Fiber Optic Sensors for Harsh Environment Applications (AS Tasks 21, 24, and 33)

Dr. Michael Buric With Dr. Guensik Lim, Gary Lander, Dr. Jeff Wuenschell, Dr. Ben Chorpening NETL Research & Innovation Center

Research Breakdown

- Increase data-visibility for energy-system operators through high-value distributed measurements (replacing single-point)
 - "Toughest environments provide the highest value"
 - Enable predictive capabilities through data-analytics and AI/ML
- Methods: Produce novel single-crystal fibers for harsh-environment sensor applications
- Design Novel fiber-optic interrogators that work with SC-fiber
- Add novel parameters like gas composition, flow, radiation, or others
- Market complete sensor solutions for specific applications/customers
- Control processes for efficiency (\$\$, fuel, CO₂), Predict failures for maintenance

- Task 24: Laser Heated Pedestal Growth/ Fiber Cladding
- Task 33: Distributed Raman Temperature Sensing with singlecrystal optical fiber (ultra-high temperature)
- Overlap with 2019-2022 ARPA-e nuclear sensing project
- Task 21: Novel Optical Oxygen Sensing Materials

Why single crystal fibers in FE sensing?

- Why optical fiber?
- 1. No electrical interference
- 2. Medium temperature (~800c)
- 3. Single Feedthrough
- 4. Inexpensive
- 5. Easily functionalized
- 6. Distributed!

- ✤ Single crystal fiber
- 1. High melting point (sapphire: 2054°C)
- 2. Corrosion resistant
- 3. Compact size (100 microns)
- 4. Wide transmission window
- 5. Benefits of silica ++

	Coal / Waste plastic biomass Gasifiers	Combustion Turbines (H2 or NG)	Solid Oxide Fuel Cells / Electrolyzers	Hybrid systems
Temperatures	Up to 1600°C	Up to 1300°C	Up to 900°C	Up to 1000°C
Pressures	Up to 1000psi	Pressure Ratios 30:1	Atmospheric	System dependent
Atmosphere	Highly Reducing, Erosive, Corrosive	Oxidizing	Oxidizing and Reducing	Oxidizing and reducing
Examples of Important Gas C) Species	H ₂ , O ₂ , CO, CO ₂ , H ₂ O, H ₂ S, CH ₄	O₂, Gaseous Fuels (Natural Gas to High Hydrogen), CO, CO₂, NO _x , SO _x	Hydrogen from Gaseous Fuels and Oxygen from Air	H2, NG components, contaminants

Making Single-crystal fiber with LHPG

- CO₂ laser source for heating
- "Doughnut" beam shaper surrounds molten zone with light
- Motors advance feedstock (pedestal) and fiber
- Slow process (mm/min)
- Grows pure crystals (no cladding)

NETL LHPG Capabilities and features

Some NETL LHPG stats:

- Minimum diameter variation < 2 um
- Minimum fiber diameter <55um
- 50W laser power available (<1.5mm pedestals)
- Automatic fiber centering (+/-2mm)
- Continuous growth of any length with start/stop algorithm
- Error Erasing Algorithm
- Second LHPG brought online in 2021
- High temperature claddings

- Grow cladded fibers with 2-stage LHPG
 - Sapphire or YAG
 - Sol-gel (or other) dopant additions
- Evaluate materials compatibility in FE (or nuclear) systems
- Improve fiber performance

Cladding Application

Dopant Species Made to Date:

Dopant species	Host crystal
Cr (chromium)	Sapphire
Nd (neodymium)	YAG
Ho (holmium)	YAG
Er (erbium)	YAG
Yb (ytterbium)	YAG
Ce (cerium)	YAG/ LuAG
Gd (gadolinium)	YAG/ LuAG

Automatic Dopant Segregation through LHPG: Top left: Visible light guiding in GRIN YAG fiber, Top right: EMPA map of Nd concentration in a GRIN YAG fiber, Bottom plots: Co-doped Nd and Ho: YAG fiber dopant concentrations in X (left) and Y (right)

Reel-to-Reel sol-gel processing system for cladding dopant additions (Task 24)

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Coater designed to coat long lengths of single crystal fiber (~3-5 m) in sol gel solution and "soft bake" with hot air dryer.
- Post-coating thermal processing – vertical furnace with 1200°C max temperature.
- Processed fiber used for re-growth and dopant distribution

Novel dual LHPG system for clad sc-fiber

- Constructed in-house
- Mechanical components
 machined @ NETL/MGN
- >\$200k investment (FE/ARPA-e)
- Enables novel 2-stage procedure
 - growth followed by cladding
 - 1mm -> 300um -> 100um (or smaller)
- More than double throughput
- Unique capability/facility

ΔΤΙΟΝΔΙ

Virginia

How an SC-fiber becomes a T-sensor (Task 33)

- Introducing the NETL Raman DTS (distributed temperature sensor)
- Pulsed ~350ps 532nm green laser
- Excites Raman Scattering as pulse propagates
- Collects Raman with Fast avalanche photodiodes
- Optics designed for sapphire or YAG fiber
- First interrogator for SC-fiber
- First interrogator produced by NETL Interrogator Development Program

Raman DTS – Lab Prototype

- Off-the-shelf components
- Breadboard construction
- Enabled design optimization/tinkering
- Improved prototype used for fieldtesting / product version

DTS Field Prototype design

- Flight case design
- Shock-mounted optics
- Laser safety electrical interlocks
- Software for lead-in fiber
- YAG or Sapphire fibers
- Simplified operator controls
- First field test at MITR
- Second Field test at INL

J.S. DEPARTMENT OF

Probe Design for remote measurement

NATIONAL ENERGY TECHNOLOGY LABORATORY

- 50' silica multimode fiber (105 μm), Thorlabs low-OH content silica.
- Fusion spliced to 1 m long single crystal sapphire probe (100 μm diameter).
- Single-crystal probe covers entirety of hot zone.

MIT Research Reactor Temperature Measurement

• Molten salt-loop development acceleration with distributed single-crystal harsh-environment optical fiber-sensors (ARPA-e 2019-2022)

Fiber-optic probe

(spliced radiation-resistant lead fiber to sapphire single-crystal fiber was inserted into protective stainless-steel tube)

Installed fiber-optic

dummy fuel element

probe into the

Probe installed in Light Water Reactor

Data acquisition station

U.S. DEPARTMENT OF

Molten Salt temperature measurement with INL

Chunks of NaCl-MgCl₂ eutectic saltmixture

Chloride salt-mixture loaded in a pre-cleaned and dried glassy carbon crucible, inside a top loading Kerr furnace

Ar-atmosphere glovebox with metallic cover and OD 6 window - designed as Class 1 enclosure for laser work

Molten Salt temperature measurement results

NATIONAL

RG

Task 21 – Development of Functional Sensor Materials for Oxygen Sensing

Fe-doped Strontium Titanate Sensing Layer

- Main candidates for oxygen sensing tested in EY21:
 - LSCF sputtered (La_{0.8}Sr_{0.2}Co_{0.2}Fe_{0.8}O₃)
 - SFT sol gel (SrFe_{0.35}Ti_{0.65}O₃)
- Tested at 500-900°C, 1-19% O₂, under humid conditions.
- Technical challenge drift of point sensor response too large relative to 1-19% O₂ response. Approach for improving response, lowering drift (e.g., utilizing single crystal fiber) explored near end of EY21.

LSCF Sensing Layer

Gas flow concentration gradient reactor for oxygen sensing

- System completed in EY21 for creating controllable gas concentration gradient (oxygen / nitrogen) at high temperature (up to 1000°C).
- Calibrated with commercial room temperature oxygen sensing system.
- Can be utilized in future for any gas available in ASDL across other projects.

Distributed oxygen measurement

- Dual gas flow system was tested with SMF / MMF hybrid sensor using Luna Optical Backscatter Reflectometer (OBR) for distributed sensing tests.
- Fiber sensor utilizing sol-gel based Fe-doped Strontium Titanate sensing layer tested for distributed oxygen sensing at high temperature (500-900°C).
- Initial results demonstrated strong backscatter from sensing layer and measurable variation under oxygen gradient.

ATIONAL

Plasmonic materials for H2 and O2 – Advanced Sensors/ SOFC FWPs

2600

100 nm

- Progress on development of plasmonic sensing layers for hightemperature gas sensing.
- Modeling of gold-nanoparticle incorporated oxides for O₂ and H₂ ٠ sensing (right).
- Sapphire embedded with gold nanorods for passive thermal (Blackbody) based sensing (top).

Wuenschell, et al. MRS Communications (2022).

- Distributed Fiber-optic sensing will enable amazing new capabilities
- The toughest (and highest value) sensor locations are becoming accessible
- Single-crystal fiber will enable measurements where silica is problematic
- Interrogators can be developed at lower cost, for specific applications
- Functional materials can enable novel parameters like gas composition
- NETL can offer a complete solution with fiber, coatings, and interrogators

Measure where it counts!

VISITUS AT: www.NETL.DOE.gov

🥑 @NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Dr. Michael Buric, RIC, FMT Michael.Buric@netl.doe.gov

