MFiX - Multiphase Flow with Interphase

Exchanges

Software tools and expertise to address multiphase flow
challenges in research, design, and optimization

&D V(Ft)ua
|

)
)
)

Projec

pEa— J J_} ‘{f‘:v.—?:‘,
IN=IHE fl—}
iy |V L) —
25 i?
: &

ks

t Review Meeting "%

ﬁ

Jeff

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY

Dietiker

LRST

&I.')i‘??.' PSR P R P :



Project Description and Objectives N=[METVA
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« Develop, enhance, and apply NETL's suite of MFiX software tools that are used for design and
analysis of novel reactors and devices for fossil energy (FE) applications.

 Enable science-based models as viable tools to reduce the risk, cost, and time required for
development of novel FE reactors.

« Open-source codes are developed, validated, and supported in-house by NETL's software
development and application specialists.
« Support the following FE pillars of research:
* Modernization of existing coal fleet
 Development of coal plants of the future
 Reduction of the cost of carbon capture, utilization, and storage (CCUS)

Unique NETL competencies:
Multiphase flow modeling expertise
« Joule 2.0 Supercomputer

«  MFAL: high fidelity data that measures key performance parameters across a broad range of
flow conditions-including fixed bed, bubbling, turbulent, entrained flow, and CFBs
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Task 2: MFiX Development, Validation, and Enhancements

Graphical user interface (GUI)
* Increase usability of the code
« Minimize error in setup, execution, and post processing.

« Additional Models/ physics required for challenging FE applications:
« Particle in Cell
« Coarse Grain Discrete Element Method
« Non-spherical particles
« Polydispersity
« Acceleration of the flow solver

« Quality Assurance (QA) Program
« Validation
« Verification
« Improved documentation, user guides, and validation experiments.

« Qutreach capabilities through the MFiX web portal to better serve FE and NETL
stakeholders.

U.S. DEPARTMENT OF
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MFiX Suite of Multiphase CFD Software
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Capabilities and Benefits 3 hocqdes 300+
.4'_M F ‘x of development history downloads per month
' ll 7,000 400
+ Versatile toolset (hydrodynamics, heat transfer, r| MFIX-PIC (Multiphase Particle-In-Cell) ‘
chemical reactions)
* GCIS/SO"dS flows ’_| MFiX-CGDEM (Coarse Grain DEM)
. Gds:.’rronspor’r equations (continuity, momentum energy
spgues) ) ] ) MFiX Exa (Exascale) — under development
« Solids: transport equations or particle tracking —
* Open source o, (o C3M multiphase chemistry management
« Developed af NETL, in-house expertise e software

* Runs on large HPC systems _
« Accelerate development and reduce cost

. Opiimizes performance Il h _E Tracker: Object tracking in videos/image
. . . i o ; — si'ack
* Reduces design risks

MFS Software Portfolio

. DEPARTMENT OF




MFiX Suite of Multiphase CFD Software [N=Jurew

Managing the tradeoff between accuracy and time to solution TL)iAs0rarcry

DNS

Direct Numerical Simulation: fine scale,
accurate simulations for limited size domain

, Discrete Element Method: Track
MF ix D E M individual particles and resolve collisions
AVIFLX
' CGP
; Two-Fluid Model: Gas and solids form
NFm T F M an interpenetrating continuum

Particle-in-Cell : Track parcels of >
b IP I C particles and approximate collisions
' Exascale: New code for new
1 E Xa_ generation of computers
=1 ROM

JEVD Reduced Order Models: Simplified
1 0 models with limited application

Time to Solution

Model Uncertainty

U.S. DEPARTMENT OF
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MFIX-TFM : Two Fluid Model

Highlights

« Long track record of
successfully supporting DOE-
FE priorities

« Computationally efficient

 Historical workhorse for large-
scale FE applications

Technical limitations

« Unable to efficiently model
phenomena like particle size
distributions

* Relies on complex constitutive
relations to approximate solid
stresses

« Ad hoc extension to multiple
solids phases

P
Fluid continuity equation:

0

a(egpg) + V- (ggpguy) = 84
Fluid momentum equation:

d

It (egpgtag) + V- (ggpgugty)

= —sngg +V- Ty + 4099 + Z ﬂg,m
m

Solids continuity equation:
9]
ot (empm) + V- (EmpmlUm) = S;m

Solids momentum equation:

0
9t (EmPmUm) + V- (EmpmuUmun)

= VP +V Ty + Enpmg — gg,m

A

4

Fs Home of the'MFiX Software Suite
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MFIX-DEM : Discrete Element Model N=|NAToNAL
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Advantages - - . h §
Fluid continuity equation: %
» Uses first principles to account for i) . s %
particle interactions, reducing model 3¢ EaPa) + 7 (egpgtt) = S I
complexity. Fluid momentum equation:

» Fewer complex closures results in less
overall model uncertainty.

» Only open-source, fully coupled CFD- = —&VPg+V T+ &pgg + Zﬂg.p
DEM code designed for reacting flows. P

0
FT: (egpgttg) +V - (ggpguguy)

Particle continuity equation:

)
« Computationally expensive, limiting the 5 (™) = Sy
size of systems that can be modeled. | particle momentum equations:
» Fluid-particle interaction is closed ouy
using drag models.

Technical limitations

. 4

/ 5,1 U.S. DEPARTMENT OF :
EN ERGY F Home of the MFiX Software Suite
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MFIX-DEM : Discrete Element Model ’@mom

Fluid is a continuum and particles are individually tracked, resolving particle-particle-wall collisions

Advantages

» Uses first principles to account for
particle interactions, reducing model
complexity.

» Fewer complex closures results in less
overall model uncertainty.

» Only open-source, fully coupled CFD-
DEM code designed for reacting flows.

P-P and P-W collisions are resolved
(soft sphere)

Technical limitations

« Computationally expensive, limiting the
size of systems that can be modeled.

* Fluid-particle interaction is closed
using drag models.

DEPARTMENT OF




MFIX-CGDEM : Coarse Grain Discrete Element Model [jy=]nanonal
TE TECHNOLOGY
Fluid is a continuum, particles are grouped into larger particles (CGP). CGP are individually tracked, LABORATORY

resolving collisions

Advantages

« Same formulation as DEM
 Runs faster than DEM

Drag force is based
on real particle size

Technical limitations
» Loss of accuracy for large statistical weights

U.S. DEPARTMENT OF




MFIX-PIC : (Multiphase) Particle-in-Cell

@ D
Advantages Fluid continuity equation:
0 +V =S
« Computationally efficient 3t (EaPg) TV (g9pg1tg) = 5
* Able to track _partl_cle-sc_:ale _ Fluid momentum equation:
phenomena like time-histories 3(8 )+ V- (e,pyugu,)
and size distributions ot 9Pt 9Pgtate
* Only open-source, PIC model = —g,Vpg + V- T4+ g4p59 + Eag,,,
p
Technical limitations Parcel continuity equation:
* Relies on a continuum stress ai(mp) =,
model to approximate particle- ‘
' ' ' Parcel momentum equation: .
particle interactions ou, Parcel collisions are not resolved
« Strong dependence on my—==mg + 91, = Iy,

implementation

Formally released: April, 2019  © Yy -
Home of the'MFiX Software Suite
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Enabling large Scale simulations

LB ==y
L

DEM example

Height = 0.68 m
Particle diameter = 800 microns

Particle count = 500,000 particles

U.S. DEPARTMENT OF
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Enabling large Scale simulations

Height = 4.0 m (x6) '
110

Particle count = 650 ,300)
<] DEM
PIC, Parcel counts = ions

Height = 0.68 m
Particle count = 500,000
DEM
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Multiphase Particle In Cell (MP-PIC)

N: NATIONAL
- [ENERGY

Use MP-PIC for computational speed and averaged accuracy

REDUCED 4
ACCURACY
_ CGPM / CGHS
Y Coarse Grained Coarse Grained
% — Particle Method Hard Sphere
= & Masaaki et al. 2000 Lu et al., 2017
|<_E Sakai and
= Koshizuka,2009
W
o
o AVIFLX oem ED/TD HS
o CED-DEM Evgnt Driven/ Time
8 [ c tation Fluid Driven Hard Sphere
- . Dompu 4 :;n li' Hoomans et al., 1996
O t ynamic-uiscrete Ouyang and Li, 1999
v B | Element Method Tsuji et

al., 1993 /

IMIFiX pic
MP-PIC

Multi Phase
Particle In Cell

Andrews and
O’Rourke, 1996

v

»

Collision
Resolved

Momentum
Conservation

Solid Stress
Gradient

GENERALIZED IDEA FOR PARTICLE INTERACTIONS

U.S. DEPARTMENT OF
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COMPUTATIONAL

SPEED
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MP-PIC can
significantly
reduce
computational
effort, and in the
right type of
application,
maintain
accuracy.

Particle Flow in Cyclone




Multiphase Particle In Cell (MP-PIC) N=|NAnoNaL
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Time:

* ~4 meters tall

* 650 million particles
* 13 million PIC parcels
e 200 cores on Joule 2
* 15 seconds/day

Simulation of industrial scale multi-phase flow devices is within MFiX’s grasp!
MFiX-PIC couples the MFiX Eulerian fluid solver with new Lagrangian solids stress model.

“'} U.S. DEPARTMENT OF o ax
@/ ENERGY
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MFiX Development

Recent developments

20.4

21,1 ~ = &

o0 Coarse Grain DEM
PIC collision damping

% @ 2x fluid solver speedup

i & Prodecural STL

21.2

2 = 6 new drag laws, 3 new Nusselt number correlations
oo CGDEM specify stafistical weight per phase

% [ih. Force chain visualization
¥ hh Reaction rate output

21.3

@3

21.4
22.1

%%, U.S. DEPARTMENT OF

% Filtering of particle_input.dat/partile_output.dat
= Guo-Boyce friction model

* il Residence time output

@A Create animation from GUI
Polydispersity for PIC
¥ DEM Rolling friction

N: NATIONAL
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~ Single phase
TFM

DEM

® CGDEM

PIC

o i

¢<® Workflow
o-H

& Geometry
¥ Chemistry

Iﬂ Output
@ Postprocessing
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20.4 - Coarse Grain DEM LABORATORY

- Particles are lumped together to create a CG particle

« CG particles collide with each other

« Heat transfer, chemical reactions
e MFIX-CGDEM formal release: 12/31/2020

Same Velocity Same Temperature

DEM CGDEM

01

f;lﬁ.ﬂ’\: Coarse Grain DEM - 10 to 10

Lump W
particles

0.05 -

Assumptions in

Coarse Grained Particle Method 0

Ncgp = N/ W

-0.05 |-

; \‘ ’ WlfS
- . . N e cGP
Original system with I\.Ip particles r; L \ | ..;...;.’,._ \
(color stands for different a ',& i ‘ ﬁ' f -,
species fraction and temperature, ‘ , ,"' . ® ‘%; . -0.15
\3— ‘CGP .‘.-‘

. . -0.2 &= 1
Same species fraction Lumped into a sphere 0 0.020.040.060.08 0.1 0.12 0.14 0.16 0.18 0.2

x (m)

©
=
T

x
. Q‘ .*
o.
\
Solid volume flux (m/s)

CFD-DEM —8—

H AY
vector stands for velocity) i | CGDEM, W=8 ---o---

% U.S. DEPARTMENT OF




MFiX Development
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CG-DEM Simulation of 2-inch Fluidized Bed Pyrolysis Reactor

Time: 0.00 s Biomass (enlarged 2 times) 1 .

W

500.

450.
bl 400.
o]

350.

Yields(%)

300.
250.
— 200.
— 150.

Biomass density (kg per cubic meters)

— 100.

|
B
=
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Sands & 130 microns Biomass
Coarse Grained DEM Simulation
Hybrid drag model

DNS calibrated heat transfer &
reaction kinetics

100 A

80 -

60

40 A

20

E=3 Simulation
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elopment IN=]amons:

Chemical Engineering Science 65 (2010) 6014-6028

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

An improved collision damping time for MP-PIC calculations of
dense particle flows with applications to polydisperse sedimenting beds

and colliding particle jets
e Compute mean velocity — _ [Jfmvidmdy; \ Peter J. O'Rourke **, Dale M. Snider®
' [fmdmady; D Sftware. L1 1089 Montgomery 81 NE St B Albuguergi N 57111, US#

| Jfmvi—v)? dmdyv; i
. J[fmdmdv;

3 . ° . . . .
« Compute Sauter mean radius 5 Jfr° dmady; Restitution coefficient e, controls

2= Eo g
Jfr?dmdy; amount of damping
. . . QCP
e Compute radial dist. function go(0) = 0——0
cp

e Compute std.dev

1+e, Setting e,=1
1 16 0o — "=

I turns off damping
e Compute collision frequency T - /377;Eg /

* Introduced a new keyword pic cd e
instead or reusing mppic coeff enl

| e |f collision frequency is not zero: replace regular PIC * |f collision frequency is very large,
parce velocity with nl_ Vp+(0t/2Tp)V; we “replace” parcel velocity with
p 1+(5t/27p)

the average velocity

U.S. DEPARTMENT OF
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Test case: Jet collision

Il ARNARATNARY

1cm

A 20°
. . P
* Collision of gas—solid jets ‘Sk\K ° | —>T
. - - A - > A —
* 2 jets colliding ?— 6cm | 12cm
. . . —> L4
* Solids fraction = 0.1, velocity = 20m/s — | —.»l
* No energy loss at walls (e_w = 1) B e 60 om -
e Statistical weight =1 - 72 cm
* WlthOUt COI“SiOn damping' the two jetS dO not Fig. 5. Channel geometry used for the calculations of two impinging gas-particle jets.
interact
* Polydisperse system, particle diameter: Speed (m/s)
* Mean=650 um, 6=25 um, clipped at meant2co F?
* Mean=350 um, 6=25 um, clipped at meant2c [14
5

Speed (m/s)

U.S. DEPARTMENT OF
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Mean=650 um, 6=25 um, clipped at meant2o LABORATORY
| Time: 0.0002 s
230 No damping
[20.0 E
— 15.0 E’
5.00 >

With damping, ep=0.8




MFiX Development

Mean=650 um, 6=25 um, clipped at meant2o

[23

Speed (m/s) With damping, ep=0.8

Barracuda (Paper)

U.S. DEPARTMENT OF

Speed (m/s) No damping [ .

B3 oz E
5 = 5 &
Magnitude

No damping

MFiX

TL
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MFiX Development N=|ranona
. . TL ISR
Mean=350 um, 6=25 um, clipped at meant2o b No damping
S n(1-mn) 1
]

02

0.15

01

0.05

a
0.00 0.10 0.20 030 0.40 050 0.60 0.70

1

Speed (m/s)

With damping, ep=0.8

With damping, ep=0.9

Barracuda (Paper

0.80 0.0 1.00

With damping, ep=0.0




MFiX Development

21.1 Fluid solver 2x speedup

Single Phase benchmarks
* SQUARE PIPE: Steady State
 BLUFF BODY
* SQUARE PIPE DYNAMIC: Unsteady, transient inlet BC
e MFiX tutorials
* FLD VORTEX SHEDDING
e TFM HOPPER 3D
e TFM HOPPER 2D
« DEM CYCLONE
* PIC LOOPSEAL

* Timing based on 1 to 3 repeats, manually launched on a dedicated node on Joule

e 21.1 Milestone: Accelerate fluid solver by a factor of 2

U.S. DEPARTMENT OF
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N: NATIONAL

MFiX Development NEIREG ooy

21.1 Fluid solver 2x speedup LABORATORY
* Reference: MFiX 20.4, “-02”, Line PC, ppg_den=10, epp_den=10

e Dev: Feb 2021 develop version:
* Code change: SS convergence criteria: only affects Steady State simulations

* Regular vs Optimized Thomas algorithm: only affects simulation with Line PC (Charles Waldman)
* New control for PPG and EPP residual scaling (ppg_den, epp_den): loosen convergence when norm_g=0,
norm_s=0; default values: ppg_den=10, epp_den=10
* Optimization flag: “-02” (default) vs “-march=native —-03”
* Line PC: On vs OFF

B REF (20.4) M Dev (Native -O3) +Thomas

M Dev (-02) M Dev (Native -0O3) +Thomas+ppg_den=1

M Dev (Native -03) B Dev (-02), No PC
Dev (-02) + Thomas M Dev (Native -O3) +ppg_den=1, NoPC

U.S. DEPARTMENT OF
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21.1 Fluid solver 2x speedup

LABORATORY
Speedup: Higher is better

7.00
6.00

5.00

o

2.0
1.0

0.00 ““‘ IIIIII“ IIIIII‘l IIIIIIII IIIIIIIl IIIIIII‘ IIIIIIII IIIIIII‘

SQUARE PIPE BLUFF BODY SQUARE PIPE DYNAMIC FLD VORTEX SHEDDING TFM HOPPER 3D TFM HOPPER 2D DEM CYCLONE PIC LOOPSEAL
B REF (20.4) mDev(-02) ™ Dev (Native-03) ® Dev(-02)+Thomas ™M Dev (Native -0O3) +Thomas M Dev (Native -O3) +Thomas+ppg_den=1 HDev (-02), No PC  H Dev (Native -O3) + ppg_den=1, NoPC

o

U.S. DEPARTMENT OF

'ENERGY
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21.1 Fluid solver 2x speedup

LABORATORY

* New convergence criteria for Steady State: ~ 4x speedup
e “march=native —03”: 3 to 14% faster
* Optimized Thomas algorithm: 3 to 11% faster
* Lowering ppg_den from 10 to 1: up to 25% faster (helps
when ppg is dominant residual)
* Turning off the PC: fluid/vortex_shedding_2d_init_dt 0 01
e~ 2xspeedup (fluid solver) 4 [sonurs 201 LAGS =" march=native -03°
* May fail to converge if DT=cst with bad initial conditions R————
(need to set adaptive DT) B b

3 () Mfix;gnu/8.2.0;FLAGS="-march=native -03";PPG_DEN=1.0 EPP_DEN=1.0 Better to start
' dt: 2.01E-01, Steps: 1538

* Best combination: No PC, “march=native —-03” flag, 2.8 9NU/8.2.0/FLAGS=-02 -g";PPG_DEN=1.0 EPP_DEN=1.0 with small DT
ppg_den=1 | Mlix;gnu/8.2.0;FLAGS="-02 -g";"No PC"

dt: 2.07E-01, Steps: 1452

1.4 Mfix;gnu/8.2.0 FLAGS="-march=native -03";"No PC"
) dt: 2.03E-01, Steps: 1480

X;gnu/8.2.0;FLAGS5="-02 -g";PPG_DEN=1.0 EPP_DEN=1.0 "No PC"
1.2x dt: 2.05E-01, Steps: 1462 Fa Ste r th a n
1.0x fix;gnu/8.2.0 FLAGS='-marcr=native -03";PPG_DEN=1.0 EPP_DEN=1.0 "N y rea | tl me ! !

dt: 2.13E-01, Steps- 1413

0 100 200 300 400
walltime [s]

2 U.S. DEPARTMENT OF




MFiX Development

21.2 — Force chain visualization
Ability to visualize force chain

Between particles (DEM)
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TL

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY




MFiX Development N= o
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Time =5.00s
* This model was graciously provided by researchers from
Columbia University, NY.

* Allows to correctly predict bubble pattern in a pulsating
fluidized bed. 0.93

EP G
T.00

0.86

0.79

0.72
0.65
0.58
0.51
0.44
0.37

Qiang Guo, Yuxuan Zhang, Azin Padash, Kenan Xi, Thomas M.
Kovar, Christopher M. Boyce, "Dynamically structured bubbling
in vibrated gas-fluidized granular materials", Proceedings of the
National Academy of Sciences Aug 2021, 118 (35)
e2108647118; DOI: 10.1073/pnas.2108647118

e

U.S. DEPARTMENT OF

ENERGY
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MFiX Development =|uamonaL
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21.4 Polydispersity for PIC
. Extension of DEM polydispersity

. . . Model = MFiX status =~ Mesh Stats X = New X ‘ VTK X ‘ Histogram X +
. Normal distributions DREKS COBBO K< > > 5o |
. . . <
. log-normal distributions @
: : : 0.84s ¢
. Custom distributions i-?.:.’}
=]
1400 [g‘
. )=
Diameter =
0.01220 ®»
1200 &
10.01098
ek 0.00975
€ 0.00853
§ 800
0.00731
600
0.00608
400 0.00486
0.00364
200
. 0.00241
3=
s Size I} h 0
" Cumulative distribution [CDF} 0.002 0.004 0.006 0.008 0.01 0.012
e Diameter
i

U.S. DEPARTMENT OF

ENERGY
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22.1 DEM Rolling friction

Jforce balance

PLE

. 2000

% il) O Zhou et al. (1999)

E 1500 - ----- MFiX-DEM

5 1

QD i \

0 .

S 1000 -

o :

3 500 - .

c i Q.

2 - C. ...

= 0 _— —0--0.0.-0
1.E-05 1.E-04 1.E-03

Coefficient of rolling friction (m)

U.S. DEPARTMENT OF




MFiX Development N=|ona
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T

(a) (b)

Test case 2: Formation of a stagnant zone

e Particles initially in the top half

e Particle sizes=6 mm and 10 mm

* Particles collect at the bottom once the ends 3
are opened. 20 om .

* Astagnant zone at the midplane is formed |
whose characteristics depend on the value of
the rolling friction coefficient 5 om 5om.

 Asthe value is increased, more particles
accumulate in the stagnant zone. In our case,
we obtain reasonable results while using pr =
1.0E-4 m.

 Good qualitative comparison of final particle
locations between MFiX-DEM predictions and o e A A A
Y.C. Zhou, B.D. Wright, R.Y. Yang, B.H. Xu, A.B. Yu, "Rolling friction in the

the work of Zhou et al.
dynamic simulation of sandpile formation", Physica A: Statistical uuuu

Mechanics and its Applications, Volume 269, Issues 2—4, 1999, Pages  Formation of stagnant zone along the midplane with 6 mm particles using a rolling friction coefficient of

536-553 (a) 0 m, (b) 2.5E-5 m, (c) 5.0E-5 m and (d) 1.0E-4 m.

e n U.S. DEPARTMENT OF :
@ / EN ERG F Home of the'MFiX Software Suite

30 cm

30 cm ' o

(@) (b) () (d)




Non-spherical particles (SuperDEM)  [N=]urow
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Superquadric particles

* Superquadrics are a family of geometric shapes defined as

2 20 2 Y

X

(e @] (@~
a az as

* Can represent ~ 80% of all shapes by varying five parameters £, =2.0 I . ‘ ‘
[a1; az: a3; 81) EZ]T

Semi-axis roundness parameters & =10 ' 0 ‘ 0
al=2
g, =01
) a2=2
a3=4
g =0.1 g =10 =20 £=30
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SgperDE‘V\ examples [N=]mone:
S

Time: 0.000

Time: C

oQe( o( 69O

CoegClfeLeleeC

ID
250
[200
— 150
— 100
50 . .
I: Cylinder rotating drum
1
M&M candy Cylinder candy . .
static packing static packing M&M candy discharging from a hopper

U.S. DEPARTMENT OF




Validation experiment

N: NATIONAL

ENERGY
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Particle properties including the volume equivalent dameter d.-dass the particle dimensions, the spheridty &, the particle density p,, the bed height Land the averaged porosity & for the
initial, unfluidized setup.
0,11 m Shape Sphere Sphere Ideal Cylinder Cube Cube
“ <o < < “9 O
de~class [mm] % 5 7 5 £
Size [mm)] 7.2 5 61 62 42 43 45 52 63 63
L] L ¢ -l 1.00 1.00 0.87 0.81 0.80
< | ™) .
p P pressure tapping Py lkglm?| \9772.5 ) 823.0 7085 630.7 7469
points Ly (mm]/Z [-] S5 040 88 0.40 N___98 036 / 98 037 N__ 103043
Shape / Elongated Cylinder \ Elongated Cuboid Elongated Cuboid Plate Elongated Plate
d,-class [mm] 7 5 7 5 5
Size [mm)] 39 140 30 30 7.1 42 42 114 20 49 60 20 40 80
¢ I 075 075 073 071 0.6
Py [kg/m?] 7644 7456 639.7 754.1 756.6
Ly Imm] /£ [-] \_ 103 044 ) 103 042 115 040 102 043 108 0.46
flow straightener Shape Elongated Cuboid Plate e
l/ (C) 500
‘ | 1 O—Q—A—R—Qf—R—|
‘ .0 4“‘. 03 % 4
do-class [mmy] 5 7 400 ./: *e * .
Size [mim) 20 30 110 22 90 98 P
¢ I 064 063 A &
3 7281 6728 . 300
air inlet P Iigim’) 5 { =} *
compreesor Ly [mm]/E [-] 117 0.48 121 046 5
2 200 .
=]
7
Experiment: Vollmari K, Jasevicius R, Kruggel-Emden H. Experimental and numerical study of ;;.’. 100 ¢ SRE e
fluidization and pressure drop of spherical and non-spherical particles in a model scale —e— Di Felice-Holzer/Sommerfeld
fluidized bed. Powder Technology. 2016;291:506-521. —A— Di Felice-Gansor
T T T T
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34
400 -
20 —e—10 Million
2 : —e— 100 Million
1.0 i
300
L 00 £ £ . .
e} ©
10 8 2
Le] P i
2039 £ =V
o)
30 £ .
5
40 g 1004
8 o
(m) : m)b o g 200 (750) (2000} 6300
MEIX-SuperDEM ) a 100 = 000 - '1?6000
100 Million M&M Candies 2a=2b=13.56mm
6800 Cores 2¢=7.19mm Number of cores

* The solver was parallelized using MPI.
« Simulation on NETL supercomputer Joule 2 (80K cores) , World Top 60, 2020
* Non-spherical particles fluidization simulation, 100 million (6800 cores)
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(BB <
N dta bt vf C't d 8 2 105
* Need to compute xYfor non-integer x and y. .
i ey 0.5 * > ¥
 Range 0<x<2andy=1.
« 70% code spent on exponentiations 1 “ ‘ ‘
« Integer powers and square roots are computationally 2 . . '
inexpensive
 We can compute certain powers quickly, e.g x%° is @)4 . s '
x*x*sqrt(x) (not an approximation) 6 . i
e Constrain m and n to be integers or dyadic rationals .
* Does not guarantee that the ratio n/m is similarly nice 8 . e '
e Restricting values on m and n such that m,n and the ratio 10
n/m are lead to an efficient exponent computations 4
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Non-spherical particles code acceleration

xpow(custom) vs pow(libm)

* Prototype function xpow o

L a _
40p- L L4 4 a0 a empty loop "

* Checks for integer exponents or exponents of the form R R P e e e N
a+b/4 ol m ® = = - " LA |

e Efficient methods based on squaring and square roots

250 [~

pseciloop

* 6x speedup compared with built-in math library w0

* Overall speedup on hopper benchmark is about 2.1x

Exponent
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Non-spherical particle drag law

Detailed simulations of flow around prolate spheroids
Lattice Boltzmann method (LBM).

Reynolds numbers range 0.1 < Re < 2000

Incident angles 0° < @ <90°

Aspect ratios 1 <A < 16.

Accurate correlations for average drag, lift and torque
coefficients are proposed.

Freeslip boundary

he
Uoo €< ' Outflow
_— Sl N R boundary
) ) @ @ % /
Yy =
) Sathish Sanjeevi, Jean-F. Dietiker, and Johan T. Padding, “Accurate hydrodynamic force and torque
z Freeslip boundary ) . . . ”
correlations for prolate spheroids from Stokes regime to high Reynolds numbers ”, accepted for

publication, Chemical Engineering Journal
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Non-spherical particle drag

Non-spherical particle drag law
Lift and drag
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Non-spherical particle drag
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Non-spherical particle drag law

Lift and drag
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(a) Re =100
1.6F T T T : T
m} .
O Sanjeevi et al. (2018) L —_— e et 2 1
: 1.6 Present work
= Present correlation == Frshlich et al
1.4+ === Frohlich et al. 14F ===+ Quchene et al.
=== Quchene et al.
------ Zastawny et al. 1.2+
Q
(@) 1.0
0.8F 0 u]
0.6
04F —— T
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o[°]

Figure 12: Comparison of C'p against ¢ for A = 2.5 at (a) Re = 100 and (b) Re = 2000. Figure 13: Comparison of C'p for a particle of A = 6 at ¢ = 45° from different correlations
with the DNS data of Jiang et al. [21, 22].
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Hundredfold Speedup of MFiX-DEM using GPU IﬁNATIONAL

DEM solver was ported to GPU (prototype)

MFiX-CPUDEM

« 170 fold speedup with double precision, 243
fold with single precision

« Re-use CFD, Iinterphase coupling, and
chemical reaction modules in MFiX

[ MFiX-CPUDEM [ Particle Parallel (PP) [ Collision Pair Parallel (CPP)
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Hundredfold Speedup of MFiX-DEM using GPU

Effect of coarse graining

et = N M
PEEIREase S+ ~——+—+ -+ ‘F 4+——+—1—
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(c) Fluid-Particle Coarse-graining

e R P A

(a) Fine grid CFD-DEM (b) Fluid Coarse-graining
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- Glued-sphere DEM N=|rona
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Irregular Shape of Particles
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MFiX Quality Assurance

Building Confidence in Simulation Resulis

e Verification

e Code verification — Does the code do what we
expect?

 Solution verification — Is the answer any good?

* Validation - How does the answer compare to
the real world?

e Uncertainty Quantification
 Where is the error in my solution coming from?

 What happens to my answer when | change an
input to my model?

Accomplishments (https://mfix.netl.doe.gov/mfix/mfix-documentation)
* MFiX Verification and Validation Manual 2" Ed. (PDF & html)
e PIC theory guide (May 2020)
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* PIC parameter sensitivity and calibration
* How sensitive are PIC simulations to PIC model parameters?
 Recommend parameter values for a given type of application

Cases selected to cover a broad range of flow conditions
* Particle Settling: U/U_< 1.0 (P, ~ 1) (Analytical solution)
* Bubbling Fluidized bed: U/U .~ 1 (P, ~ 10)
* Circulating Fluidized bed: U/U_;>> 1.0 (P, ~ 100)

Parcel momentum equation e [
CFB
vy, . A 100 |
—2=BUy~ V) ——Vp——V1, +§ = f
t Pp pPp & 40l
e |
_ & L
Tp = i
max (scp — &p, 6(1 - ep)) 0.1
L
0.01 0.1 1 10 100 1000

UM,y

Fs Home of the'MFiX Software Suite




C1: Particle settling

Sensitivity analysis and Deterministic calibration

« Response surface(55 samples)

« Sobol indices show:
« main effects (first oder)

* interactive effects (second
order)

Data-fitted surrogate model

Sensitivity

g =0 g =0
| |
v v

€ = &s0 € = &s0
—1
Eg = &

t=0 t>0

B First Order
I Second Order

0.5
0.4
t1: Pressure linear scale
0.3 factor
t2: Exponential factor
0.2 - t3: Statistical weight
) t4: Void fraction at packing
01 t5: Solids slip velocity factor
0.0 . - s i L T S S Ry

I L]

Sensitivity Analysis using Sobol Indices
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Parameters obtained through
deterministic calibration

Pressure linear
scale factor

12
Vol. fraction
exponential
scale factor

13
Statistical
weight

t4
Vol. fraction at
maximum
packing

t5
Solid slip
velocity factor

100

3.0

5.0

0.42

1.0

[1.20]
[2,5]
[3,20]

[0.35,0.5]

[0.5,1.0]
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| Parameter | Default | _Range | Calibrated
t1

14.309

2.165

12.241

0.399

0.828
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Validation and formal release of superDEM particle capability
* Step-change from the typical approximation of spherical particle shape
* Code optimization for faster turn-around time on large supercomputing systems
* These capabilities allow for accurate modeling of mixed feedstocks of large, reacting particles

Validation and Formal release of multiphase radiation modeling capability
* This work incorporates the development work performed by University of Wyoming under NETL support
* New radiation models available for all multiphase modeling approaches (TFM, DEM, PIC)
* Enhanced accuracy of heat transfer in high temperature FE reactors

Development of conjugate heat transfer capability in MFiX
* Accurate modeling of internal heat transfer surfaces critical to industrial scale reactors
* Critical capability for Hydrogen production and Oxygen separation technologies

Continued development of the Graphical User Interface (GUI)
* Improved usability, reduced user setup error, faster overall workflow
* Contributes to a larger MFiX community worldwide and better visibility of NETL's multiphase modeling expertise

Continued Verification and Validation efforts
* Improved confidence in new implemented models
* Documentation of parameters sensitivity and best practices for simulation setups
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Comparison with other codes N=|raronaL
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Marchelli, F.; Di Felice, R. A Comparison of Ansys Fluent and MFiX in Performing CFD-DEM Simulations of
a Spouted Bed. Fluids 2021, 6, 382. https://doi.org/ 10.3390/fluidsé 110382

Fluent - structured mesh

1 Fluent - Cartesian mesh
# bs MFiX

o, [ ® Experimental
075 ’ L]

/ 3
0.5 /

Velocity Magnitude

M

Particle average vertical velocity (m/s

Experimental Fluent — structured Fluent — Cartesian FiX
0.25 |
%
“Both programs can provide acceptable qualitative predictions 0
when employing standard settings. If the Di Felice drag model ° o MmO o2 o
is applied, MFiX yields better results and provides a very good Figure 6. Time-averaged vertical profiles of the particles’ vertical velocity when employing the Di

Felice drag model.

guantitative reproduction of the experimental particle velocity

=
A
n

profile. Moreover, despite employing similar mesh and time £ e o,
steps and the same number of particles, MFiX is about 17 times a = T -
faster. However, Fluent seems to respond slightly more

efficiently to an increase in the particle number and appears to .

have better parallelisation functionalities. “ < K S

o

o

0.05 0.1 0.15 02 0.25
y(m)

T O Figure 3. Time-averaged vertical profiles of the particles’ vertical velocity when employing the
o \’l U.S. DEPARTMENT OF ° Gidaspow drag model.
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Volume 22 + Number 4 - November 2020

10035

10035 Volume 24 -Number 1 -February 2022

Granular Matter Granular Matter
1’:‘:,\”;(1
ER oo l=l
Volume @ March, 2022
Science and Technology of Particles
@ Springer ga " @ Springer
Investigating the rheology of fluidized . . h |
and non-fluidized gas-particle beds: GPU accelerated MFiX-DEM Using a proper orthogona
implicati.ons for the dynamics of simulations of granular and decomposition to elucidate
geophysical flows and substrate - f . | fl
entrainment multlphase flows eatures In granular flows
By Breard C. P. Eric, Fullard Luke, Dufek Byl. Lu By J. E. Higham, M. Shahnam & A.
Josef, Tennenbaum Michael, Fernandez- Vaidheeswaran

Nieves Alberto & Dietiker Jean-Frangois



https://rdcu.be/cIeVe
https://rdcu.be/cxtxr

Resources — MFiX website

 Showcase NETL's Multiphase Flow

Science (MFS) team

— MFS software

— Documentation

— Forum

— Experimental data (Challenge pbs)
— Publications

— Workshop proceedings

— News, announcements

3. Tutorials

» 3.6. Three Dimensional DEM Hopper

3.6. Three Dimensional DEM Hopper

as

Bed

© 3.6 Three Dimensional DEM
Hopper

361 Create 3 new proje

U.S. DEPARTMENT OF e

'ENERGY

Install MFiX

For detailed setup instructions, follow the setup guide.

NATIONAL

TECHNOLOGY
LABORATORY

https://mfix.netl.doe.gov

Employment Support Profile

Log Out Q

B
MFS Home of the'MFiX Software Suite b

About ¥ Products v Publications

MFiX Documentation

Research ~ Workshops

Nodeworks »
C3M » MFiX Archive
Tracker » MFIX Applications

MFAL »

Windows Linux Mac

Source / Pip

NETL Multiphase Flow Science Group

Install Anaconda

Download and install Anaconda (link op

Install MFiX (in new

Open the Anaconda Prompt (installed u

Copy and paste the following command
MFiX Versior§ 21.4 )

conda crea

This will create a new conda environmer

Run MFiX

Simulation-Based Engineering Tools to
Advance Multiphase Flow Systems

US Department of Energy Engineers and Scientists developing and applying Multiphase CFD Tools and using

MFiX Documentation

Latest Documentation

MFiX User Manual experimentation to advance existing and next-generation energy and environmental devices and systems

MFiX Verification and Validation Manual, Second Edition

MFiX PIC Theory Guide
4.5. DEMO5: Oblique particle collision

Older Documentation

4.51. Description

£ 45 DEMDS: Oblique particle
collision

Legacy Manuals

451 Descriotion

452 st

MFiX Training

45.2. Setup
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Sort by: Year (Newest to Oldest) Total:

Publication Year 2022

1. Modest, M. F. M., Sandip. "Chapter 20 - The Monte Carlo Method for Participating Media," Radiative Heat Transfer (Fourth Edition). Academic Press, 2022, pp. 737-
773.

2. Lu, L. Q. G, X,; Dietiker, J. F.; Shahnam, M.; Rogers, W. A. "MFiX based multi-scale CFD simulations of biomass fast pyrolysis: A review," Chemical Engineering
Science Vol. 248, 2022, p. 26.

3. Ly, L. Q. L., C;; Rowan, S.; Hughes, B.; Gao, X.; Shahnam, M.; Rogers, W. A. "Experiment and computational fluid dynamics investigation of biochar elutriation in
fluidized bed," Aiche Journal Vol. 68, No. 2, 2022, p. 11.

4. Gao, X. Y., ).; Portal, R. ). F; Dietiker, J. F.; Shahnam, M.; Rogers, W. A. "Development and validation of SuperDEM for non-spherical particulate systems using a
superquadric particle method," Particuology Vol. 61, 2022, pp. 74-90.

5. Lu, L. Brennan Pecha, M.; Wiggins, Gavin M.; Xu, Yupeng; Gao, Xi; Hughes, Bryan; Shahnam, Mehrdad; Rogers, William A.; Carpenter, Daniel; Parks, James E.
"Multiscale CFD simulation of biomass fast pyrolysis with a machine learning derived intra-particle model and detailed pyrolysis kinetics," Chemical Engineering
Journal Vol. 431, 2022, p. 133853.
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MFiX Forum

https://mfix.netl.doe.gov/forum

* User support

NETL Multiphase Flow Science
. Home of the “MIIFaXX Software Suite.
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Sorbent-based Carbon Capture - MFiX-DEM

Simulation Results:
MFiX-DEM

o
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Sorbent-based Carbon Capture - MFiX-DEM =[ENESY .
Cold Flow Hydrodynamics TL

LABORATORY
Excellent comparison between modeled and measured sohds
holdup(pressure drop values) C]I’OUﬂd the flow loop
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Advanced Reactor System — MFiX CGDEM [N=]ranona
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Commercial-scale gasifier design (22MW)

oal, lO"/g_giomcss, Air

Accomplishments
« Support the University of Alaska-Fairbanks Modular Gasification project
* Model validated with Sotacarbo pilot scale data
« 3D, transient simulation of prototype gasifier compares well to UAF design
« Transient response of gasifier to load variations, ramp-rate and turndown

+ Gaisifier performance for coal-biomass co-feed conditions to explore novel
Net Zero Carbon, BECCS, and H2 production has been modeled

Impact: NETL's model predicts gasifier performance relative to feedstocks and
operating conditions

» Predicted syngas data will provide key information for design of downstream
components including engines for generators

« Modeling effort will significantly de-risk the design of the $4émillion facility
9 SOTACARBO
Reactor dimensions : 3.05 m diameter x 4.5 m height N | SHESTATB B FEN
Solids inventory: >10 tons FAIRBANKS PARSONS

Number of CG particles: ~130,000

Time scale (physical time):>10 hours
Jia Yu, Ligiang Lu, Yupeng Xu, Xi Gao, Mehrdad Shahnam, and William Rogers, Coarse-Grained CFD-DEM Simulation and the Design of an Industrial-Scale Coal Gasifier, Industrial Engineering and Chemistry
Research, 2022, Volume 61, No. 1, 866—881, https://doi.org/10.1021/acs.iecr.1c03386

Hamilton-Maurer International
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Advanced Reactor System - MFiX CGDEM
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Advanced Reactor System — MFIX CGDEM [N=]nona

Syngas Exit Composition with Oxygen Enrichment

Simulations show that the
prototype gasifier is adaptable to
a wide range of oxygen
enriched conditions with steam
and CO, diluents

* This meets key requirements for
candidate gasifiers for Net Zero
Carbon and H, production

Oxygen-blown with steam
produces higher H, as expected

U.S. DEPARTMENT OF
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Biomass gasification - MFiX CGDEM

Project Goails:

- Develop reaction kinetic for Cypress
Biomass gasification

« Validate reaction kinetic for FABER

« Design and optimization of the
fluidized bed reactor

Accomplishments
« Gasification of Cypress biomass in

FABER was simulated.

Biomass, 100°C
75 kg/hr

« Gasification reaction kinetics were
developed and validated against
experimental results.

\_l

Nitrogen, 100°C
8.255 kg/hr

Reactor dimensions: ID = 0.489 m, height =5.733 m

Number of CG particles: ~64,000
Solids inventory: Sand 234 Kg, Biomass 25 Kg

U.S. DEPARTMENT OF ®

JENERGY
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CFB Combustor - MFiX-PIC

NETL and Natural Resources Canada-CanmetENERGY have
teamed to study CFB combustion systems with coal-
biomass co-feed with potential for carbon capture

Accomplishments:

* NETL is simulating the 50kWth pilot CFB system
being operated at NRCan over a range of coal-
biomass blends and oxygen-enrichment conditions

* The collaboration provides NETL with high quality,
detailed data describing rig operations which is
critical information for validating the model

* The model is providing NRCan with valuable insight
on conditions inside the system to help guide
system optimization

Bl G o
Impact: Canada
* Once validated at the small pilot scale, these MFiX
models running on FE’s JOULE2 Supercomputer will
be used to study scale-up and performance
optimization of coal-biomass CFB combustion

systems designed for negative CO2 emissions

Fs Home of the'MFiX Software Suite

NRCan 50kWth CFB Test Facility
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- 50kWth CFB Combustor — MFiX PIC =|nanonat
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Hydrodynamics Benchmarking - Effect of Drag Model
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Time: 0.10s

« First step: validate hydrodynamics

° Riser_only SimU|CIﬁOnS . 0 Time(s)[(;iodaspowdrag,d;;hedlines] 0 o

*  Fluidization is impeded by applying the a First 5s shown
filtered drag model, so more particles 8 3 Farce et
are retained in the lower riser g g Ionosso

- Circulation rate is reduced, reflected in 5 & —
the average mass of recirculated : -
particles in the side inlet

b Pressure drop diS.'ITibU'I'ion. Ond OverO” ] 30 RO qQ 120 150 — 0.00200
pressure drop using the filtered drag .
model show better agreement with the R e oot

experimental results (B, = 10, y = 3)
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