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Motivation
• Big Computing Means Big Data…

• Question: Can we and how do we leverage this big data in modeling 
for coarse-grained multi-physics flow simulations?

𝑂𝑂 GB

𝑂𝑂 TB

> 𝑂𝑂 PB
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Motivation
• Big Computing Means Big Data…

• Question: How do we use data from targeted high-resolution, full-
fidelity simulations to develop efficient data-based models for coarse-
grained simulations?

Image: Y. Jiang, J. Kolehmainen, Y. Gu, Y.g. Kevrekidis, A. Ozel, S. Sundaresan, Powd. Tech. 346 
(2019) 403-413
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Motivation
• Data-Based Modeling Framework: Part I (A Priori)

• The training of data-based models typically requires tremendous 
expertise to tune architecture/hyperparameters and massage the 
input data.

• Program Objective I: Develop a data-based modeling framework that 
is fully automated and efficient.

Data-Based Model:
X Neural Network

Input/Training Data
(HiFi Simulation)

Quantity of Interest
(CoGr Simulation)

Filtering, etc.
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Motivation
• Data-Based Modeling Framework: Part II (A Posteriori)

• The use of data-based models in coarse-grained simulations requires 
that they be as efficient as possible lest any increase in accuracy be 
offset by an increase in computational cost.

• Program Objective II: Develop data-based models that are “simple” 
and quick to evaluate in coarse-grained simulations.

Data-Based Model:
X Neural Network

Input
(CoGr Simulation)

Quantity of Interest
(CoGr Simulation)
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Data-Based Modeling
• Data-Based Modeling Workflow

• Philosophy: Automated, Efficient, Simple

Data Pre-Processing:
Outlier Removal,

Data Sampling

Dimensionality Reduction:
Principal Component Analysis,

Dimensional Consistency

Modeling:
Regression (NN),

Hyperparameters/Architecture

Raw Input Data

Output QoI
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Data-Based Modeling
• Data Pre-Processing: Outlier Removal

• Based on Principal Component Analysis (PCA)* and low-dimensional 
projection with large projection errors1:

• Orthogonal outliers: Far from the low-dimensional projection but close to 
the bulk of the data when projected

• Leverage outliers: Far from the low-dimensional project and far from the 
bulk of the data

• Application: Fluidized Bed Reactor2

• Training data from fine-grid TFM.
• Model target is the filtered particle drag.
• Inputs: Reynolds number, filter size,                                                                 

solid volume fraction, pressure gradient,                                                                 
and slip velocity.

*Principal Component Analysis (PCA) finds the linear combination of input variables that contributes 
most to input variance.
1M. Hubert, P. Rousseeuw, T. Verdonck, Comput. Stat. Data Analy. 53 (2009) 2264-2274
2Y. Jiang, J. Kolehmainen, Y. Gu, Y.g. Kevrekidis, A. Ozel, S. Sundaresan, Powd. Tech. 346 (2019) 403-413
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Data-Based Modeling
• Data Pre-Processing: Outlier Removal

• Application: Fluidized Bed Reactor

• Lesson Learned: Outlier removal can help prevent overfitting and poor 
model extrapolation when applied to forward simulation.

Without Outlier Removal:
Unstable Simulation

With Outlier Removal:
Stable Simulation
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Data-Based Modeling
• Data-PreProcessing: Data Sampling

• Conditional Sampling:
• Cluster data with respect to one important variable

• User input with physical intuition.
• First Principal Component for full automation.

• Subsample randomly from each cluster.

• One cluster corresponds to purely random downsampling.
• Too many clusters biases sampling away from highly sampled clusters so 

could influence prediction of most probably samples.
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Data-Based Modeling
• Data-PreProcessing: Data Sampling

• Application: Turbulent Premixed Flames1,2

• 4M observations downsampled to 750k observations in 7D space.
• No apparent loss in “coverage” of the downsampled data.

1J.F. MacArt, T. Grenga, M.E. Mueller, Combust. Flame 191 (2018) 468-485
2J. Lee, J.F. MacArt, M.e. Mueller, Combust. Flame 216 (2020) 1-8
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Data-Based Modeling
• Data-Based Modeling Workflow

• Philosophy: Automated, Efficient, Simple

Data Pre-Processing:
Outlier Removal,

Data Sampling

Dimensionality Reduction:
Principal Component Analysis,

Dimensional Consistency

Modeling:
Regression (NN),

Hyperparameters/Architecture

Raw Input Data

Output QoI
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Data-Based Modeling
• Dimensionality Reduction: Dimensional Consistency

• Filtered Progress Variable Dissipation Rate Modeling1

• Inputs: �Λ,Λ𝑣𝑣, ∇�Λ , 𝑆̃𝑆 ,∆𝐿𝐿, �𝐷𝐷, �̇𝑚𝑚Λ, 𝜌̅𝜌

1C.E. Lacey, G. D’Alessio, S. Sundaresan, M.E. Mueller (2022) in preparation
2J.F. MacArt, T. Grenga, M.E. Mueller, Combust. Flame 191 (2018) 468-485
3J. Lee, J.F. MacArt, M.e. Mueller, Combust. Flame 216 (2020) 1-8

DNS: Planar Jet Flames2,3

𝚫𝚫 = 𝟒𝟒 𝚫𝚫 = 𝟏𝟏𝟏𝟏

Train Dissipation Rate Model with DNN
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Data-Based Modeling
• Dimensionality Reduction: Dimensional Consistency

• Filtered Progress Variable Dissipation Rate Modeling1

• This is a very large network that will be extremely expensive to evaluate in 
a forward coarse-grained simulation…

1C.E. Lacey, G. D’Alessio, S. Sundaresan, M.E. Mueller (2022) in preparation

8 Inputs
Network Architecture: 33 Layers, 36 Neurons

Mean Absolute Error: 0.208
Training Time: 3 hours

�Λ

𝜒𝜒 Λ
Λ

|� Λ
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Data-Based Modeling
• Dimensionality Reduction: Dimensional Consistency

• Filtered Progress Variable Dissipation Rate Modeling1

• Dimensional Inputs: �Λ,Λ𝑣𝑣, ∇�Λ , 𝑆̃𝑆 ,∆𝐿𝐿, �𝐷𝐷, �̇𝑚𝑚Λ, 𝜌̅𝜌
• Different physical dimensions!

• Dimensionally Consistent Inputs: 
�Λ2�𝐷𝐷
∆𝐿𝐿2

, Λ𝑣𝑣
�𝐷𝐷

∆𝐿𝐿2
,
�Λ ∇�Λ �𝐷𝐷
∆𝐿𝐿

, �Λ2 𝑆̃𝑆 , 𝐶̃𝐶
�̇𝑚𝑚𝐶𝐶
�𝜌𝜌

• Smaller input space with the same information, and the results are not 
sensitive to the chosen combination of the inputs.

1C.E. Lacey, G. D’Alessio, S. Sundaresan, M.E. Mueller (2022) in preparation
2J.F. MacArt, T. Grenga, M.E. Mueller, Combust. Flame 191 (2018) 468-485
3J. Lee, J.F. MacArt, M.E. Mueller, Combust. Flame 216 (2020) 1-8

DNS: Planar Jet Flames2,3

𝚫𝚫 = 𝟒𝟒 𝚫𝚫 = 𝟏𝟏𝟏𝟏

Train Dissipation Rate Model with DNN
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Data-Based Modeling
• Dimensionality Reduction: Dimensional Consistency

• Filtered Progress Variable Dissipation Rate Modeling1

• Input Choice: Use fewer inputs through considering physical dimensions 
without any loss of information/accuracy but with much smaller network 
(faster to evaluate) and faster training time.

1C.E. Lacey, G. D’Alessio, S. Sundaresan, M.E. Mueller (2022) in preparation

8 Dimensional Inputs
Network Architecture: 33 Layers, 36 Neurons

Mean Absolute Error: 0.208
Training Time: 3 hours

5 Dimensionally Consistent Inputs
Network Architecture: 13 Layers, 34 Neurons

Mean Absolute Error: 0.078
Training Time: 1.5 hours

�Λ �Λ

𝜒𝜒 Λ
Λ

|� Λ

𝜒𝜒 Λ
Λ

|� Λ
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Data-Based Modeling
• Dimensionality Reduction: Dimensional Consistency

• Vector Quantities of Interest
• No need to limit approach to scalar quantities of interest!
• We have also applied the same ideas to the local subfilter variation of the 

progress variable dissipation rate, that is, a vector quantity of interest1.

• Open Question
• How does dimensional reduction via dimensional consistency compare to 

purely data-based Principal Component Analysis?

1C.E. Lacey, S. Sundaresan, M.E. Mueller, Combust. Flame (2022) in preparation
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Data-Based Modeling
• Data-Based Modeling Workflow

• Philosophy: Automated, Efficient, Simple

Data Pre-Processing:
Outlier Removal,

Data Sampling

Dimensionality Reduction:
Principal Component Analysis,

Dimensional Consistency

Modeling:
Regression (NN),

Hyperparameters/Architecture

Raw Input Data

Output QoI
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Data-Based Modeling
• Modeling: Efficient Regression1

• What regression approach should be utilized?
• Linear regression is very fast to train and evaluate but less accurate.
• Neural networks are accurate but slower to train and evaluate.

• Key Concept: Use both! Cluster the data and use linear regression in 
each cluster when sufficiently accurate (everything is linear locally 
enough…) or a neural network when needed.

• Will this not just add yet more hyperparameters and require yet more 
hand-tuning?

• Prevailing Strategy: Automate it!
• Application1: Regression of reduced-order thermochemical state from 

turbulent nonpremixed flames2 using Principal Component Analysis (PCA).

1G. D’Alessio, S. Sundaresan, M.E. Mueller, Proc. Combust. Inst. (2022) submitted
2A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Combust. Flame 161 (2014) 1849-1865
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Data-Based Modeling
• Modeling: Efficient Regression1

• Clustering – How many clusters should be chosen?
• Too few clusters: Large variance in data within cluster
• Too many clusters: Less distinction between clusters
• Davies-Bouldin (DB) Index

• Balances data variance in cluster with distance between clusters

• Choose minimum DB for optimal number of clusters

Too small distance
Too much variance
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Data-Based Modeling
• Modeling Efficient Regression1

• Regression – How accurate and how fast is the regression?

• Remarkably, the local adaptive regression is most accurate when the 
clustering is best and is as accurate as one global neural network.

• With local adaptive regression, the training time is substantially reduced
even though more than one neural network (albeit simpler) must be 
trained due to the leveraging of local linear regression.

1G. D’Alessio, S. Sundaresan, M.E. Mueller, Proc. Combust. Inst. (2022) submitted

Too many 
networks
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Data-Based Modeling
• Modeling: Hyperparameters/Architecture

• The “common” approach to neural network development is hand-tuning 
the architecture until an acceptable error is achieved.

• Hand-tuning is not automatic!

• This “common” approach typically leads to suboptimal, bloated, overfit 
networks that are expensive to train and expensive to evaluate. 

• Expensive is not efficient and simple!

nlayers
nneurons
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Data-Based Modeling
• Modeling: Hyperparameters/Architecture

• First Approach: “Convergence” Rate

• Fixed activation function, optimizer, and learning rate.

• This approach was automatic and worked but tends to lead to excessively 
large networks because the power law fit to the error is just not very 
good. 

Evaluate Model 
Error

model
𝑁𝑁 =

nneurons_start

nlayers_start
Train Model

N

Extrapolate 
Network 

Architecture

error(N) = aN-b + c
N’ Error < 

Threshold

error

Update Error Fit 
Function

No

DNN
Yes
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Data-Based Modeling
• Modeling: Hyperparameters/Architecture

• Second Approach: Bayesian Optimization1

• Basic idea is to construct a probabilistic model in which some acquisition 
function is minimized to arrive at an optimal model with highest accuracy.

• The acquisition function leads the approach to the next sampling location 
within the model parameter space.

• Can include not only the architecture but also the activation function and 
the learning rate as part of the optimization process.

• Key Question: What acquisition function should be chosen?
• Probability of Improvement – Targets regions with highest uncertainty
• Expected Improvement – Targets regions with highest uncertainty without 

straying too far from known “best” model
• Lower Confidence Bound – “Greedy” algorithm that targets regions with 

potentially optimal model (mean minus standard deviations)

1J. Snoek, H. Larochelle, R.P. Adams, Adv. Neural Inform. Proc. Sys. 25 (2012)
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Data-Based Modeling
• Modeling: Hyperparameters/Architecture

• Application: Regression of reduced-order thermochemical state from 
turbulent nonpremixed flames1 using Principal Component Analysis 
(PCA), specifically the Principal Component source terms.

• Lower Confidence ound acquisition function leads to most accurate and 
smallest network with the fastest training time!

1A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Combust. Flame 161 (2014) 1849-1865
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Data-Based Modeling
• Data-Based Modeling Workflow

• Philosophy: Automated, Efficient, Simple

Data Pre-Processing:
Outlier Removal,

Data Sampling

Dimensionality Reduction:
Principal Component Analysis,

Dimensional Consistency

Modeling:
Regression (NN),

Hyperparameters/Architecture

Raw Input Data

Output QoI
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Application
• Fluidized Bed Reactor (Work-in-Progress)

• Training data from fine-grid TFM simulations1.
• No data pre-processing.
• Inputs (non-dimensional): 

• Reynolds Number: Re
• Filter Size: Δ/𝐿𝐿
• Solid Volume Fraction: 𝜙𝜙𝑠𝑠/𝜙𝜙max
• Pressure Gradient: ∇𝑝𝑝/𝜌𝜌𝑠𝑠𝑔𝑔
• Slip Velocity: 𝑈𝑈slip/𝑈𝑈terminal

• Quantity of interest is filtered particle drag.
• Monolithic neural network with Bayesian optimization.

• Application to coarse-grid Euler-Lagrange simulation:

1Y. Jiang, J. Kolehmainen, Y. Gu, Y.g. Kevrekidis, A. Ozel, S. Sundaresan, Powd. Tech. 346 
(2019) 403-413



27

Collaboration
• Collaboration with NETL

• Prior Work at NETL1:
• Coupling MFiX with data-based filtered drag model derived from fine-grid 

CFD-DEM simulations.
• Limited success with neural networks due to challenges in finding the best 

hyperparameters/architecture.

• Goal: Use our automated approach with their training data and 
implement in MFiX.

1L. Lu, X. Gao, J.-F. Dietiker, M. Shahnam, W.A. Rogers, Ind. Eng. Chem. Res. 61 (2022) 882-
893
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Data-Based Modeling
• Data-Based Modeling Workflow

• Philosophy: Automated, Efficient, Simple

Data Pre-Processing:
Outlier Removal,

Conditional Sampling

Dimensionality Reduction:
Principal Component Analysis,

Dimensional Consistency

Modeling:
Adaptive Regression,

Bayesian Optimization

Raw Input Data

Output QoI
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