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Motivation: Flexible Operation and Extended Life

• Renewable generation, demand response, 
and others require operational flexibility
• Lower minimum loads than considered in design

• Faster startup times and ramp rates

• Increased cycling operations are affecting:
• Equipment health and life expectancy

• Plant downtime and operations & maintenance

• Plant performance, efficiency, emissions

• Flexible operation creates opportunities and 
challenges
• Flexible operation requires different, more complex 

consideration and tools

• An on-line health monitoring tool can:
• Quantify the impacts of load-following

• Help to schedule O&M more effectively

• Help to develop process control strategies for 
improved flexibility 3

Source: www.caiso.com

CAISO Duck Curve[1]

Net demand = Grid Demand – Renewable energy production



Outline

• Motivation

• Our Approach

• Discussion on Tasks and Preliminary Results

• Conclusions

4



Our Approach: A Hybrid First-Principles-AI Based Approach

• Advantages of first-principles and mechanistic models:
• Satisfies mass, momentum and energy balances

• Can be predictive

• Can provide spatial and temporal resolutions operational parameters

• Disadvantages of first-principles model
• Can be difficult to develop for a number of complex phenomena in boilers

• e.g., external fouling, internal deposit in boiler tubes

• Advantages and Disadvantages of Artificial Intelligence (AI) models
• Complements first-principles models

• This projects seeks to exploit the synergies of first-principles and AI models
• However, the complex phenomena of interest in boilers are uncertain and time-varying

• Must take the measurements into account

End goal is to explore the development of an on-line health monitoring tool
5
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Project Objectives (Tasks)

• Task 1.0 Project Management and Planning 

• Task 2 – Hybrid Model Development, Validation, and Implementation at Plant A (mainly WVU)

• Subtask 2.1 – Plant Data Evaluation

• Subtask 2.2 – Adapting the First-Principles Model to Plant B

• Subtask 2.3 – Development and Validation of the Bayesian ML Model 

• Subtask 2.4 – Development and Validation of the Gaussian RBF Model

• Subtask 2.5 – Modification and Implementation of the Optimal DAE Estimator

• Subtask 2.6 – Evaluation and Testing of the Hybrid Model at Plant A

• Task 3 – Validation and Integration of Hybrid Model at Plant A (mainly EPRI with Southern)

• Subtask 3.1 – Project Management

• Subtask 3.2 – Initialize the Model with AUSC Steam Loop Exemplar

• Subtask 3.3 – Collect a Snapshot of Southern Company Host Site Operation

• Subtask 3.4 – Pilot Demonstration of Model

• Subtask 3.5 – Enhance Software
8
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Tube Failures: Costs and Mechanisms

• Boiler tube failures (BTF) are traditionally the premier 
cause of forced outages of coal-fired power generating units 
worldwide

• Historically, costs for BTF in the U.S. estimated to be in excess of 
$1B/yr in power replacement charges and maintenance costs

• BTF typically results in a forced outage lasting three days and can 
cost >$3 million for replacement power

• Over-temperature operation is a significiant cause for BTF

• Tube life governed by creep properties and accumulated 
temperature exposure

• Uncertainty in local operating conditions is increasing as units 
shift away from base load

• Steam-side oxide scale growth reduces heat transfer and 
increases metal temperature

• As metal temperature increases, rate of creep damage and oxide 
growth accelerates

• +25C/45F consumes life 6x faster; the same as +33% stress
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Observations from HVT Survey
(Data from host coal boiler)

• Installed hardware at host site is providing a real-time 
look at local temperatures

• High velocity thermocouple (HVT) provides a fingerprint 
of flue gas temperature with unit load

• Up to 20’ from each side of the boiler

• Sampling at low, medium, and full load over two days

• Flue gas temperature at this location changes with load 
and location

• Impact of soot blowing which regularly removes ash build up on 
tubes was a key variable to measure on-line

• Impacted the right-side flue gas temperatures

• Flue gas velocity (and therefore HTC) observed to change >10x 
location-to-location

• This has significant impact on local tube temperature variation 
and implications to address in the heat transfer model 



Temperature vs. Load Characteristics Across Final Superheater
(Data from host coal boiler)

• Challenges with integrated life management and specifically prediction of tube temperature

• Flex ops drives transient temperature distribution along the length of the tube and width of the boiler

• Steam temperature data shown at different load levels

• Observed significant local condition variation, ~30C, and influence of low load variation, ~40C

• Higher temperature exposure during load change may be short duration, but +25C for 10 minutes could be 
equivalent to 1 hour of effective damage (or more)

• Steam temperatures fluctuate across the width

• Low load operation produces much more temperature uncertainty across the superheater and indeed the low load 
operation produced the highest observed temperatures 

• Drives a need for accurate flue gas temperature measurement and explanation of these changes
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Use Cases for Dynamic Lifing Tools

• High fidelity thermal models can:

• Help point to the most problematic areas

• Warn system operator of aggressive behavior

• Justify delays to maintenance of lower temperature regions

• Integrate real-time monitoring with damage accumulation tools

• Historical tool: accumulated damage over recent history for life management

• Historical tool: identify the worst operation for creep damage

• Predictive tool: effect of changing plant operation (e.g., more 2-shifting)

• Predictive tool: for units close to retirement and minimizing maintenance costs

• Tube sampling will continue to be important to benchmark damage evolution
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Hybrid Series and Parallel Static-Dynamic Neural Network Structure 

• Conventional nonlinear static neural networks may fail to capture dynamics in complex nonlinear systems.

• Hybrid static-dynamic networks accounted for in existing literature consider a linear-time-invariant (LTI) dynamic network1, which do not perform well for

modeling highly nonlinear dynamic systems.

• Parallel Architecture:• Series Architecture:

Fully Nonlinear Hammerstein-type Network

Fully Nonlinear Wiener-type Network

[1]. Sentoni, G. B., Biegler, L. T., Guiver, J. B. & Zhao, H. T. State-Space Nonlinear Process Modeling: Identification and Universality AIChE J. 44, 2229–2239 (1998)

[2]. Ridlehoover, G. A. & Seagrave, R. C. Optimization of Van de Vusse Reaction Kinetics Using Semibatch Reactor Operation. Ind. Eng. Chem. Fundam. 12, 444–447 (1973).

[3]. Chinen, A. S., Morgan, J. C., Omell, B., Bhattacharyya, D. & Miller, D. C. Dynamic Data Reconciliation and Validation of a Dynamic Model for Solvent-Based CO2 Capture Using Pilot-Plant

Data. Ind. Eng. Chem. Res. 58, 1978–1993 (2019).

Choice for Static Model:

• Multi-layered Feedforward Neural 

Networks (MLFFNN)

Choices for Dynamic Model:

• Nonlinear Autoregressive-type 

Recurrent Neural Networks with 

Exogenous Inputs (NARX-type 

RNN)

• Modified Hopfield Network with 

external inputs

Examples modeled by the proposed 

networks:

• Van de Vusse Reactor2

• pH Neutralization Reactor1

• Coal-fired Power Plant (Plant A)

• NGCC Power Plant (Plant B)

• Monoethanolamine-based post-

combustion CO2 capture pilot plant3
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Model Validation for Main Steam Outlet Temperature (Plant A)
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Model Validation for Tube Temperature (Plant A)
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Comparison in Validation Performance

Types of Network

Normalized Root Mean Square Error, RMSE
Overall Computational 

Time

(for 24 hr data)
Main Steam Outlet 

Temperature
Tube Temperature

Nonlinear Static MLFFNN 3.3 x 10-3 4.2 x 10-3 5.2 sec

Gaussian RBFNN 2.3 x 10-3 3.3 x 10-3 0.24 sec

Hammerstein-type Series Network 0.7 x 10-3 0.8 x 10-3 22.8 sec

Parallel Static-Dynamic Network 1.1 x 10-3 1.5 x 10-3 37.1 sec

The following tables show the comparison among the different models in predicting the main steam outlet temperature and tube temperature, in

terms of the normalized RMSE and overall computational time required during model development.

𝑅𝑀𝑆𝐸𝑖 =
1

𝑡𝑛
∗෍

𝑡=1

𝑡𝑛
𝑦𝑖,𝑡𝑎𝑟 𝑡 − 𝑦𝑖,𝑁𝑁 𝑡

𝑦𝑖,𝑡𝑎𝑟 𝑡

2

1
2

• The Hammerstein-type of fully nonlinear series static-dynamic network shows the minimum error (~0.07%) while predicting both the outlet

main steam temperature and tube temperature profiles.

• The Gaussian RBFNN accounts for the least computational time (0.24 sec) during model development, although it shows a slightly inferior

prediction error (~0.3 %).
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Bayesian ML with Consideration of Colored Noise

Motivation

• Desired to obtain a data-driven
model given input-output data.

• Plant measurement comes with
high noise with unknown
characteristics. The model also
has noise.

• Noises in different variables
can be correlated.

• Thus, it is desired to estimate
model parameters whose
probability density function is
‘close’ to the truth. 21

EM AlgorithmBayesian Inferencing

• Given a general nonlinear 

system
ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝜃

𝑦 = 𝑔 𝑥

• Bayes’ rule

𝜋 ȁ𝜃 𝑦 =
𝑙 ȁ𝑦 𝜃 𝑝 𝜃

𝑚 𝑦

where   𝑚 𝑦 = 𝛩׬ 𝑙 𝑦ȁ𝜃 𝑝 𝜃 𝑑𝜃

• Objective
ො𝑦∗, 𝜃∗ = 𝑚𝑎𝑥

ො𝑦,𝜃
𝑝 ො𝑦, 𝜃ȁ𝑦



Model Validation for Outlet Steam and Tube Temperature (Plant A)



Plant B

Model No. of 

Parameters

Root Mean Square Error, RMSE (°F)

AICc + 2Cev(Σ)
Steam Outlet Temp. Flue Gas Temp. 

Bilinear Model

(Previously)

Polynomial model from best 

subset selection
18 2.68 6.79

Model No. of 

Parameters

Root Mean Square Error, RMSE (°F)

Steam Outlet Temp. Flue Gas Temp. Tube Temp. 

Bilinear Model

(Previously)
57 1.21 0.98 1.64

Polynomial model from 

best subset selection
33 1.06 1.00 1.47

Plant A
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Model and Estimation Approach

• Dynamic, cross-flow, 3-D model of the superheater/reheater 
based on equations for the conservation of mass and energy

• 1D mass and energy balances in the directions of water and 
flue gas flows

• Rigorous properties model and heat transfer calculations at 
each control volume

• Metal tubes considered thick-walled considering 
conduction across them

25

1Combined Cycle Journal Retrieved from https://www.ccj-online.com/2q_2012-outage-handbook/7f-users-group/7f-users-group-hrsg-spotlight-session/
2 P. Mobed, S. Munusamy, D. Bhattacharyya, and R. Rengaswamy, “State and parameter estimation in distributed constrained systems. 1. Extended Kalman 

filtering of a special class of differential-algebraic equation systems,” Ind. Eng. Chem. Res., vol. 56, no. 1, pp. 206–215, 2017.

• Non-Linear DAE system2

xk+1 = xK ׬+
𝑘Δ𝑡

(𝑘+1)Δ𝑡
𝑓(𝑥 𝑡 , 𝑧(𝑡)) + Gωk+1

g(xk+1 , zk+1 ) + ϒk+1 = 0

yk+1 = h(xk+1 ,zk+1 ) + vk +1

S.T. : Exaug
k+1 = b

where: ω ~ N(0,Q) ,v ~ N(0,R) ,ϒ ~ N(0,W)

G є R m x m - Process noise gain matrix

E є R l x m+n - equality constraints

1

https://www.ccj-online.com/2q_2012-outage-handbook/7f-users-group/7f-users-group-hrsg-spotlight-session/


Initial To = 910o F (near inlet steam value)

• Model Error (Δ T st out, model )= Measured- Model
• Estimator Error (Δ T st out, estimator)= Measured- Estimator 

Model Error 
(First Principles) 

RMSE 
(Δ T stout,model)

Estimator Error 
RMSE 

(Δ T stout,estimator)

1.81 O F 0.49 O F

Model Validation for Outlet Steam Temperature (Plant B)

Model Error
(First Principles +NN) 

RMSE 
(Δ T stout,model)

Estimator Error 
RMSE 

(Δ T stout,estimator)

1.09 O F 0.34 O F

Initial To = 910o F (near inlet steam value)

• Model Error (Δ T st out, model )= Measured- Model
• Estimator Error (Δ T st out, estimator)= Measured- Estimator 



Model Validation for Flue Gas Temperature (Plant B)

Model Error 
RMSE 

(Δ T fg47,model)

Estimator Error 
RMSE 

(Δ T fg47,estimator)

3.35 O F 0.82 O F

• Model Error (Δ T fg47,model )= Measured- Model
• Estimator Error (Δ T fg47,estimator)= Measured- Estimator 
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Conclusions

• Collaboration between research and industry providing significant benefit to 
this project’s applicability to actual plants
• Model development is integrated with in-plant demonstration

• Ex-service material characterization narrows uncertainty in materials 

• Boiler tube life management is an expensive industry issue
• Damage to components is becoming less predictable with flexible operation

• Preliminary validation using operational data 
• Estimator-based approach and AI models including show good feasibility

• Future work will focus on:
• Extending the fidelity of first-principles model, DAE estimator, and probabilistic NN model 

• Handling noise for the Bayesian ML approach and extending capabilities further

• Validation of the hybrid approach using additional plant data under wider set of conditions

• On-track with respect to timeline, milestones, and budget leading into a Fall 
plant installation effort
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