Adaptive Depth Neural Networks for Scale-Bridging Modeling of Multiphase Reacting Flows

Michael E. Mueller¹, Sankaran Sundaresan²

¹Department of Mechanical and Aerospace Engineering ²Department of Chemical and Biological Engineering Princeton University

Contributors:

G. D'Alessio (PD), C.E. Lacey (GS), M. Sulaiman (PD)

FY22 FECM Spring R&D Project Review Meeting Crosscutting Research: Simulation-Based Engineering May 6, 2022

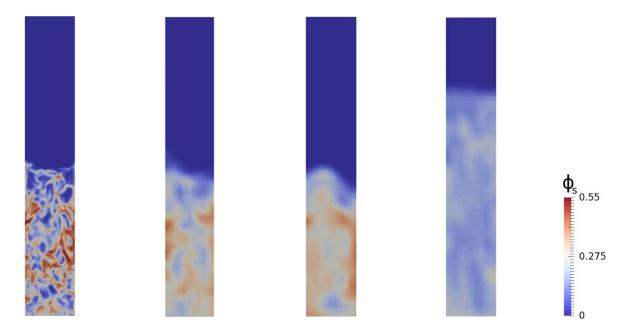
• Big Computing Means Big Data...

O(TB)

> O(PB)

• <u>Question</u>: Can we and how do we leverage this big data in modeling for coarse-grained multi-physics flow simulations?

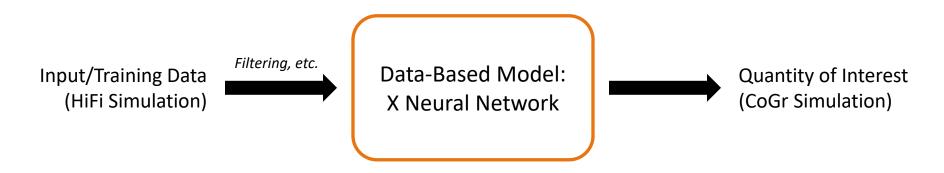
• Big Computing Means Big Data...



• <u>Question</u>: How do we use data from targeted high-resolution, fullfidelity simulations to develop efficient data-based models for coarsegrained simulations?

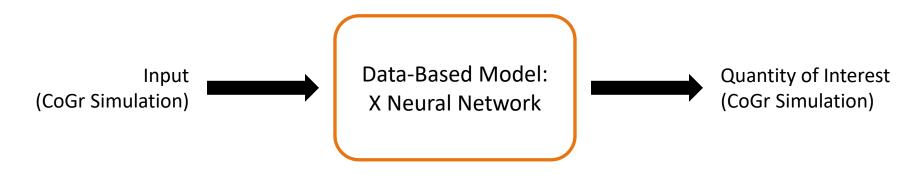
3

• Data-Based Modeling Framework: Part I (A Priori)



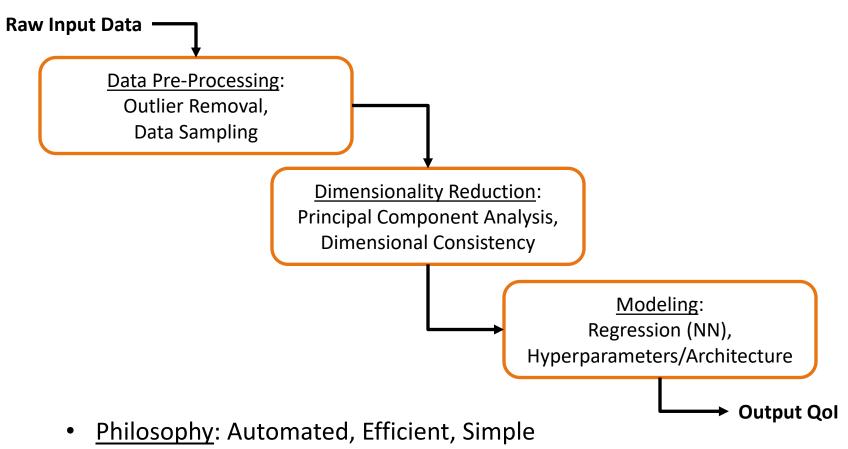
- The training of data-based models typically requires tremendous expertise to tune architecture/hyperparameters and massage the input data.
- <u>Program Objective I</u>: Develop a data-based modeling framework that is fully automated and efficient.

• Data-Based Modeling Framework: Part II (A Posteriori)

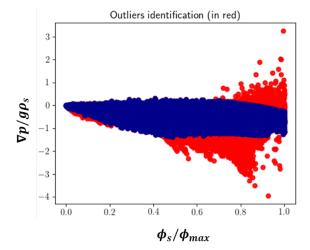


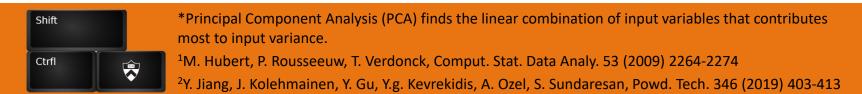
- The use of data-based models in coarse-grained simulations requires that they be as efficient as possible lest any increase in accuracy be offset by an increase in computational cost.
- <u>Program Objective II</u>: Develop data-based models that are "simple" and quick to evaluate in coarse-grained simulations.

Data-Based Modeling Workflow

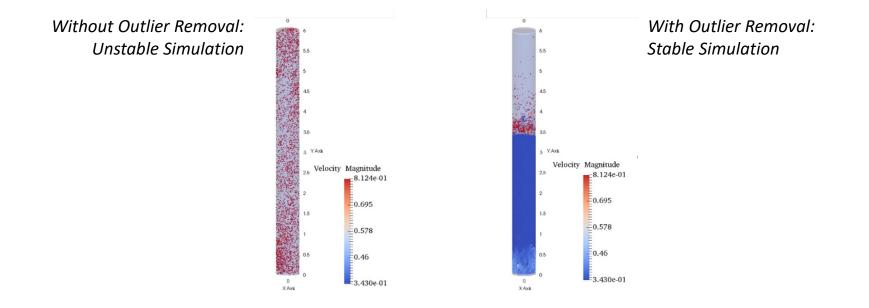


- Data Pre-Processing: Outlier Removal
 - Based on Principal Component Analysis (PCA)* and low-dimensional projection with large projection errors¹:
 - Orthogonal outliers: Far from the low-dimensional projection but close to the bulk of the data when projected
 - Leverage outliers: Far from the low-dimensional project and far from the bulk of the data
 - Application: Fluidized Bed Reactor²
 - Training data from fine-grid TFM.
 - Model target is the filtered particle drag.
 - Inputs: Reynolds number, filter size, solid volume fraction, pressure gradient, and slip velocity.





- Data Pre-Processing: Outlier Removal
 - Application: Fluidized Bed Reactor

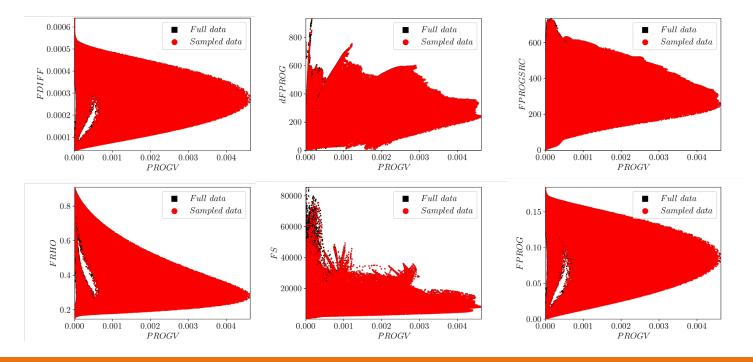


 <u>Lesson Learned</u>: Outlier removal can help prevent overfitting and poor model extrapolation when applied to forward simulation.

- Data-PreProcessing: Data Sampling
 - <u>Conditional Sampling</u>:
 - Cluster data with respect to one important variable
 - User input with physical intuition.
 - First Principal Component for full automation.
 - Subsample randomly from each cluster.

- One cluster corresponds to purely random downsampling.
- Too many clusters biases sampling away from highly sampled clusters so could influence prediction of most probably samples.

- Data-PreProcessing: Data Sampling
 - Application: Turbulent Premixed Flames^{1,2}
 - 4M observations downsampled to 750k observations in 7D space.
 - No apparent loss in "coverage" of the downsampled data.

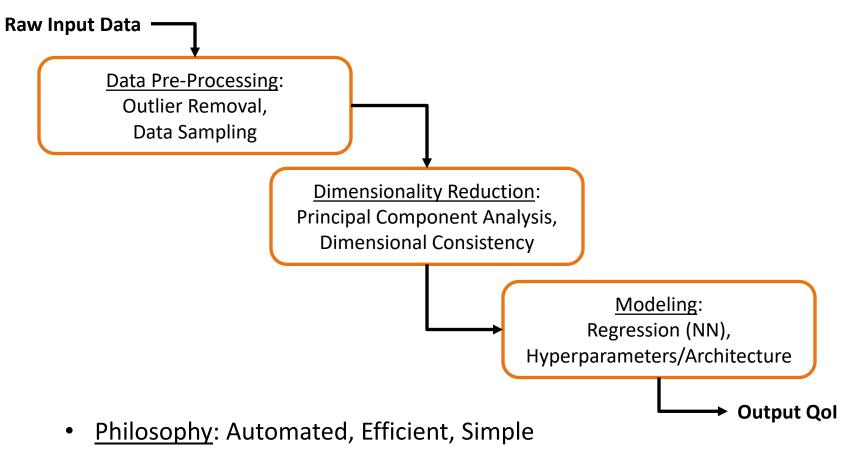


 \bigcirc

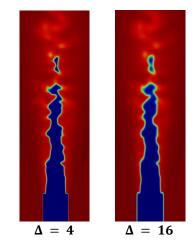
¹J.F. MacArt, T. Grenga, M.E. Mueller, Combust. Flame 191 (2018) 468-485

²J. Lee, J.F. MacArt, M.e. Mueller, Combust. Flame 216 (2020) 1-8

Data-Based Modeling Workflow



- Dimensionality Reduction: Dimensional Consistency
 - Filtered Progress Variable Dissipation Rate Modeling¹
 - Inputs: $\widetilde{\Lambda}, \Lambda_{v}, |\nabla \widetilde{\Lambda}|, |\widetilde{S}|, \Delta_{L}, \widetilde{D}, \overline{\dot{m}}_{\Lambda}, \overline{\rho}$

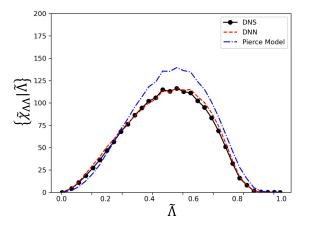


DNS: Planar Jet Flames^{2,3}

Train Dissipation Rate Model with DNN

¹C.E. Lacey, G. D'Alessio, S. Sundaresan, M.E. Mueller (2022) in preparation ²J.F. MacArt, T. Grenga, M.E. Mueller, Combust. Flame 191 (2018) 468-485 ³J. Lee, J.F. MacArt, M.e. Mueller, Combust. Flame 216 (2020) 1-8

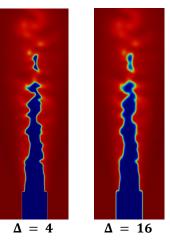
- Dimensionality Reduction: Dimensional Consistency
 - Filtered Progress Variable Dissipation Rate Modeling¹



8 Inputs Network Architecture: 33 Layers, 36 Neurons Mean Absolute Error: 0.208 Training Time: 3 hours

• This is a very large network that will be extremely expensive to evaluate in a forward coarse-grained simulation...

- Dimensionality Reduction: Dimensional Consistency
 - Filtered Progress Variable Dissipation Rate Modeling¹
 - Dimensional Inputs: $\widetilde{\Lambda}$, Λ_{v} , $|\nabla \widetilde{\Lambda}|$, $|\widetilde{S}|$, Δ_{L} , \widetilde{D} , $\overline{\dot{m}}_{\Lambda}$, $\overline{\rho}$
 - Different physical dimensions!
 - Dimensionally Consistent Inputs: $\frac{\tilde{\Lambda}^2 \tilde{D}}{\Delta_L^2}$, $\frac{\Lambda_v \tilde{D}}{\Delta_L^2}$, $\frac{\tilde{\Lambda} |\nabla \tilde{\Lambda}| \tilde{D}}{\Delta_L}$, $\tilde{\Lambda}^2 |\tilde{S}|$, $\frac{\tilde{C} \overline{\dot{m}}_C}{\overline{\rho}}$
 - Smaller input space with the same information, and the results are not sensitive to the chosen combination of the inputs.



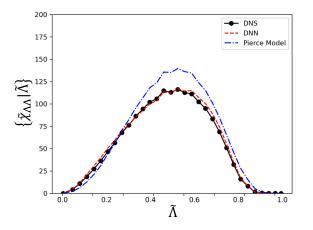
DNS: Planar Jet Flames^{2,3}

Train Dissipation Rate Model with DNN

¹C.E. Lacey, G. D'Alessio, S. Sundaresan, M.E. Mueller (2022) in preparation ²J.F. MacArt, T. Grenga, M.E. Mueller, Combust. Flame 191 (2018) 468-485 ³J. Lee, J.F. MacArt, M.E. Mueller, Combust. Flame 216 (2020) 1-8

• Dimensionality Reduction: Dimensional Consistency

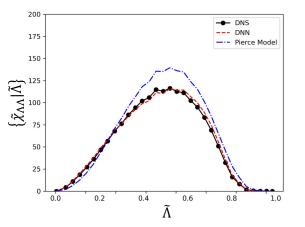
• Filtered Progress Variable Dissipation Rate Modeling¹



8 Dimensional Inputs Network Architecture: 33 Layers, 36 Neurons Mean Absolute Error: 0.208 Training Time: 3 hours

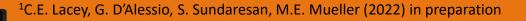
Shift

Ctrfl



5 Dimensionally Consistent Inputs Network Architecture: 13 Layers, 34 Neurons Mean Absolute Error: 0.078 Training Time: 1.5 hours

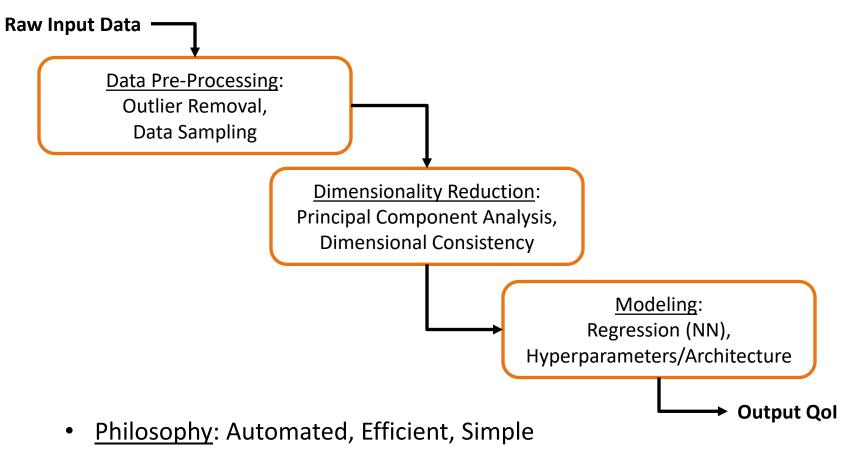
 <u>Input Choice</u>: Use fewer inputs through considering physical dimensions without any loss of information/accuracy but with much smaller network (faster to evaluate) and faster training time.



- Dimensionality Reduction: Dimensional Consistency
 - Vector Quantities of Interest
 - No need to limit approach to scalar quantities of interest!
 - We have also applied the same ideas to the local subfilter variation of the progress variable dissipation rate, that is, a vector quantity of interest¹.

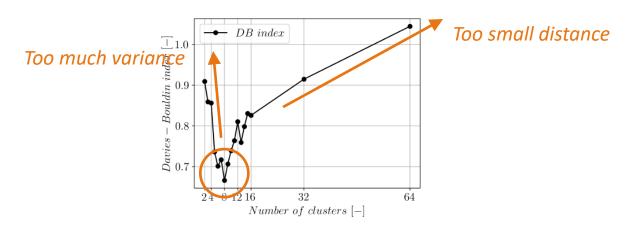
- Open Question
 - How does dimensional reduction via dimensional consistency compare to purely data-based Principal Component Analysis?

Data-Based Modeling Workflow



- Modeling: Efficient Regression¹
 - What regression approach should be utilized?
 - Linear regression is very fast to train and evaluate but less accurate.
 - Neural networks are accurate but slower to train and evaluate.
 - <u>Key Concept</u>: Use both! Cluster the data and use linear regression in each cluster when sufficiently accurate (everything is linear locally enough...) or a neural network when needed.
 - Will this not just add yet more hyperparameters and require yet more hand-tuning?
 - <u>Prevailing Strategy</u>: Automate it!
 - Application¹: Regression of reduced-order thermochemical state from turbulent nonpremixed flames² using Principal Component Analysis (PCA).

- Modeling: Efficient Regression¹
 - Clustering How many clusters should be chosen?
 - Too few clusters: Large variance in data within cluster
 - Too many clusters: Less distinction between clusters
 - Davies-Bouldin (DB) Index
 - Balances data variance in cluster with distance between clusters



Choose minimum DB for optimal number of clusters

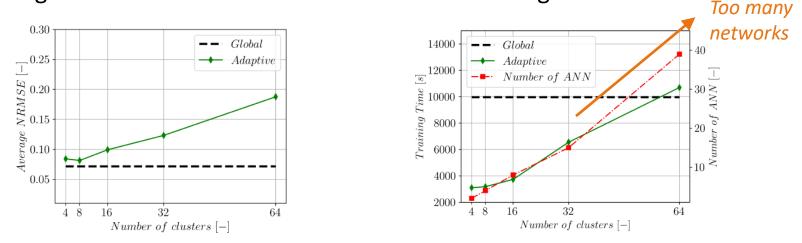
• Modeling Efficient Regression¹

Shift

Ctrfl

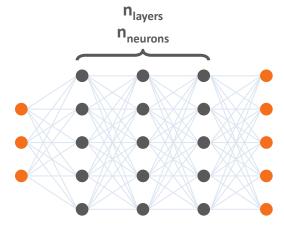
 \mathbf{R}

• Regression – How accurate and how fast is the regression?



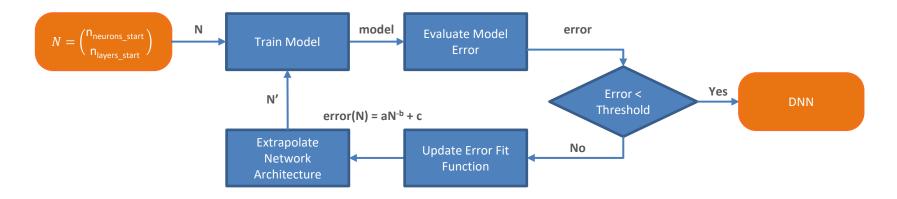
- Remarkably, the local adaptive regression is most accurate when the clustering is best and is as accurate as one global neural network.
- With local adaptive regression, the training time is *substantially reduced* even though more than one neural network (albeit simpler) must be trained due to the leveraging of local linear regression.

• Modeling: Hyperparameters/Architecture



- The "common" approach to neural network development is hand-tuning the architecture until an acceptable error is achieved.
 - Hand-tuning is not automatic!
- This "common" approach typically leads to suboptimal, bloated, overfit networks that are expensive to train and expensive to evaluate.
 - Expensive is not efficient and simple!

- Modeling: Hyperparameters/Architecture
 - First Approach: "Convergence" Rate



- Fixed activation function, optimizer, and learning rate.
- This approach was automatic and worked but tends to lead to excessively large networks because the power law fit to the error is just not very good.

• Modeling: Hyperparameters/Architecture

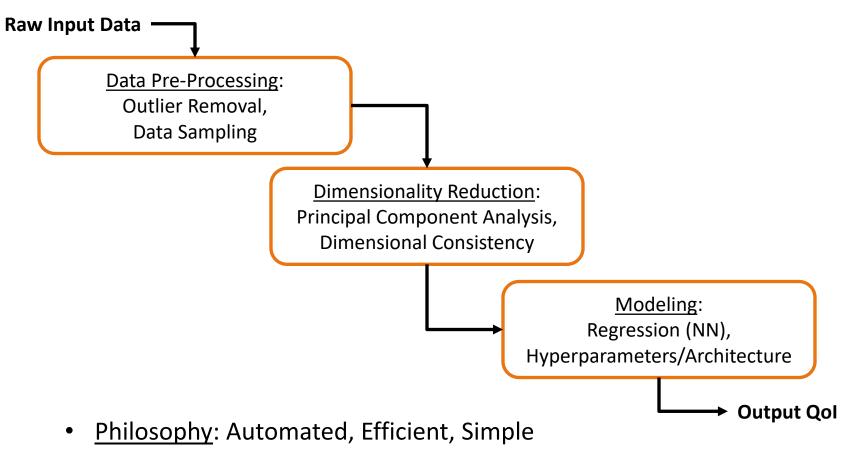
- Second Approach: Bayesian Optimization¹
 - Basic idea is to construct a probabilistic model in which some acquisition function is minimized to arrive at an optimal model with highest accuracy.
 - The acquisition function leads the approach to the next sampling location within the model parameter space.
 - Can include not only the architecture but also the activation function and the learning rate as part of the optimization process.
 - <u>Key Question</u>: What acquisition function should be chosen?
 - Probability of Improvement Targets regions with highest uncertainty
 - Expected Improvement Targets regions with highest uncertainty without straying too far from known "best" model
 - Lower Confidence Bound "Greedy" algorithm that targets regions with potentially optimal model (mean minus standard deviations)

- Modeling: Hyperparameters/Architecture
 - Application: Regression of reduced-order thermochemical state from turbulent nonpremixed flames¹ using Principal Component Analysis (PCA), specifically the Principal Component source terms.

	Network accuracy							Network design				
	ST 1	ST 2	ST 3	ST 4	ST5			Neurons [-]	Layers [-]	Activation [-]	Learning rate [-]	Training time [s]
a _{PI}	0.0424	0.1440	0.0407	0.0577	0.0697		a _{PI}	175	13	ELU	0.00131	14443.5
a _{EI}	0.0410	0.1442	0.0416	0.0564	0.0736		a _{EI}	414	11	SELU	1.199 10 ⁻⁵	21202.4
a _{LCB}	0.0400	0.1312	0.0391	0.0559	0.0676		a _{LCB}	189	2	SELU	0.00538	10583.6

• Lower Confidence ound acquisition function leads to most accurate and smallest network with the fastest training time!

Data-Based Modeling Workflow



Application

- Fluidized Bed Reactor (Work-in-Progress)
 - Training data from fine-grid TFM simulations¹.
 - No data pre-processing.
 - Inputs (non-dimensional):
 - Reynolds Number: Re
 - Filter Size: Δ/L

Shift

Ctrfl

- Solid Volume Fraction: $\phi_s/\phi_{
 m max}$
- Pressure Gradient: $\nabla p / \rho_s g$
- Slip Velocity: $U_{slip}/U_{terminal}$
- Quantity of interest is filtered particle drag.
- Monolithic neural network with Bayesian optimization.
- Application to coarse-grid Euler-Lagrange simulation:

Void fraction

1.0e+00

1.3e-01

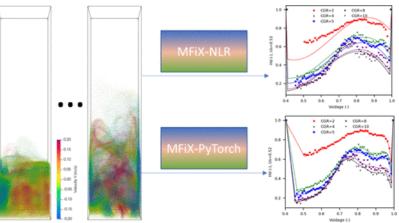
Collaboration

- Collaboration with NETL
 - Prior Work at NETL¹:

Shift

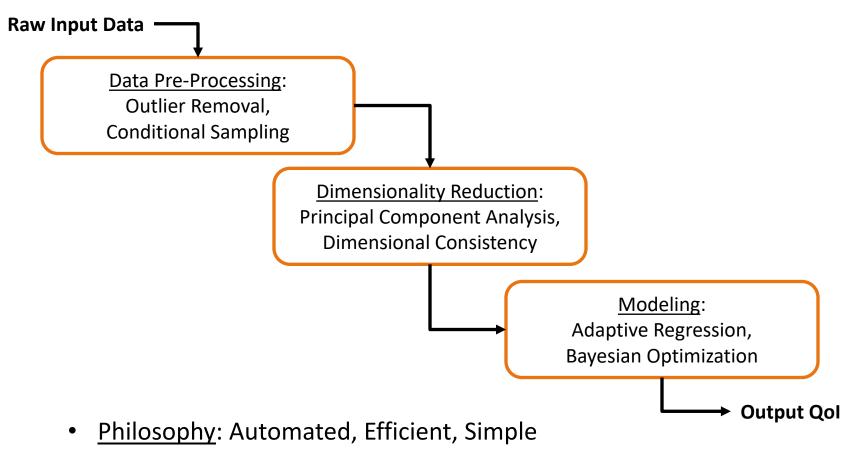
Ctrfl

- Coupling MFiX with data-based filtered drag model derived from fine-grid CFD-DEM simulations.
- Limited success with neural networks due to challenges in finding the best hyperparameters/architecture.



• <u>Goal</u>: Use our automated approach with their training data and implement in MFiX.

Data-Based Modeling Workflow



Acknowledgements

- Princeton Postdocs and Graduate Students
 - Dr. Giuseppe D'Alessio
 - Dr. Mostafa Sulaiman
 - Mr. Cristian E. Lacey

• Funding

- UCFER (S001342-USDOE)
- BES/SCGSR
- Princeton University (Research Computing)

