Development and Testing of Ceramic Materials for Direct Power Extraction

Michael Bowen David Cann, Rigel Woodside

Outline

• Introduction

- MHD
 - Operation
 - Legacy Research
- Materials
 - Generator Design
 - Material Requirements
- R&D
 - Material selection
 - Metals, Non-oxide ceramics, Oxide ceramics
 - Characterization & Evaluation
 - High temp properties
 - Corrosion resistance
 - In-situ testing

• Generator Design

- Thermo-mechanical properties
- Structural modeling
- Fabrication
 - Monolithic channels
 - 3D printing
 - Shrink-fit
- Graded ceramics

conductive fluid moving through a magnetic field

U.S. DEPARTMENT OF

History of MHD Materials

• Coal fired MHD (1960s-1990s)

- "Cold-wall" water cooled channels
 - Metal electrodes
 - Slag protective layer

• Natural Gas: US-USSR Collab. (1970s-1980s)

- "Hot-wall" channel
 - Direct material exposure
 - Oxide electrodes
 - <u>Three primary oxide materials tested</u>:
 - Zr-Ce-Y of different concentrations corrosive failure and material degradation²
 - Fe-doped $MgAl_2O_4$ Significant degradation and corrosive failure³
 - Mg-doped LaCrO3 significant degradation, Cr loss, 1700°C limited⁴

Diagram of channel wall surface and materialplasma interactions in coal-fired MHD channel. (From Kayukawa¹)

Materials Selection

• Requirements

- Wall temperatures > 1500 °C
- Potassium vapor $\sim 1\%$ conc. by weight
- Oxygen partial pressures 10⁻⁹-10⁰ atm
- Electrical conductivity:
 - $<10^{\circ}$ S/m for insulators
 - $>10^2$ S/m for electrodes
- Metals
 - Great conductivity
 - Low melting points
 - Poor oxidation resistance
 - Water cooling necessary

- Non-oxide Ceramics
 - High melting points
 - Poor oxidation resistance
 - Still require water cooling

Materials Selection

• Requirements

- Wall temperatures > 1500 °C
- Potassium vapor $\sim 1\%$ conc. by weight
- Oxygen partial pressures 10⁻⁹-10⁰ atm
- Electrical conductivity:
 - $<10^{\circ}$ S/m for insulators
 - $>10^2$ S/m for electrodes

Oxide Ceramics

Candidates of interest

Oxidation of Molybdenum after exposure to potassium seeded plume. Tungsten oxidized – formed tungstate with seed

Materials Selection

Oxide Ceramics

- Trim down periodic table:
 - $T_m > 1500^{\circ} \hat{C}$, non-hazardous
 - High Temperature Oxides (refractory oxides)
 - Alkaline Earth Metal Oxides
 - MgO, BaO, SrO, CaO
 - Group IV Metals
 - ZrO_2 , HfO_2 , CeO_2
 - Rare Earths
 - Y_2O_3 , Gd_2O_3 , La_2O_3 , Sm_2O_3 etc.
 - Others:
 - Al_2O_3 , SiO_2
- These materials are worth evaluating and characterizing
 - Evaluation: determining which candidates are viable
 - Characterization: quantifying critical properties which dictate performance

Adapted from ⁷

Material Evaluation: Stability

- Temperature Stability: Criteria Met
- Environment Stability: Thermodynamics
 - High potassium vapor activity
 - Extremely reactive
 - $\sim 1\%$ concentration (by weight)

No handbook/table to answer this question

- Evaluation predictors (literature review)
 - Phase diagrams
 - Observed phases CrystallographyOpenDatabase
 - DFT MaterialsProject database
- Experimental evaluation (ex-situ)
 - ASTM Material Performance and Characterization article¹⁰

Potassium-Aluminum binary oxide phase diagram showing the stability of potassium aluminate at high temperatures.⁸

Ex-Situ Potassium Corrosion Resistance

Experiment Design: Adapted ASTM Method [5]

Conditions:

- 1200°C
- Ar environment: Simplest Case
- 24-hour exposure
- K is dominant species

Analysis/Quantification

- Null test: No potassium
 - test for standard mass change
 - initial XRD pattern
- K-vapor exposure:
- Surface reaction with sample
- Track mass to 10ug
- Characterize crystal structure
 - Surface XRD of exposed face
- SEM

• Group IV Oxides: ZrO₂, HfO₂, and CeO₂

- ZrO_2 is known to react with potassium
 - Determined reason for failure in Ce-Zr-O comps.
 - Three K-Zr-O phases have been described
 - Failure observed cracking, spalling, joule heating
 - Used as a reference how will failure present itself?
 - K-Zr-O crystallizes in grains on the surface

- Group IV Oxides: ZrO₂, HfO₂, and CeO₂
 - ZrO_2 is known to react with potassium
 - Determined reason for failure in Ce-Zr-O comps.
 - Three K-Zr-O phases have been described
 - Failure observed cracking, spalling, joule heating
 - Used as a reference how will failure present itself?
 - K-Zr-O crystallizes in grains on the surface
 - HfO₂ is chemically similar to ZrO₂
 - Congruent K-Hf-O phases described match the K-Zr-O phases
 - Ex-situ tests confirm potassium reaction
 - K-Hf-O crystallizes on surface

• Group IV Oxides: ZrO₂, HfO₂, and CeO₂

- ZrO_2 is known to react with potassium
 - Determined reason for failure in Ce-Zr-O comps.
 - Three K-Zr-O phases have been described
 - Failure observed cracking, spalling, joule heating
 - Used as a reference how will failure present itself?
 - K-Zr-O crystallizes in grains on the surface
- HfO₂ is chemically similar to ZrO₂
 - Congruent K-Hf-O phases described match the K-Zr-O phases
 - Ex-situ tests confirm potassium reaction
 - K-Hf-O crystallizes on surface
- CeO₂ shows promise with potassium corrosion resistance
 - No known K-Ce-O phases
 - No potassium reactions observed in ex-situ exposure

- Alkaline Earth Oxides: MgO, BaO, SrO, CaO
 - MgO tested in early research, primary insulator candidate
 - No K-Mg-O phases observed in literature or ex-situ testing
 - Some potassium infiltration to grain boundaries
 - SrO, BaO, and CaO are expected to yield similar results
 - SrO will be evaluated in SrGd₂O₃

• Rare Earth Oxides: Gd₂O₃, Y₂O₃, La₂O₃

- Gd, La, and Y are selected based on compatibility with other materials
 - YSZ, GDC, LaMnO₃
- Aside from cerium, rare earths share many chemical properties
 - Potassium reactions expected to be the same
- At high doping levels (>10%) no potassium formations observed
 - Ex-situ testing
 - Predicted phases only theoretical (DFT)
 - Nothing experimentally observed

No predicted or observed reactions!

Summary of Results

• Of the Group IV Elements:

- Cerium oxide is the only one to resist potassium reactions
- Zr and Hf oxides both form a potassium containing phase on the surface when exposed, which results in spalling and surface degradation

• Of the Alkaline Earth Elements:

- MgO resists potassium corrosion
 - Some potassium infiltration in G.B observed in legacy work
 - Suspected to be a result from impurities
- Ba, Sr to be tested

• Of the Rare Earth Elements:

- Gd, Y, and La appear to resist potassium corrosion
 - Not evaluated as bulk material (used as additive)
- Others to be tested (PrO2 is only one predicted to react)

Evaluation: Electrical Performance

Electrical Characterization

- Conductor and Insulator
 - Conductors > 100 S/m
 - Insulators < 1 S/m
 - Conductors should have lower activation energy
- Little reported data in literature >1000°C
 - Most data shared is old
 - Measurements this high are more difficult to execute
 - OSU cooperative efforts to collect data up to 1600°C

From Rudins et al¹¹ MHD Electrode Material development

Summary of Results

- Electrical Conductors:
 - ZrO₂, HfO₂, CeO₂, LaMnO₃
 - Doped with rare earths
- Electrical Insulators:
 - Al2O3, MgO
- Specific operating temperatures
 - Transition electrode for int. temperatures
- Activation energy: σ vs T
 - Ceramics vs Metals

From Bowen, et al., SNAS¹² 17

Summary of Results

Mat'l	Electrode/ Insulator	Ex-situ K corrosion?	Proceed with in- situ testing?
AI2O3	Insulator	reacts	no
MgO	Insulator	resists	yes
ZrO2 (with Y)	Electrode	reacts	no
HfO2 (with Y)	Electrode	reacts	no
CeO2	Electrode	resists	yes
LaMnO3	Electrode	reacts	no

WO₃ and SiO₂ reactions observed in uncontrolled tests Materials tested thus far are highest melting point suspected to be most stable

- Passed evaluation criteria
- Failed evaluation criteria

Evaluation: In-Situ Testing

- Evaluate material stability against true MHD operating conditions
 - HVOF Combustion System
 - Oxy-Kerosene combustion
 - Potassium-Kerosene emulsion seed feeding
 - Surface characterization
 - XRD
 - SEM/EDX
 - Thermal performance
 - Two-color pyrometry
 - Non-contact temperature measurement for surface temperatures
 - Thermocouples
 - Contact temperature measurements

Iterative design testing: Top left: crucible mount Bottom left: sleeve holder Bottom right: in-situ thermal image

Design Considerations

Thermal and Mechanical Properties

Fabrication and Modeling

- Modeling:
 - Thermal Stresses
 - Hoop stress
 - Interference fit
- Fabrication

100

a 150

200

250

- 3D Printing
- Machinable Ceramics
- Monolithic channels
 - Unibody rather than multi-component

1600

1400

1200 🗵

1000

Graded Ceramics

Hoop stress failure in MgO Sleeve:

Wall T = 100C

0.0

Failure in MgO sleeve – sample mounting apparatus for HVOF exposure Model vs Experiment

22

Acknowledgements

Organizations:

- Department of Energy: Office of Fossil Energy
- National Energy Technology Laboratory
- Oregon State University
- ORISE

People: Michael Bowen, Tim McKinley, Rigel Woodside*, Peter Hsieh*, David Cann, Paul Thomsen, Jon Fulton, Richard Chinn;

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Bibliography

- (1) https://www.britannica.com/technology/magnetohydrodynamic-power-generator#/media/1/357424/92957
- (2) Woodside, C. R., NETL DPE FWP Crosscutting Meeting, May 2021
- (3) Kayukawa, N. Open-Cycle Magnetohydrodynamic Electrical Power Generation: A Review and Future Perspectives. Progress in Energy and Combustion Science 2004, 30 (1), 33–60. https://doi.org/10.1016/j.pecs.2003.08.003.
- (4) G. Rudins, S. Schneider, L. Bates, et al., "Joint U.S.-U.S.S.R. Test of U.S. MHD Electrode Systems in U.S.S.R. U-02 MHD Facility (Phase I)," Final Report, United States: N. p. (1975), https://doi.org/10.2172/7237502
- (5) G. Rudins, S. Schneider, L. Bates, et al., "Joint U.S.-U.S.S.R. Electrode Material Test System U-02 Westinghouse (Phase II)," Final Report, United States: N. p., (December 1977), <u>https://doi.org/10.2172/6795339</u>
- (6) J. L. Bates, J. D. Bein, D. L. Black, et al., "Joint U.S.-U.S.S.R. Test of U.S. MHD Electrode System in the U02 Facility (Phase III)," Final Report, United States: N. p. (1978), https://doi.org/10.2172/6263617
- (7) <u>https://upload.wikimedia.org/wikipedia/commons/0/03/Simple_Periodic_Table_Chart-blocks.svg</u>
- (8) K. E. Spear, M. D. Allendorf, "Thermodynamic Analysis of Alumina Refractory Corrosion by Sodium or Potassium Hydroxide in Glass Melting Furnaces," J. Electrochem. Soc. 149, no. 12 (March 2002): B551-B559. https://doi.org/10.1149/1.1516773
- (9) Master's Thesis
- (10) Bowen, M. S.; Kwong, K.-S.; Hsieh, P.; Cann, D. P.; Woodside, C. R. High Temperature Corrosion Stability of Ceramic Materials for Magnetohydrodynamic Generators. Matls. Perf. Charact. 2022, 11 (2), 20200160. https://doi.org/10.1520/MPC20200160.
- (11) Rudins, G. US and USSR MHD Electrode Materials Development, Technical Report, 1974.
- (12) M. S. Bowen, M. Johnson, R. McQuade, B. Wright, K.-S. Kwong, P. Y. Hsieh, D. P. Cann, C. R. Woodside, "Electrical Properties of Gadolinia-Doped Ceria for Electrodes for Magnetohydrodynamic Energy Systems," SN Appl. Sci. 2, no. 9 (2020) https://doi.org/10.1007/s42452-020-03280-2

