

15.0

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

