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Estimated U.S. Energy Consumption in 2020: 92.9 Quads
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Source: LLNL March, 2021. Data is based on DOE/EIA MER (2020). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory

and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA

reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The
Fgﬁ;;;;;?ﬁ;a;;a;:} efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is
Advanced Energy Systems estimated as 65% for the residential sector, 5% for the commercial sector, 21% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect

DOE's analysis of manufacturing. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527
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Variability in Electricity Production Requires Flexibility

Texas Generation Mix - December 2020 - Mid-February 2021
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Decarbonizing & Expanding the U.S. Industrial Sector

Shell Cracker Nears 'Peak Construction'

IDAES
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Process Intensification & Modularization

 Intensification smaller, cleaner, and more energy-efficient technology
— Reactive distillation

Liquid ._

— Dividing wall columns distributor >
— Rotating packed bed |-
— Microreactors F—I=- wall

* Modular design
— “Numbering up” instead of scaling up
— Reduced investment risk
— Improved time to market
— Increased flexibility
— Improved safety
— Reduced on-site construction

Vapor ~~
distributor

Figure from Rawlings et al., 2019

D |:| Transforming Process Industries
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Estimated U.S. Carbon Dioxide Emissions in 2018: ~5,268 Million Metric Tons
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and the Department of Energy, under whose auspices the work was performed. Carbon emissions are attributed to their physical source, and are not allocated to end use for electricity
consumption in the residental, commercial, industrial and transportation sectors. Petroleum consumption in the electric power sector includes the non-renewable portion of municipal 6
solid waste. Combustion of biologically derived fuels is assumed to have zero net carbon emissions — the lifecycle emissions associated with producing biofuels are included in
commercial and industrial emissions. Totals may not equal sum of components due to indepedent rounding errors. LLNL-MI-410527

I DAES Source: LLNL July, 2019. Data is based on DOE/EIA MER (2018). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory
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Need for Dispatchable Power for Economic Deep Decarbonization
Northern System
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g @ Solar, wind
@ Storage, demand response

550 © Nuclear, CCS, geothermal
- “Firm low-carbon” resources like CCS
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Sepulveda, et al., Joule (2018)
https://doi.org/10.1016/j.joule.2018.08.006
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https://doi.org/10.1016/j.joule.2018.08.006

Increasingly Integrated Energy & Process Systems
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Energy System Analysis is Often Applied in Isolation

Process-centric Modeling Grid-centric Modeling

Detailed steady state or dynamic process models,
with the grid modeled as an infinite capacity bus

Detailed power flow models,
with individual generators modeled as either
dispatchable point sources or stochastic "negative loads"

Diluent Nitrogen

S000°TEL MDEA Acid Gas Removal

2500 TPD
Water

Steam Turbine

Boiler
Feedwater

Lockhopper
Slag &
Watar

https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png
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Multiple Time Scales & Perspectives Across Tools

Frequency

One AC Regulation

Cycle

Service Restoration
(from Outages)

s Variable Energy
Protective Relay Resource  Hour-Ahead
Operations Inertial Deviations  Dispatch

Response Demand

Day-Ahead Capacity  pjanning for
Scheduling Markets 4101 Goals

T&D 4
Planning

| | | | l | l
1073 100 103 106 10°  seconds

millisecond second minute hour day year  decade

Real-Time Electricity Grid Capacity Expansion | Energy Economy
Operations Dispatch, Power Flow 20-30 Year Horizon Models

High frequency Complex effects of Difficult to value Long time horizons
dynamics new generators flexibility, reliability Macro-economics

Process/Generator — Integrated Energy Systems
Design, Operation/Control, Dynamics, Multiple Products

Multi-Sectoral Interactions & Infrastructure
Natural Gas & Fuels, Transportation, Heat, Hydrogen, Chemicals, Other
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Decision Making for Energy and Process Systems

Decisions Approaches
Process operation {:(g)} Approximations
Process design L E‘é\ Heuristics @
' Spreadsheets
Technology selection }[IIE
Simulation JTI?E
M
R&D priorities @j a1 3
N min f (x, u)
Optimization h(x, ) = 0

Advanced Energy Systems



Understanding large, complex systems: Don’t Simulate > Solve

Derivative-free ("black-box") optimization (DFO)
~ 100-1000 simulations Equation-oriented (EO)
Optimization
model embedded as

Optimization over
degrees of freedom only

algebraic constraints

Glass-box optimization
~ 1-5 "Simulation Time Equivalents"

Leverage exact derivatives, sparse structure
[Adapted from Biegler, 2017]

M Biegler, L. T., D. C. Miller and C. O. Okoli (2021). Don't Search - Solve! Process Optimization Modeling with IDAES. Simulation and Optimization 12
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=== in Process Engineering: The Benefit of Mathematical Methods in Applications of the Chemical Industry. N. Asprion and M. Bortz, Elsevier.




IDAES Integrated Platform
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Conceptual Design
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Plant Design
Process Optimization

Process Operations
Dynamics & Control
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Open Source: https://github.com/IDAES/idaes-pse

Lee, et al., J. of Adv. Manufacturing and Processing (2021)
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https://github.com/IDAES/idaes-pse

Examples of IDAES Optimization Approach

Process/Grid Coupling

— Understanding complex interactions across scales

Carbon Capture System Design

— Technical Risk Reduction through UQ and Robust Optimization
— Incorporating flexible operations in design decisions

Integrated Energy System Design

— Multi-input, multi-output dynamic energy systems

Expansion Planning

— Achieving decarbonization goals while maintaining reliability

Institute for the Design of
Advanced Energy Systems



Examples of IDAES Optimization Approach

Process/Grid Coupling

— Understanding complex interactions across scales

Carbon Capture System Design

— Technical Risk Reduction through UQ and Robust Optimization
— Incorporating flexible operations in design decisions

Integrated Energy System Design

— Multi-input, multi-output dynamic energy systems

Expansion Planning

— Achieving decarbonization goals while maintaining reliability

Institute for the Design of
Advanced Energy Systems



Bridging Timescales Enables Unique Analyses & Design of IES

High-Fidelity Process Modeling Integrated Resource-Grid Model Grid Modeling
NudearReactors| (" Conc.5o ar Real-Time Market Loop Day-Ahead Market Loop T ==
5 Eod E (1 cycle = 1 hour) (1 cycle = 1 day) / | : I~
U (iii) Settle (a) Forecast | T .
(" Gas Turbine ) Power G $ — : % ..-/::’*:.-.'.’f"‘:‘."' U sirans s —
Combined Cycle [1] :ZD ol 4 0 - " \\\
\ Ii} ) Ehermal IE ccccccc I _ “ ’ =T s I = ;\"\I
fm\ rgv Thermal Elecicty Y (ii) TtﬁCK o = (b) B,i_? : . F 7 = fl‘ ;i‘t !
E"‘% P = 7 e 4 K I | i I itk Rl
5 d < MM Rl \ - N R e ok - ==
Energy Storag
........ (i) Dispatch————— (c) Clear & === I
ducts ) {'chemical Process Jes( Stor2 . : - | 3 Z
( >(_) f{ﬁ : i | - ‘ \\‘—-VL__,,/ \ : Vv ._rz lx' ’
Hybrid System Demand Control — — KEH‘ (\"’-i-,"lﬁ \ : (’

https://icseg.iti.illinois.edu/files/2013/1 O/IEEE1\1'_é.png

1. Elucidate complex relationships between resource dynamics and market dispatch
(with uncertainty, beyond price-taker assumption)

2. Predict the economic opportunities and market impacts of emerging technologies
(tightly-coupled hybrid energy systems)

3. Guide conceptual design & retrofit to meet current and future power grid needs

e Gao, X., B. Knueven, J. D. Siirola, D. C. Miller and A. W. Dowling (2022). "Multiscale

Y

'\XD.I SPATCHES  gimulation of integrated energy system and electricity market interactions." Applied Energy
) oo nvnce ety - 3161 119017, https://doi.org/10.1016/j.apenergy.2022.119017. 16

— \_//f Coupled Hybrid Energy Systems

oooooooooooooooooooooo
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https://doi.org/10.1016/j.apenergy.2022.119017.

Examples of IDAES Optimization Approach

Process/Grid Coupling

— Understanding complex interactions across scales

Carbon Capture System Design

— Technical Risk Reduction through UQ and Robust Optimization
— Incorporating flexible operations in design decisions

Integrated Energy System Design

— Multi-input, multi-output dynamic energy systems

Expansion Planning

— Achieving decarbonization goals while maintaining reliability

Advanced Energy Systems



Predictive Process Modeling and Optimization

Identifying optimal operational strategies and process designs
Model Validation
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L] o (]
Rich sivant pump . ege | 1o Process Optimization
Uncertainty Quantification P

* Modular, multi-scale, dynamic rate-based
* Film model

o
n

—— OPC (M$/yr)
© Reboiler duty cost (M$/yr) 10.5
1 Cooler/Condenser duty cost (M$/yr)

‘W]L BO_ NC16-A

 Multi-component mass & heat transport ﬂ[’“HHH ™ - . L AN P

« Simultaneous reaction & fransport of molecular

S ar

» Rigorous properties e e
« Modified eNRTL model for mixed solvent systems - - a @ L s aecoom

Akulg, et. al., 2021, I8EC Research, 60(14), 5176-5193 E_° : ;.ergn" WJ”“J”“" 00| “:%Hulsjw - 30 ;5 A:OA oo
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https://pubs.acs.org/doi/full/10.1021/acs.iecr.0c05035

Robust Design to Reduce Technical Risk

Inherent uncertainty in process design models

Operational uncertainty: e.g., fluctuations in feed

Deteministic design
Economic uncertainty: e.g., cost of utilities fails to meet CO,
Epistemic uncertainty: e.g., mass/heat transfer, kinetics capture performance
requirement with a 33%
. . . probability
A Deterministic Solution Robust Solution
cond
VhZo V mea Q Cost: $7.25 MM/yr Cost: $10.90 MM/yr Robust design
cond Second-stage Cost: $5.19 MM/yr Expected Second-stage Cost: $5.51 MM/yr
e guarantees CO, capture
2 0 0 ; i
in all scenarios; cost
e ollei] - CW. ®  [Feasible sample A Explicitly feasible ®  Feasible sample A Explicitly feasible . K ’
T r< —G00p @  Infeasible sample 8 Violation —G00F @ Infeasible sample 8 Violation InCrease 1s kept to the
] mumix & . minimum necessary to
8 ~1200p /SRS —00F e ol hi hi
2 (o0 o (o0 o° Qo achieve this
g " 0. ."' A Y o:.. N
I_ XhXJ e L < —1800¢ {0 ‘,'0 lo .‘\ .- < —1800¢ ;: ":o l,...‘\\‘\
abs rgn 2 X n = ~a %y . ¥ Robustness achieved
~ —2400¢ ~.. .. o 4’ . T 2400k \‘\’0’ e Qo }' “a o
D... Drgn - r. 4terations R IO utilizes smaller
.r 0% .‘L’ of GRCS Y $EX .‘k’o i
—=3000F Nominal Capture = 85% ._,{ =3000F Nominal Capture =92%  *-e. % ‘ Qé _‘,& eqUIpment Overa”,
Worst-case Capture = 63% e Worst-case Capture = 85% A puttlng more emphasis
| —3600+ Prob. of Satisfactory Capture = 58% —3600k Prob. of Satisfactory Capture = 100% )
Fioe Gas on reboiler and
S —3000 Z9500 Z2000 Z1500 —1000 —3000 ~2500 Z5000 Z1500 —1000 condenser duty control
by (K) by (K)
Laps=7.57 m Lreg= 4.010 m Axhx = 4,734 m? Laps=6.00 m Lreg= 3.b0 m Axnx = 3,928 m?
Areb Dabs =4.95m Dreg=3.44 m Qrep =18 MW Daps =4.96 m Dreg = 4.04 m Qreb = [17.6, 20.5] MW
Qcon = 4.5 MW Qcon = [-6.7, -0.53] MW
Qreb

IDAES

L N.M. Isenberg, P. Akula, J.C. Eslick, D. Bhattacharyya, D.C. Miller and C.E. Gounaris (2021). A Generalized Cutting-Set Approach for

19
VVVVV o Eneray Systems Nonlinear Robust Optimization in Process Systems Engineering Applications. AIChE Journal, 67(5):e17175, DOI 10.1002/aic. 17175



Reducing the Price of Robustness

« The PoR provides an upper limit on the $ worth spending to reduce parameter uncertainty
— e.g., do more “science” to improve our property models

« Factors to consider when deciding whether to go back to the drawing board:
— plausibility of reducing uncertainty (e.g., epistemic uncertainty)
— the cost of conducting additional research to improve uncertainty confidence
— the time it will take to do so (cost of delaying the investment)
— the anticipated improvement in the risk-reward trade-off

« Quantifying the improvement:

Hierarchy of Evolution of costs for
uncertainty sets [ oox considence intervar increasingly robust designs
7
/ 25%
<_/ —— 1st-stage costs
operational parameter | | i —o— 2nd-stage costs
(irreducible risk) 6F o 20% |07 2nd-stage costs (before)
__________ g
o
\ _ i:’ 15% }
% 5 o .g.
O 10% |
---------- 2
4r § 5% |
epistemic parameter I ﬁ__?;g,_:—v_;%— S ——
(reducible risk) gk e i : 0%&; = 10/ . 20% 30% 40%
3 4 5 6 7 ’ ’ : y g
S —— " Unc. Set Size (+/-)
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Examples of IDAES Optimization Approach

Process/Grid Coupling

— Understanding complex interactions across scales

Carbon Capture System Design

— Technical Risk Reduction through UQ and Robust Optimization
— Incorporating flexible operations in design decisions
Integrated Energy System Design

— Multi-input, multi-output dynamic energy systems

Expansion Planning

— Achieving decarbonization goals while maintaining reliability
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Multi-scale Surrogate Modeling

Linking models across length/time-scales with minimal loss of accuracy

LMP ($/MW-h}

i l
'\ 'tw i
|
1 I\. “‘ |
w500 203303

Process LMP Signals

Input from ARPA - E
+ Locational Marginal Price (LMP)
signal (in $/MWh)

\ Ui 4 1
| (Ll Wl

l Identlfy representative days

|

I

1. 2 3 4 5 6 7 8 9 710 11 12 13 14:15 16 17°18 19 20 21 22: 23 24
Time (h)

Power to grid )
Bypass, if any, to

N? O? ?
Stack T co, (depends on capture%)

ll Flue
gas

NGCC Power Plant

P N P
o S .
Steam |
e
Power P— Actecl IS T
5

Svante's TSA Cooling

*CO,+other
impurities

Develop Rigorous and Reduced-order (surrogate) Process Models

CO,+ some
impurities

\ 4

Compression Train with TEG
System for Dehydration

A

Result: Optimal solution maximizing the Net
Present Value (NPV)

« Optimal design of the capture system

+ Optimal power schedule J

+ Detailed cash flows

IDAES
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Should capture
system be built?
(i.e., Is it cheaper
to pay a carbon

tax?)

If yes, what is the
optimal size and
capture rate?

How do various

potential market

scenarios impact
results?

Gooty, et al., 2022, in preparation
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Flexible Operations Scenario with Carbon Capture

_ P e Gross Power —— Power to grid —_—MP 0 e % FG Flow % Capture
90 ' . SOO 90 ............................ . e e s e e - 100
80 - 80 - : :
: : - 400 - 80

= > =
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= 60 -300 S % 60 - 60
8 : :
£ 50 % £ 50
5 5 L 200 & e e
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& 40 1 L o 3 S 40
= — a.
s T g‘ = 30
=1 d .

" - 100 - 20

g _,_J—_\_I—— 20 4 _,_|—-—|_L

- 0 T T T T T l- 0
22;0 24'15 250 2é5 2('30 265 240 245 250 255 260 265
time (hr) time (hr)

Optimal Power Schedule Optimal Operation of the Capture System
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Example Scenarios: Flexible Capture NPV Optimization

NPV (Million USD)

Institute for the Design of

600

Carbon Tax = $150 per ton (Fraction in white denotes the capacity factor)

450

mm Case 1: Build capture system/not
e Case 2: Must build capture svstem.
“ Case 3: Reduce CAPEX and OPEX by 20% , .

0.65 0.71 0.71

150_CAISO

0.39 0.50 0.51

0.52 0.68 0.68 0.29 0.33 0.34

0.52 0.52 0.52

150_ERCOT 150_MISO-W

Region

150_NYISO 150_P)M-W
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CAPRESE: Control and Adaptation w PREdictive SEnsitivity)

u (k) L »( V> Y (k)
control input Proce SS measurements
Controller Tk, W State estimator
[Compute controller input] :;ﬁ'g?ﬁf&ggﬁf& [Compute the current state|

Y

Ll Wk

estimated states
and disturbances

zd ud Reference- }
steady states CcO m-put ation

set-points

Institute for the Design of
Advanced Energy Systems

DynGen

NMPCGen

PlantSample
PlantPredict
cycleSamPlant()
update_u()
noisy_plant_()
plant_uinject()
update_state()

create_olnmpc()
initialize_olnmpc()
load_init_state ()
sens_dot_nmpc()
find_target_ss()
change_setpoint()
print_r_nmpc()

MHEGen

create_Ismhe()
init_Ismhe_prep()
patch_meas_mhe()
set_covariance_()
check_bnd_noisy()
load_cov_prior()
sens_dot_mhe()

25
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Model-based Estimation and
Control: MHE and NMPC

M (I yjk-1,Z-Njk-1,Y (), sy (K = N)) : P (x(k)) : N_1
L_n\mtlvk d_ N (.r_,,\a‘ ko B k=1 L pr k—l) +-- 11&1’\11 PN (IMA-) + Z [wiT\le'i\k + ‘U:?r\k-R“i\k}
0 -1 i=0
et Z v R i + Z w; Q7w Current s.b. @y = F (@ wge)
i=—N i=—N . o = a (k)
7 0l k
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y(k+1):]1.(;l‘lk)+‘L'1k, 16{—N,—N+ 10}
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wyr €W, lE{—N.—N—Fl....,—l} \

5
AAL LR 3 Q
o)e A \
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Future
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Examples of IDAES Optimization Approach

Process/Grid Coupling

— Understanding complex interactions across scales

Carbon Capture System Design

— Technical Risk Reduction through UQ and Robust Optimization
— Incorporating flexible operations in design decisions
Integrated Energy System Design

— Multi-input, multi-output dynamic energy systems
Expansion Planning

— Achieving decarbonization goals while maintaining reliability

Institute for the Design of
Advanced Energy Systems



Integrated Energy System For Power and H, Production

Sell, store, or

curtail power? Electricity prices?

Grid capacity?

v
Y - |
i < G0
A Thermal A
. Energy } ELECTRICAL GRID
GENERATORS i Delvey 5 Value of H, for
A Sy POWER GENERATION : o power
+ Electrical 0O O generation?
+ Energy " ?
' STORAGE ' FUEL CELL
AE, PEM, SOEC =
OR REVERSIBLE
ELECTROLYSIS/FUEL CELL
fo) NATURAL GAS PIPELINE UTILITY GAS
O : T TURBINE C.C
Generate Ho? it s a saaadt ¢
AEM, PEM, SOEC, Bi-Directional Electricity
reversible SOF 0° ;T« H H
Reformers? Value of Ho f
alue of H, for
chemicals HYDROGEN USER TRANSPORTATION SECTOR Value of H, for
production? transportation?
- IDAES 28

. vvvvv d Energy Systems



Optimization of Integrated Energy Systems

Reforming-based Systems for Low Carbon Power and Hydrogen

osu >97% capture m $2.00
LP St Cco2 1.64
i } 5 Senters t - 5
ME Fue NG LR Flue MP NG Post CO2 Pre CO2 H2 h2 $1.50 | 0.10 01.52
glue Cool Preheat2 Cooler Econ Preheat1 Capture Capture Purification
Stoam T re - = @ Credit for Power Sale
eam for
Reforming Booster :En Sl 00 M CO2 T&S Costs
Fume Cooling s O Fuel Costs
Water Out I @ Variable O&M Costs
S $0.50 @ Fixed O&M Costs
- = . .
SMR Syngas V\/_ater Gas WGSR LP MP C\):lt;!(lgrg Capltal Costs
Cooler Shift Reactor| Cooler Knockout Knockout KnO(T;kout O Total
Steam T { i $0.00
LP Booster: MP P Cooling
Methane l NG Pump ump Water In
Reformer Tail Gas f f @ $71/MWh

-$0.50

) Exhaust LP Condensat MP Mak ;

) IAig " Alr l NG T 02> 10% From Reboilors Feed Water Standalone SMR SMR/Gas Turbine IES
low load only,
. ~---# Condensed Water —— Water/Steam — Flue Gas SZ-SO
NG Turbine ——Standalone SMR

SMR/Gas Turbine IES

$2.00
» Integrating gas turbine with SMR improves thermal efficiency ///

;_'251.50 [ ——
» Shared carbon capture system for power and H,. &
g $1.00
 Significantly reduces cost of low carbon H, under future energy scenarios -
$0.50 Highest Electricity Prices under
« Marginal cost of low carbon electricity production below $30/MWh s oo e o
0.00

0 50 100 150 200 250 300

« Highlighted in Hydrogen Energy Earthshot Strategy Vision document I ——
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SOFC/SOEC: Optimization of Integrated Energy Systems

rSOFC + CCS dispatch, 2015 CAISO

maximize Power capacity factor 0.48, H2 capacity factor 0.52
E 1 np,tpt + 7[hh't - (Coperating (ptr hL) + CcapiLaH[ixedO&M(Pmax'Hmax)) bt o~
e et -
(cT Tevenue frompower  revenue from hydrogen sumof costs £ ; L
where Full year: ., “3
g | W03
t Minutes or hours over a given time horizon, T' > 5
o1 Locational marginal price of electricity at time # i I
)2 Power output at time #
, Assumed selling price for H,
h, H, production rate at time # WG o S o e o e B jr"‘*‘j 7 2 I
. [ | " s
P, Maximum power output of the plant ool | i i - -
H,,, Maximum H, output of the plant, and g | NEIR ‘ £ P |
1 1 5 . 3 0| iy L1 b 2
Coperating BN Coapiral+pivedosm Algebraic sutrogate models (i.c., equations) for the Week 1: ¢ | I “ 5.
3 R 3 200 H n g
variable and fixed costs, respectively. £ Fl e K| ‘ 0 [F 0 | Zosol :
o b MO MUl UM O | R
o 3 S0 % Hout 100 125 150 175 L -y =
NGCC+SOEC rSOFC SOFC+SOEC
System Profit ($M) System Profit ($M) System Profit ($M)
0.056
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= = =
ey ~ ~
¥ n holh il
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", IDAES o : :
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Examples of IDAES Optimization Approach

Process/Grid Coupling

— Understanding complex interactions across scales

Carbon Capture System Design

— Technical Risk Reduction through UQ and Robust Optimization

— Incorporating flexible operations in design decisions

Integrated Energy System Design

— Multi-input, multi-output dynamic energy systems

Expansion Planning

— Achieving decarbonization goals while maintaining reliability

Advanced Energy Systems



Expansion Planning: Co-optimization of Investment + Operation

INPUT

 Generation

* Investments (overnight capital
costs, age and lifetime, life
extension costs, fuel prices,
locations)

« Operations (heat rates,
nameplate capacity, reserve
capacities, generation limits,
ramp rates, emissions, start up
fuels/costs, fixed and variable
O&M costs, pollutant taxes)

« Transmission

» Overnight costs, lengths, power
loss rates, capacities, existing
and candidate lines

- Demand and renewables

» Representative profiles, annual
load forecasts, available
capacity of potential wind and
solar sites, wind and solar
capacity credits

tttttttttttttttttttttt

Minimize the total cost of operation,
investment, and emissions (net present value)

— \

- Energy sources .

Model

ﬁ( N * Generation

M g Zm= * Storage

IR

e

ZM\F ) ‘ ‘
T N

&J

coal
natural gas
oil

biomass
nuclear
solar -
wind | " £ w

OUTPUT

Installments (generators,
transmission lines,
storage units)
* |ocation
* year
* type
* Number and capacity
* Retirements (generators,
transmission lines,
storage units)
* Year
+ Life extension decision
» Operation decisions
» Approximate power flows
» Approximate generation
schedules



Flexible units (GW)

|

10

Challenge to Adequately Represent Variability with Clustering

I carbon tax = $ 0/ton

[ carbon tax = $ 45/ton

« Expansion planning with SPP case study
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— Results indicated significant reduction of installed
flexible generation
* Gas turbine, internal combustion turbine units
* Lower efficiency, higher relative emissions

— Counter-intuitive result

* Root cause: "representative” days did not capture
— High ramp rates (volatility)

— Low non-dispatchable generation (intermittency)
1.0

o
o

o
o

acity factor

Representative day S 02K

Scenario with low generation levels (intermitten

Ot+t—— . — :
2 6 10 14 18 22
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Dispatchable Plants Critical with Increased Renewables

System capacity Dispatchable units Renewable
132 72 82
17 » &7 P » “Representative Days Only”
é i \ \ /,. 72 underestimates total required
\ ” ,
122 2 ‘ o’ capacit
r/ AN W p
— — L\ — L d ) )
5 117 > 57 S %52 « More dispatchable capacity
~— S A\ S . . .
2112 252 N 2 required with lazy capacity
T o “ o :
§107 §47 \“\‘ §42 constraints and ramp events
o o SN o
10 " ‘\:\\ 32  Extreme ramp integration limits
N expansion of renewable capacity
97 : 37 - 22
92 ! 32 12
0 36 912151821242730 0 3 6 912151821242730 0 36 912151821242730
Year Year Year
=== Rep_1 —¢—Rep_Lazy Ramp_1
=== Rep_5 —¢—Rep_Lazy Ramp_5
=== Rep_10 =—¢=—Rep_Lazy Ramp_10
IDAES
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Software Development & Release Management

Mature Software Development, Test & Release Processes

Pull requests Issues Marketplace Exploce

« Open-Source Software repository at GitHub e ot o = L SRS
https://github.com/IDAES/idaes-pse R—

« Continuous development, testing e
& documentation updates e | & L
e : = Institute for the Design of Advanced Energy

Systems (IDAES)

Project Goals «

* Quarterly release schedule
— 22 Releases in past 4 years on the 1.X line

« 2.0 Release schedule for November 2022
— Major organizational and API improvements L — e B
— As learned over the past years of development

 February's 1.13 release last of the 1.X line
— May & August will each have 2.0.0 alpha releases to ease migration to 2.0

Collaborating institutions

The IDAES team is comprised of collaborators from the following institutions:

Institute for the Design of
Advance: d Energy Systems


https://github.com/IDAES/idaes-pse

Open Source Platform

Website: https://idaes.org/
GitHub repo: https://github.com/IDAES/idaes-pse
Support: idaes-support@idaes.org

Ask questions, subscribe to our user and/or
stakeholder email lists

Documentation: https://idaes-pse.readthedocs.io
Getting started, install, tutorials & examples

Overview Video
https://youtu.be/28qgjcHb4JfQ

Tutorial 1: IDAES 101: Python and Pyomo Basics
https://youtu.be/ E1H4C-hy14

Tutorial 2: IDAES Flash Unit Model and Parameter
Estimation (NRTL)

https://youtu.be/H698yy3yu6E

Tutorial 3: IDAES Flowsheet Simulation and
Optimization; Visualization Demo

https://youtu.be/vOHyYCiPOLHg

IDAES 36
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https://idaes.org/
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mailto:idaes-support@idaes.org
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https://youtu.be/v9HyCiP0LHg

Summary

 Trends Requiring Innovation in Decision Support Tools Multi-scale optimization

Evolving energy ecosystem requires greater flexibility
Expanding and decarbonizing U.S. industry

Process intensification & modularization

Integrated energy systems (Hybrid approaches)

Tighter coupling across temporal and spatial scales/domains

 Need for Advanced, Optimization-Based Modeling Platform

Decision support for nonlinear, interacting dynamic systems
Multi-Scale from molecular to process/plant to enterprise
Leverage 30 years of progress in algorithms, hardware, modeling

 Examples of IDAES Optimization Approach

Advanced Energy Syste

Process/Grid Coupling

Technical risk reduction for scaling up and deploying new technologies
Flexible Carbon Capture System Design

Integrated Energy System Design

Expansion Planning

ms
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