MFiX - Multiphase Flow with Interphase Exchanges

Software tools and expertise to address multiphase flow challenges in research, design, and optimization

Jeff Dietiker LRST

Project Description and Objectives

CARD: <u>CFD</u> for <u>Advanced Reactor Design</u>

- Develop, enhance, and apply NETL's suite of MFiX software tools that are used for design and analysis of novel reactors and devices for fossil energy (FE) applications.
- Enable science-based models as viable tools to reduce the risk, cost, and time required for development of novel FE reactors.
- Open-source codes are developed, validated, and supported in-house by NETL's software development and application specialists.
- Support the following FE pillars of research:
 - Modernization of existing coal fleet
 - Development of coal plants of the future
 - Reduction of the cost of carbon capture, utilization, and storage (CCUS)

Unique NETL competencies:

- Multiphase flow modeling expertise
- Joule 2.0 Supercomputer
- MFAL: high fidelity data that measures key performance parameters across a broad range of flow conditions-including fixed bed, bubbling, turbulent, entrained flow, and CFBs

Project Update

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 2: MFiX Development, Validation, and Enhancements

- Graphical user interface (GUI)
 - Increase usability of the code
 - Minimize error in setup, execution, and post processing.
- Additional Models/ physics required for challenging FE applications:
 - Particle in Cell
 - Coarse Grain Discrete Element Method
 - Non-spherical particles
 - Polydispersity
 - Acceleration of the flow solver
- Quality Assurance (QA) Program
 - Validation
 - Verification
 - Improved documentation, user guides, and validation experiments.
- Outreach capabilities through the MFiX web portal to better serve FE and NETL stakeholders.

MFiX Suite of Multiphase CFD Software NATIONAL ENERGY TECHNOLOGY LABORATORY

Managing the tradeoff between accuracy and time to solution

MFiX-TFM : Two Fluid Model

Continuous and disperse phases (e.g., gas and solids) are treated as coexisting continua.

He I L Multiphase Flow Science Home of the **MFiX** Software Suite

Highlights

- Long track record of successfully supporting DOE-FE priorities
- Computationally efficient
- Historical workhorse for largescale FE applications

Technical limitations

U.S. DEPARTMENT OF

- Unable to efficiently model
 phenomena like particle size
 distributions
- Relies on complex constitutive relations to approximate solid stresses
- Ad hoc extension to multiple solids phases

Fluid continuity equation:

 $\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g) = \mathcal{S}_g$

Fluid momentum equation:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g \boldsymbol{u}_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g \boldsymbol{u}_g)$$
$$= -\varepsilon_g \nabla p_g + \nabla \cdot \boldsymbol{\tau}_g + \varepsilon_g \rho_g \boldsymbol{g} + \sum_m \boldsymbol{\mathcal{I}}_{g,m}$$

Solids continuity equation:

 $\frac{\partial}{\partial t}(\varepsilon_m \rho_m) + \nabla \cdot (\varepsilon_m \rho_m \boldsymbol{u}_m) = \mathcal{S}_m$

Solids momentum equation:

$$\frac{\partial}{\partial t} (\varepsilon_m \rho_m \boldsymbol{u}_m) + \nabla \cdot (\varepsilon_m \rho_m \boldsymbol{u}_m \boldsymbol{u}_m) \\ = -\nabla p_m + \nabla \cdot \boldsymbol{\tau}_m + \varepsilon_m \rho_m \boldsymbol{g} - \boldsymbol{J}_{g,m}$$

MFiX-DEM : Discrete Element Model

NATIONAL ENERGY TECHNOLOGY LABORATORY

Fluid is a continuum and particles are individually tracked, resolving particle-particle-wall collisions

Advantages

- Uses first principles to account for particle interactions, reducing model complexity.
- Fewer complex closures results in less overall model uncertainty.
- Only open-source, fully coupled CFD-DEM code designed for reacting flows.

Technical limitations

- Computationally expensive, limiting the size of systems that can be modeled.
- Fluid-particle interaction is closed using drag models.

Fluid continuity equation:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g) = \mathcal{S}_g$$

Fluid momentum equation:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g \boldsymbol{u}_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g \boldsymbol{u}_g)$$

$$= -\varepsilon_g \nabla p_g + \nabla \cdot \boldsymbol{\tau}_g + \varepsilon_g \rho_g \boldsymbol{g} + \sum_p \boldsymbol{\mathcal{I}}_{g,p}$$

Particle continuity equation:

 $\frac{\partial}{\partial t}(m_p) = \mathcal{S}_p$

Particle momentum equations:

$$m_p \frac{\partial \boldsymbol{u}_p}{\partial t} = m\boldsymbol{g} + \boldsymbol{F}_{coll} - \boldsymbol{\mathcal{I}}_{g,p}$$
$$I_p \frac{\partial \boldsymbol{\omega}_p}{\partial t} = \boldsymbol{\mathcal{T}}$$

MFiX-DEM : Discrete Element Model

NATIONAL ENERGY TECHNOLOGY

Fluid is a continuum and particles are individually tracked, resolving particle-particle-wall collisions

Advantages

- Uses first principles to account for particle interactions, reducing model complexity.
- Fewer complex closures results in less overall model uncertainty.
- Only open-source, fully coupled CFD-DEM code designed for reacting flows.

Technical limitations

- Computationally expensive, limiting the size of systems that can be modeled.
- Fluid-particle interaction is closed using drag models.

Fluid continuity equation:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g) = \mathcal{S}_g$$

Fluid momentum equation:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g \boldsymbol{u}_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g \boldsymbol{u}_g)$$
$$= -\varepsilon_g \nabla p_g + \nabla \cdot \boldsymbol{\tau}_g + \varepsilon_g \rho_g \boldsymbol{g} + \sum_p \boldsymbol{\mathcal{I}}_{g,p}$$

Particle continuity equation:

 $\frac{\partial}{\partial t}(m_p) = \mathcal{S}_p$

Particle momentum equations:

$$m_p \frac{\partial \boldsymbol{u}_p}{\partial t} = m\boldsymbol{g} + \boldsymbol{F}_{coll} - \boldsymbol{J}_{g,p}$$
$$I_p \frac{\partial \boldsymbol{\omega}_p}{\partial t} = \boldsymbol{\mathcal{T}}$$

P-P and P-W collisions are resolved (soft sphere)

Solver time: Fluid Solid

MFiX-CGDEM : Coarse Grain Discrete Element Model

Fluid is a continuum, particles are grouped into larger particles (CGP). CGP are individually tracked, resolving collisions

Home of the **MFiX** Software Suite

Advantages

- Same formulation as DEM
- Runs faster than DEM

Technical limitations

J.S. DEPARTMENT OF

ENERGY

• Loss of accuracy for large statistical weights

Fluid continuity equation:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g) = \mathcal{S}_g$$

Fluid momentum equation:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g \boldsymbol{u}_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g \boldsymbol{u}_g)$$
$$= -\varepsilon_g \nabla p_g + \nabla \cdot \boldsymbol{\tau}_g + \varepsilon_g \rho_g \boldsymbol{g} + \sum_p \boldsymbol{\mathcal{I}}_{g,p}$$

Particle continuity equation:

$$\frac{\partial}{\partial t}(m_p) = \mathcal{S}_p$$

Particle momentum equations:

$$m_p \frac{\partial \boldsymbol{u}_p}{\partial t} = m\boldsymbol{g} + \boldsymbol{F}_{coll} - \boldsymbol{\mathcal{I}}_{g,p}$$
$$I_p \frac{\partial \boldsymbol{\omega}_p}{\partial t} = \boldsymbol{\mathcal{T}}$$

Drag force is based on real particle size

Solid

Solver time: Fluid

MFiX-PIC : (Multiphase) Particle-in-Cell

ome of the **MFiX** Software Suite

Fluid is a continuum and particles are tracked as parcels, solid-stress model approximates collisions

Advantages

- Computationally efficient
- Able to track particle-scale phenomena like time-histories and size distributions
- Only open-source, PIC model

Technical limitations

- Relies on a continuum stress model to approximate particleparticle interactions
- Strong dependence on implementation

Formally released: April, 2019

Fluid continuity equation:

 $\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g) = \mathcal{S}_g$

Fluid momentum equation: $\frac{\partial}{\partial t} (\varepsilon_g \rho_g \boldsymbol{u}_g) + \nabla \cdot (\varepsilon_g \rho_g \boldsymbol{u}_g \boldsymbol{u}_g)$ $= -\varepsilon_g \nabla p_g + \nabla \cdot \boldsymbol{\tau}_g + \varepsilon_g \rho_g \boldsymbol{g} + \sum_p \boldsymbol{\mathcal{I}}_{g,p}$

Parcel continuity equation:

 $\frac{\partial}{\partial t}(m_p) = \mathcal{S}_p$

Parcel momentum equation: $m_p \frac{\partial u_p}{\partial t} = mg + \nabla \tau_p - \mathcal{I}_{g,p}$

Parcel collisions are not resolved

What can be modeled with 1 Million particles?

500 μm

100 µm

200 µm

11

Enabling large Scale simulations

DEM example

Height = 0.68 m

Particle diameter = 800 microns

Particle count = 500,000 particles

Enabling large Scale simulations

Height = 0.68 mParticle count = 500,000 **DEM**

Multiphase Particle In Cell (MP-PIC)

Use MP-PIC for computational speed and averaged accuracy

U.S. DEPARTMENT OF

Multiphase Particle In Cell (MP-PIC) NATIONAL HNOLOGY MFX PIC - 0.005 0.750 - 0.005 - 0.05 -0.6 - 0.004 -0.5 - 0.003 -0.04 -0.4 -ao 8 - 0.002 -0.02 -0.2 - 0.001 _0.4 0.000 0.000 0.31 L 0.000

0.000

Time:

- ~4 meters tall
- 650 million particles
- 13 million PIC parcels
- 200 cores on Joule 2
- 15 seconds/day

U.S. DEPARTMENT OF

Simulation of industrial scale multi-phase flow devices is within MFiX's grasp!

MFiX-PIC couples the MFiX Eulerian fluid solver with new Lagrangian solids stress model.

Recent developments

21.2

21.3

- 20.4 Coarse Grain DEM
 - PIC collision damping
- 21.1 $\sim \approx * * = 2x$ fluid solver speedup
 - Prodecural STL
 - $_{\&} \gtrsim$ 6 new drag laws, 3 new Nusselt number correlations
 - CGDEM specify statistical weight per phase
 - 😹 🔟 Force chain visualization
 - **Reaction rate output**
 - Filtering of particle_input.dat/partile_output.dat
 - \approx Guo-Boyce friction model
 - 🗠 🏕 😍 🌆 Residence time output

Home of the **MFiX** Software Suite

- Create animation from GUI
- 21.4 @ Polydispersity for PIC
- 22.1 **&** DEM Rolling friction

- Single phase
- \approx TFM
- DEM
- CGDEM
- Workflow
 Geometry
 Chemistry
 Output
 Postprocessing

20.4 – Coarse Grain DEM

- Particles are lumped together to create a CG particle ullet
- CG particles collide with each other
- Heat transfer, chemical reactions
- MFiX-CGDEM formal release: 12/31/2020 •

Same species fraction

Home of the **MFiX** Software Suite

Same Velocity

Original system with $N_{\rm p}$ particles

(color stands for different species fraction and temperature, vector stands for velocity)

J.S. DEPARTMENT OF

Same Temperature

Assumptions in Coarse Grained Particle Method

Lumped into a sphere

J.S. DEPARTMENT OF

CG-DEM Simulation of 2-inch Fluidized Bed Pyrolysis Reactor

lome of the **MFiX** Software Suite

parcel

J.S. DEPARTMENT O

• If collision frequency is not zero: replace regular PIC velocity with $v_p^{n+1} = \frac{v_p^n + (\delta t/2\tau_D)\overline{v_i}}{1 + (\delta t/2\tau_D)}$

ome of the **MFiX** Software Suite

If collision frequency is very large, we "replace" parcel velocity with the average velocity

Test case: Jet collision

- Collision of gas-solid jets
- 2 jets colliding
- Solids fraction = 0.1, velocity = 20m/s
- No energy loss at walls (e_w = 1)
- Statistical weight = 1
- Without collision damping, the two jets do not interact
- Polydisperse system, particle diameter:
 - Mean=650 μ m, σ =25 μ m, clipped at mean±2 σ
 - Mean=350 μ m, σ =25 μ m, clipped at mean±2 σ

Fig. 5. Channel geometry used for the calculations of two impinging gas-particle jets.

NATIONAL ENERGY TECHNOLOGY LABORATORY

NATIONAL ENERGY TECHNOLOGY LABORATORY

Mean=650 μ m, σ =25 μ m, clipped at mean±2 σ

Barracuda (Paper)

MFiX

NATIONAL

21.1 Fluid solver 2x speedup

- Single Phase benchmarks
 - SQUARE PIPE: Steady State
 - BLUFF BODY
 - SQUARE PIPE DYNAMIC: Unsteady, transient inlet BC
- MFiX tutorials
 - FLD VORTEX SHEDDING
 - TFM HOPPER 3D
 - TFM HOPPER 2D
 - DEM CYCLONE
 - PIC LOOPSEAL
- Timing based on 1 to 3 repeats, manually launched on a dedicated node on Joule
- 21.1 Milestone: Accelerate fluid solver by a factor of 2

25

MFiX Development

21.1 Fluid solver 2x speedup

- Reference: MFiX 20.4, "-O2", Line PC, ppg_den=10, epp_den=10
- Dev: Feb 2021 develop version:
 - Code change: SS convergence criteria: only affects Steady State simulations
 - Regular vs Optimized Thomas algorithm: only affects simulation with Line PC (Charles Waldman)
 - New control for PPG and EPP residual scaling (ppg_den, epp_den): loosen convergence when norm_g=0, norm_s=0; default values: ppg_den=10, epp_den=10
- Optimization flag: "-O2" (default) vs "-march=native –O3"
- Line PC: On vs OFF
 - REF (20.4)

Dev (Native -O3) +Thomas

Dev (-O2)

.s. department of

Dev (Native -O3)

- Dev (Native -O3) +Thomas+ppg_den=1
- Dev (-O2), No PC
- Dev (-O2) + Thomas Dev (Native -O3) +ppg_den=1, NoPC

- **NE NATIONAL ENERGY** TECHNOLOGY LABORATORY

21.1 Fluid solver 2x speedup

U.S. DEPARTMENT OF

21.1 Fluid solver 2x speedup

- New convergence criteria for Steady State: ~ 4x speedup
- "march=native –O3": 3 to 14% faster
- Optimized Thomas algorithm: 3 to 11% faster
- Lowering ppg_den from 10 to 1: up to 25% faster (helps when ppg is dominant residual)
- Turning off the PC:
 - ~ 2x speedup (fluid solver)
 - May fail to converge if DT=cst with bad initial conditions (need to set adaptive DT)
- Best combination: No PC, "march=native –O3" flag, ppg_den=1

21.2 – Force chain visualizationAbility to visualize force chainBetween particles (DEM)

21.3 – Guo-Boyce friction model (TFM)

- This model was graciously provided by researchers from Columbia University, NY.
- Allows to correctly predict bubble pattern in a pulsating fluidized bed.

Qiang Guo, Yuxuan Zhang, Azin Padash, Kenan Xi, Thomas M. Kovar, Christopher M. Boyce, "Dynamically structured bubbling in vibrated gas-fluidized granular materials", Proceedings of the National Academy of Sciences Aug 2021, 118 (35) e2108647118; DOI: 10.1073/pnas.2108647118

30

MFiX Development

21.4 Polydispersity for PIC

- Extension of DEM polydispersity
- Normal distributions
- log-normal distributions
- **Custom distributions**
- Boundary condition and initial condition

Diameter

84

Count

22.1 DEM Rolling friction

22.1 DEM Rolling friction

Test case 2: Formation of a stagnant zone

- Particles initially in the top half
- Particle sizes = 6 mm and 10 mm
- Particles collect at the bottom once the ends are opened.
- A stagnant zone at the midplane is formed whose characteristics depend on the value of the rolling friction coefficient
- As the value is increased, more particles accumulate in the stagnant zone. In our case, we obtain reasonable results while using μr = 1.0E-4 m.
- Good qualitative comparison of final particle locations between MFiX-DEM predictions and the work of Zhou et al.

Y.C. Zhou, B.D. Wright, R.Y. Yang, B.H. Xu, A.B. Yu, "Rolling friction in the dynamic simulation of sandpile formation", Physica A: Statistical Mechanics and its Applications, Volume 269, Issues 2–4, 1999, Pages 536-553

Formation of stagnant zone along the midplane with 6 mm particles using a rolling friction coefficient of (a) 0 m, (b) 2.5E-5 m, (c) 5.0E-5 m and (d) 1.0E-4 m.

ΔΤΙΟΝΔΙ

33

Non-spherical particles (SuperDEM)

• Superquadrics are a family of geometric shapes defined as

 $\left[\left(\frac{x}{a_1}\right)^{\frac{2}{\varepsilon_2}} + \left(\frac{y}{a_2}\right)^{\frac{2}{\varepsilon_2}}\right]^{\frac{\varepsilon_2}{\varepsilon_1}} + \left(\frac{z}{a_3}\right)^{\frac{2}{\varepsilon_1}} = 1$

• Can represent ~ 80% of all shapes by varying five parameters

SuperDEM examples

static packing

lome of the **MFIX** Software Suite

static packing

.S. DEPARTMENT OF

34

Validation experiment

Time.s

Particle properties including the volume equivalent diameter d_e -dass, the particle dimensions, the sphericity ϕ , the particle density ρ_p , the bed height L and the averaged porosity ε for the initial, unfluidized setup.

Experiment: Vollmari K, Jasevičius R, Kruggel-Emden H. Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technology. 2016;291:506-521.

Massively Parallel SuperDEM Simulation

• The solver was parallelized using MPI.

I.S. DEPARTMENT OF

- Simulation on NETL supercomputer Joule 2 (80K cores), World Top 60, 2020
- Non-spherical particles fluidization simulation, 100 million (6800 cores)

SuperDEM

Non-spherical particles code acceleration

 $\left(\left|\frac{x}{a}\right|^{m}+\left|\frac{y}{b}\right|^{m}\right)^{n/m}+\left|\frac{z}{c}\right|^{n}$

- Need to compute x^{y} for non-integer x and y.
- Range $0 \le x \le 2$ and $y \ge 1$.
- 70% code spent on exponentiations
- Integer powers and square roots are computationally inexpensive
- We can compute certain powers quickly, e.g x^{2.5} is x*x*sqrt(x) (not an approximation)
- Constrain m and n to be integers or dyadic rationals
- Does not guarantee that the ratio n/m is similarly nice
- Restricting values on m and n such that m,n and the ratio n/m are lead to an efficient exponent computations

SuperDEM

Non-spherical particles code acceleration

- Prototype function xpow
- Checks for integer exponents or exponents of the form a+b/4
- Efficient methods based on squaring and square roots
- 6x speedup compared with built-in math library
- Overall speedup on hopper benchmark is about 2.1x

Non-spherical particle drag

Non-spherical particle drag law

- Detailed simulations of flow around prolate spheroids
- Lattice Boltzmann method (LBM).
- Reynolds numbers range $0.1 \le \text{Re} \le 2000$
- Incident angles $0^\circ \le \Phi \le 90^\circ$
- Aspect ratios $1 \le \lambda \le 16$.
- Accurate correlations for average drag, lift and torque coefficients are proposed.

Sathish Sanjeevi, Jean-F. Dietiker, and Johan T. Padding, "Accurate hydrodynamic force and torque correlations for prolate spheroids from Stokes regime to high Reynolds numbers", accepted for publication, Chemical Engineering Journal

ATIONAL

Non-spherical particle drag

Non-spherical particle drag law

Lift and drag

Non-spherical particle drag

Non-spherical particle drag law Lift and drag

Figure 12: Comparison of C_D against ϕ for $\lambda = 2.5$ at (a) Re = 100 and (b) Re = 2000.

Figure 13: Comparison of C_D for a particle of $\lambda = 6$ at $\phi = 45^{\circ}$ from different correlations with the DNS data of Jiang et al. [21, 22].

Hundredfold Speedup of MFiX-DEM using GPU

DEM solver was ported to GPU (prototype)

- 170 fold speedup with double precision, 243 fold with single precision
- Re-use CFD, interphase coupling, and chemical reaction modules in MFiX

COMPUTATION TIME (HR)

ATIONAL

Hundredfold Speedup of MFiX-DEM using GPU

Effect of coarse graining

Glued-sphere DEM

Irregular Shape of Particles

- Composite spheres
- Intra-particle temperature distribution

800

700

600

500

400

300

0

100

Temperature (k)

Biomass Center

MFiX Quality Assurance

Building Confidence in Simulation Results

- Verification
 - Code verification Does the code do what we expect?
 - Solution verification Is the answer any good?
- Validation How does the answer compare to the real world?
- Uncertainty Quantification
 - Where is the error in my solution coming from?
 - What happens to my answer when I change an input to my model?

Accomplishments (https://mfix.netl.doe.gov/mfix/mfix-documentation)

lome of the **MFiX** Software Suite

- MFiX Verification and Validation Manual 2nd Ed. (PDF & html)
- PIC theory guide (May 2020)

.S. DEPARTMENT OF

MFiX Quality Assurance

Building Confidence in Simulation Results

- PIC parameter sensitivity and calibration
 - How sensitive are PIC simulations to PIC model parameters?
 - Recommend parameter values for a given type of application

Cases selected to cover a broad range of flow conditions

- Particle Settling: $U/U_{mf} < 1.0 (P_0 \sim 1)$ (Analytical solution)
- Bubbling Fluidized bed: $U/U_{mf} \sim 1 (P_0 \sim 10)$
- Circulating Fluidized bed: $U/U_{mf} >> 1.0 (P_0 \sim 100)$

C1: Particle settling

Sensitivity analysis and Deterministic calibration

 $\varepsilon_s = 0$

 $\varepsilon_s = \varepsilon_{s0}$

 $\varepsilon_s = 0$

 $\varepsilon_s = \varepsilon_{s0}$

- Response surface(55 samples)
- Sobol indices show:
 - main effects (first oder)
 - interactive effects (second order)

Data-fitted surrogate model

J.S. DEPARTMENT OF

Sensitivity Analysis using Sobol Indices

Home of the **MFiX** Software Suite

Parameters obtained through deterministic calibration

Par	ameter	Default	Range	Calibrated
Pressu scale	t1 ure linear e factor	100	[1,20]	14.309
Vol. expo scale	t2 fraction onential e factor	3.0	[2,5]	2.165
Sta w	t3 tistical eight	5.0	[3,20]	12.241
Vol. fr ma pc	t4 action at ximum icking	0.42	[0.35,0.5]	0.399
So veloc	t5 lid slip ity factor	1.0	[0.5,1.0]	0.828

EY22 plans

- Validation and formal release of superDEM particle capability
 - Step-change from the typical approximation of spherical particle shape
 - Code optimization for faster turn-around time on large supercomputing systems
 - These capabilities allow for accurate modeling of mixed feedstocks of large, reacting particles
- Validation and Formal release of multiphase radiation modeling capability
 - This work incorporates the development work performed by University of Wyoming under NETL support
 - New radiation models available for all multiphase modeling approaches (TFM, DEM, PIC)
 - Enhanced accuracy of heat transfer in high temperature FE reactors
- Development of conjugate heat transfer capability in MFiX
 - Accurate modeling of internal heat transfer surfaces critical to industrial scale reactors
 - Critical capability for Hydrogen production and Oxygen separation technologies
- Continued development of the Graphical User Interface (GUI)
 - Improved usability, reduced user setup error, faster overall workflow
 - Contributes to a larger MFiX community worldwide and better visibility of NETL's multiphase modeling expertise
- Continued Verification and Validation efforts
 - Improved confidence in new implemented models
 - Documentation of parameters sensitivity and best practices for simulation setups

Comparison with other codes

MFiX – Ansys Fluent (2021)

.S. DEPARTMENT OF

Marchelli, F.; Di Felice, R. A Comparison of **Ansys Fluent** and **MFiX** in Performing CFD-DEM Simulations of a Spouted Bed. Fluids **2021**, 6, 382. https://doi.org/10.3390/fluids6110382

"Both programs can provide acceptable qualitative predictions when employing standard settings. If the Di Felice drag model is applied, MFiX yields better results and provides a very good quantitative reproduction of the experimental particle velocity profile. Moreover, despite employing similar mesh and time steps and the same number of particles, MFiX is about 17 times faster. However, Fluent seems to respond slightly more efficiently to an increase in the particle number and appears to have better parallelisation functionalities. "

Figure 6. Time-averaged vertical profiles of the particles' vertical velocity when employing the Di Felice drag model.

Figure 3. Time-averaged vertical profiles of the particles' vertical velocity when employing the Gidaspow drag model.

MFiX publications

Publications/ Presentations

- Liqiang Lu, Xi Gao, Aytekin Gel, Gavin M. Wiggins, Meagan Crowley, Brennan Pecha, Mehrdad Shahnam, William A. Rogers, James Parks, Peter N. Ciesielski, Investigating biomass composition and size effects on fast pyrolysis using global sensitivity analysis and CFD simulations, Chemical Engineering Journal, 2020, 127789, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2020.127789.
- Vaidheeswaran, Avinash, Li, Cheng, Ashfaq, Huda, Rowan, Steven L, Rogers, William A, and Wu, Xiongjun. Geometric Scale-up Experiments on Fluidization of Geldart B Glass Beads. United States: N. p., 2020. Web. doi:10.2172/1648031.
- Vaidheeswaran, Avinash, and Steven Rowan. "Chaos and recurrence analyses of pressure signals from bubbling fluidized beds." Chaos, Solitons & Fractals (2020): 110354.
- Aytekin Gel, Avinash Vaidheeswaran, MaryAnn Clarke; "Deterministic Calibration of MFiX-PIC, Part 1: Settling Bed," DOE/NETL-2021/2646; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2021; p. 72. DOI: 10.2172/1764832.
- Avinash Vaidheeswaran, Aytekin Gel, MaryAnn Clarke, William Rogers; "Sensitivity Analysis of Particle-In-Cell Modeling Parameters in Settling Bed, Bubbling Fluidized Bed and Circulating Fluidized Bed," DOE/NETL-2021/2642, NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2021; p. 40. DOI: 10.2172/1756845.
- Gel, Aytekin, Vaidheeswaran, Avinash, & Clarke, Mary Ann (2021). Deterministic Calibration of MFiX-PIC, Part 1: Settling Bed. NETL Technical Report Series; U.S. Department of Energy, National Technology Laboratory: Morgantown, WV, 2021; p. 72. <u>https://doi.org/10.2172/1764832</u>
- Vaidheeswaran, A., Gel, A., Clarke, M. A., & Rogers, W. A., "Assessment of model parameters in MFiX particle-in-cell approach", Advanced Powder Technology, Vol. 32 (8), 2021, 2962-2977, https://doi.org/10.1016/j.apt.2021.06.011.
- Gel, A.; Weber, J.; Vaidheeswaran, A. Sensitivity Analysis of MFiX-PIC Parameters Using Nodeworks, PSUADE, and DAKOTA; DOE.NETL-2021.2652; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2021; p 52. https://edx.netl.doe.gov/dataset/sensitivity-analysis-of-mfix-pic-parameters-using-nodeworks-psuade-and-dakota, DOI: 10.2172/1809024.
- Lu, L., "GPU accelerated MFiX-DEM simulations of granular and multiphase flows", Particuology, 2022, 62: 14-24, https://doi.org/10.1016/j.partic.2021.08.001
- Gel, A., Vaidheeswaran, A., Clarke, M., "Calibration of a particle-in-cell simulation model for gravitational settling bed application," 2021 NETL Multiphase Flow Workshop, on-line, Morgantown, WV, August 2021.
- Gel, A., Weber, J., and Vaidheeswaran, A., "Sensitivity Analysis of MFiX-PIC Parameters Using Nodeworks, PSUADE, and DAKOTA", 2021 NETL Multiphase Flow Workshop, on-line, Morgantown, WV, August 2021.
- Liqiang Lu, Xi Gao, Jean-François Dietiker, Mehrdad Shahnam, William A. Rogers, MFiX based multi-scale CFD simulations of biomass fast pyrolysis: A review, Chemical Engineering Science, Vol. 248, Part A, 2022, 117131, ISSN 0009-2509, https://doi.org/10.1016/j.ces.2021.117131.
- Liqiang Lu, Xi Gao, J.-F. Dietiker, Mehrdad Shahnam, William A. Rogers, Machine Learning Accelerated Discrete Element Modeling of Granular Flows, Chemical Engineering Science, 2021, 116832, ISSN 0009-2509, https://doi.org/10.1016/j.ces.2021.116832.
- Xi Gao, Jia Yu, Liqiang Lu, William A. Rogers, Coupling particle scale model and SuperDEM-CFD for multiscale simulation of biomass pyrolysis in a packed bed pyrolyzer. AIChE Journal, 2021, e17139. https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.17139
- Xi Gao, Jia Yu, Ricardo J.F.Portal, Jean-François Dietiker, Mehrdad Shahnam, William A.Rogers, Development and validation of SuperDEM for non-spherical particulate systems using a superquadric particle method, Particuology, January 2021. ISSN 1674-2001, https://doi.org/10.1016/j.partic.2020.11.007.
- Li, C., Gao, X., Rowan, S., Hughes, B., Jeremy S. Harris, and Rogers, W. A. Experimental investigation on the binary/ternary fluidization behavior of Geldart D type spherical LDPE, Geldart D type cylindrical wood and Geldart B type sand particles; NETL-TRS-2725-2021; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2021. DOI: 10.2172/1776642.
- Lu, L, Gao, X, Shahnam, M, Rogers, WA. Open source implementation of glued sphere discrete element method and nonspherical biomass fast pyrolysis simulation. AIChE J. 2021; 67:e17211. https://doi.org/10.1002/aic.17211
- Liqiang Lu, Xi Gao, Mehrdad Shahnam, William A. Rogers, Simulations of biomass pyrolysis using glued-sphere CFD-DEM with 3-D intra-particle models, Chemical Engineering Journal, Volume 419, 2021, 129564, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2021.129564.

MFiX featured on Journal covers

Investigating the rheology of fluidized and non-fluidized gas-particle beds: implications for the dynamics of geophysical flows and substrate entrainment

By Breard C. P. Eric, Fullard Luke, Dufek Josef, Tennenbaum Michael, Fernandez-Nieves Alberto & Dietiker Jean-François

Volume 2 March, 2022 PARTICUOLOGY Science and Technology of Particles

Home of the **MFiX** Software Suite

GPU accelerated MFiX-DEM simulations of granular and multiphase flows By L. Lu

Using a proper orthogonal decomposition to elucidate features in granular flows By J. E. Higham, M. Shahnam & A. Vaidheeswaran

Resources – MFiX website

https://mfix.netl.doe.gov

Employment

0

Profile

- Showcase NETL's Multiphase Flow ۲ Science (MFS) team
 - MFS software
 - Documentation
 - Forum

U.S. DEPARTMENT OF

- Experimental data (Challenge pbs)
- Publications
- Workshop proceedings
- News, announcements

3. Tutorials					MFIX Verification and validation Manual, Seco
3.1. Running First Tutorial	Docs = 3, Tutorial	s > 3.6. Three Dimensional DEM Hopper	View page source	Open the Anaconda Prompt (installed u	
3.2. Two Dimensional Fluid Bed, Two Fluid Model (TFM)				Conversion and a set of the following common d	MIFIX PIC Theory Guide PDF
3.3. Two Dimensional Fluid Bed, Discrete Element Model (DEM)	3.6. Three	Dimensional DEM Hopper		Copy and paste the following command	Nodeworks Plugin
3.4. Three Dimensional Single phase flow over a sphere	0			MFiX Version 21.4 v conda crea	Older Desumentati
3.5. Three Dimensional Fluidized Bed		opper Tutorial Wetch Inter	Share		Older Documentatio
3.6. Three Dimensional DEM Hopper				This will create a new conda environme	Summary of MFiX Equations (2012)
3.6.1. Create a new project					DEM documentation (2012)
3.6.2. Select model parameters				Run MEiX	· DEM documentation (2012)
3.6.3. Enter the geometry					 Cartesian grid user guide (2015)
3.6.4. Enter the mesh					Result sensitivity to Fortran compiler (
3.6.5. Create regions for initial and boundary condition specification					 Result sensitivity to Fordali complet (2)
3.6.6. Create a solid					Legacy Manuals
3.6.7. Create Initial Conditions	This tutorial show	s how to create a three dimensional granular flow DE!	M simulation. The model		Ecgacy Manuals
3.6.8. Create Boundary Conditions	setup is:				• Theory quide (1993)
3.6.9. Select output options	Property	Value			- Theory guide (1999)
3.6.10. Run the project					 Numerics guide (1998)
3.6.11. View results	geometry	5 cm diameter booper			
3.7. DEM Granular Flow Chutes	morth	10 - 25 - 10			
4. Model Guide	mesn	10 × 25 × 10			MFIX Iraining
5. Building the Solver	solid diameter	0.003 m			•
6. Running the Solver	solid density	2500 kg/m ²			DUNU TO COMM
					 PININE Training (2011)

Resources – MFiX website

List of Publications

Sort by: Year (Newest to Oldest)

Publication Year 2022

- 1. Modest, M. F. M., Sandip. "Chapter 20 The Monte Carlo Method for Participating Media," Radiative Heat Transfer (Fourth Edition). Academic Press, 2022, pp. 737-773.
- 2. Lu, L. Q. G., X.; Dietiker, J. F.; Shahnam, M.; Rogers, W. A. "MFiX based multi-scale CFD simulations of biomass fast pyrolysis: A review," Chemical Engineering Science Vol. 248, 2022, p. 26.
- 3. Lu, L. Q. L., C.; Rowan, S.; Hughes, B.; Gao, X.; Shahnam, M.; Rogers, W. A. "Experiment and computational fluid dynamics investigation of biochar elutriation in fluidized bed," Aiche Journal Vol. 68, No. 2, 2022, p. 11.
- 4. Gao, X. Y., J.; Portal, R. J. F.; Dietiker, J. F.; Shahnam, M.; Rogers, W. A. "Development and validation of SuperDEM for non-spherical particulate systems using a superquadric particle method," Particuology Vol. 61, 2022, pp. 74-90.
- Lu, L. Brennan Pecha, M.; Wiggins, Gavin M.; Xu, Yupeng; Gao, Xi; Hughes, Bryan; Shahnam, Mehrdad; Rogers, William A.; Carpenter, Daniel; Parks, James E. "Multiscale CFD simulation of biomass fast pyrolysis with a machine learning derived intra-particle model and detailed pyrolysis kinetics," Chemical Engineering Journal Vol. 431, 2022, p. 133853.

https://mfix.netl.doe.gov

Total: 663

MFiX Forum

https://mfix.netl.doe.gov/forum

- User support
- Categories
 - Installation
 - How to
 - Bug report
 - Share
- Topics (threads)
- File attachment
- Searchable

		Horne of the MITEX Software Suite.								ର ≡	
		all categories	all - Categori	ies Latest	Unread (1) Top				+ New Topic	≡
		Category				Topics	Latest				
		● Develop This is a private cate equivalent of the de	egory for developer velop mailing list.	's discussion. It is	s the	4	E	Installation prob	lem for MFIX-19.1		4 4h
		MFiX		Ask questions	s. report	179 1 unread	J	About vtk outpur Bug report	t!		3 8h
			Installation How to Bug report Share		are what ng on!	Z		Results of dem?			2 14h
		Nodeworks	eworks	Ask questions bugs, and sha	s, report are what	2	M	How i can track dem? MFIX	single particle trajecto	ry in	5 1d
		■ Installation ■ How to ■ Bug report		you are working on! Share	~ (С	How to output the particle?	ne drag force particle b	у	1 2d	
			wto Bug report	Ask questions bugs, and sha you are worki ■ Share	s, report are what ng on!	L	K	Is it possible to sizes in 2D TFM ■ MFiX	have mulitple solid par 1 model? (1	ticle	4 3d
Community he	alth							Mont	h JUN 29 - JUL 29 🔹		34 9
Consolidated Page	views 🚱										
700											
500											
400											
300	_	July 5, 2019									
200		Crawlers: 195									
100											
0-Jun 29 Jul 1	Jul 3 Jul 5	Jul 7 Jul 9	Jul 11 Jul 1	13 Jul 15	Jul 17	Jul 19	Jul 21	Jul 23 Jul 25	Jul 27 Jul 29		

MFiX User Community

7,000+ all-time MFIX registrations

Sorbent-based Carbon Capture - MFiX-DEM

TECHNOLOGY Compare Simulations to Small-Scale, Reacting Flow Measurements LABORATORY

NATIONAL ERG

Sorbent-based Carbon Capture - MFiX-DEM

PDT810

PDT812

PDT814

PDT832

PDT810

P Jiset

e teger

Cold Flow Hydrodynamics

U.S. DEPARTMENT OF

Excellent comparison between modeled and measured solids holdup(pressure drop values) around the flow loop

experiment simulation

007812

Advanced Reactor System – MFiX CGDEM

Decarbonization through gasification of coal, Biomass and MSW

Commercial-scale gasifier design (22MW)

Accomplishments

- Support the University of Alaska-Fairbanks Modular Gasification project
- Model validated with Sotacarbo pilot scale data
- 3D, transient simulation of prototype gasifier compares well to UAF design
- Transient response of gasifier to load variations, ramp-rate and turndown
- Gasifier performance for coal-biomass co-feed conditions to explore novel
 Net Zero Carbon, BECCS, and H2 production has been modeled

Impact: NETL's model predicts gasifier performance relative to feedstocks and operating conditions

- Predicted syngas data will provide key information for design of downstream components including engines for generators
- Modeling effort will significantly de-risk the design of the \$46million facility

Reactor dimensions : 3.05 m diameter x 4.5 m height

Solids inventory: >10 tons

Number of CG particles: ~130,000

Time scale (physical time):>10 hours

Jia Yu, Liqiang Lu, Yupeng Xu, Xi Gao, Mehrdad Shahnam, and William Rogers, Coarse-Grained CFD-DEM Simulation and the Design of an Industrial-Scale Coal Gasifier, Industrial Engineering and Chemistry Research, 2022, Volume 61, No. 1, 866–881, https://doi.org/10.1021/acs.iecr.1c03386

Hamilton-Maurer International

Advanced Reactor System – MFiX CGDEM

U.S. DEPARTMENT OF

Syngas Exit Composition with Oxygen Enrichment

Advanced Reactor System – MFiX CGDEM

- Simulations show that the • prototype gasifier is adaptable to a wide range of oxygen enriched conditions with steam and CO₂ diluents
 - This meets key requirements for candidate gasifiers for Net Zero Carbon and H₂ production
- Oxygen-blown with steam produces higher H₂ as expected

Syngas Composition for Oxygen Enrichment mole fraction on dry basis) 50.0 46.4 43.5 39.2 40.0 37.2 37.1 34 7 30.0 25.7 22.2 20.0 20.0 12.4 12.0 9.8 10.0 5.9 2.4 2.4 2.9 3.5 3.3 0.0 CH4 CO CO2 H2 N2 ■ Design ■ base case ■ 60% air reduction ■ O2+steam ■ O2+CO2

Biomass gasification – MFiX CGDEM

Biomass, 100°C 75 kg/hr

Nitrogen, 100°C 8.255 kg/hr

FABER (Fluidized Air Blow Experimental Gasifier Reactor)

Project Goals:

- Develop reaction kinetic for Cypress Biomass gasification
- Validate reaction kinetic for FABER
- Design and optimization of the fluidized bed reactor

Accomplishments

U.S. DEPARTMENT OF

- Gasification of Cypress biomass in FABER was simulated.
- Gasification reaction kinetics were developed and validated against experimental results.

Reactor dimensions: ID = 0.489 m, height = 5.733 m Number of CG particles: ~64,000 Solids inventory: Sand 234 Kg, Biomass 25 Kg

CFB Combustor – MFiX-PIC

NETL and Natural Resources Canada-CanmetENERGY have teamed to study CFB combustion systems with coalbiomass co-feed with potential for carbon capture

Accomplishments:

- NETL is simulating the 50kWth pilot CFB system being operated at NRCan over a range of coal-biomass blends and oxygen-enrichment conditions
- The collaboration provides NETL with high quality, detailed data describing rig operations which is critical information for validating the model
- The model is providing NRCan with valuable insight on conditions inside the system to help guide system optimization

Impact:

 Once validated at the small pilot scale, these MFiX models running on FE's JOULE2 Supercomputer will be used to study scale-up and performance optimization of coal-biomass CFB combustion systems designed for negative CO2 emissions

Canadä

NETL MFiX Model of NRCan Experiment

50kWth CFB Combustor – MFiX PIC

Hydrodynamics Benchmarking – Effect of Drag Model

- First step: validate hydrodynamics
- Riser-only simulations
- Fluidization is impeded by applying the filtered drag model, so more particles are retained in the lower riser
- Circulation rate is reduced, reflected in the average mass of recirculated particles in the side inlet
- Pressure drop distribution and overall pressure drop using the filtered drag model show better agreement with the experimental results ($P_p = 10, \gamma = 3$)

CFB Combustor – MFiX-PIC

NATIONAL ERGY TECHNOLOGY ORATORY

Thank you!

