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Outline

• Predictive crystal plasticity modeling of Ni single crystal based on 
first-principles calculations

• Density functional theory informed dislocation density hardening 
within crystal plasticity: Application to Ni polycrystals

• First-principles calculations of ideal shear strength for Ni-X-Z 
dilute multicomponent alloys
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Overview of high throughput computational framework 
for materials properties under extreme environments
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• Predict proto data using DFT Tool Kit 
(www.DFTTK.org) and machine 
learning models 
(https://phaseslab.com/sipfenn/)

• Apply FEM (ABAQUS) and 
dislocation density based FFT 
methods to predict tensile strain-stress 
curve

• Use CALPHAD approach 
(PyCalphad.org and ESPEI.org) to 
model processed data

• Validate results and improve models

Proto 
Data: 

ML, DFT, 
FEM, 
EXPT

Processed 
Data: 

CALPH
AD

Design & 
Manufacturing

Characterization

PyCalphadESPEI

http://www.dfttk.org/
https://phaseslab.com/sipfenn/


Mechanical Behavior from First Principles
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First-Principles Calculations for Crystal Plasticity
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- Elastic constants

- Ideal shear stress:
• Alias shear – one layer involved

• One lattice parameter fixed, all else relaxed

• Needs a conversion to dislocation-mediated 

critical resolved shear stress

Joós-Duesbery Peierls-Nabarro model:

𝜏P =
𝐾𝑏

𝑎
exp

−2𝜋𝐾𝑏

4𝜋𝑑𝜏IS

𝜏IS: Ideal shear strength from DFT-

based calculations (a function of pre-

strains)

𝐾: anisotropic elastic factor, which 

depends on dislocation character

a, d: lattice periodicity length 

respectively within slip plane, between 

slip places

Joós and Duesbery, Phys Rev Lett 78: 266-9, 1997.



Describing Hardening at Finite Strain 

Need to account for short range effects on dislocation motion – increased 
screw dislocation density within junctions with increase of strain

• Flow stress from 𝐾𝑒𝑑𝑔𝑒
→ 𝜏P

𝑒𝑑𝑔𝑒
(low)

• Flow stress from 𝐾𝑠𝑐𝑟𝑒𝑤
→ 𝜏P

𝑠𝑐𝑟𝑒𝑤 (high)
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Low strains (edge dislocation behavior):

𝜏𝑐
𝛼 = 𝜏P

𝑒𝑑𝑔𝑒

Large strains (edge, screw, junction behavior):

𝜏𝑐
𝛼 = 1 − 𝑤𝛾𝛽 𝜏P

𝑒𝑑𝑔𝑒
+ 𝑤𝛾𝛽𝜏P

𝑠𝑐𝑟𝑒𝑤

𝑤 - Weighting factor (0.33, calibrated with 

macroscale experimental data from Yao et al.)
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Experimental Comparison: Ni

• With accurate 𝜏0 & ℎ0, can calibrate 𝜏𝑠
• Based on Yao data (as is 𝑤) at one orientation

• Use these parameters to predict large strain response of 
new orientations:
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Extension to Alloys: Binary Ni-X (Ni11X)
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• Alias shear deformation to Ni-X (Ni11X) 
solution

• 26 alloying elements

• Use alloying element descriptors to 
examine the variations of ideal shear 
strength

V

Ni

Ideal 

shear 

stress

Example: Ni11V

𝝉𝒊𝒅𝒆𝒂𝒍:

(GPa)

arXiv: 2108.06412
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Ni11X Correlational Study

• 26 Ni-based binary alloys, 45 
atomic features

• Shown are five measures of 
association between
pure atomic physical features and 
calculated ideal shear strength

• Several features in common:

• Volume

• Debye Temperature

• Covalent radius

• Electron density

• Electronegativity

• Unexpected is the low importance of 
elastic constants
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Co Mn Fe Cr Al Ti Mo Si Nb

Co 5.24 5.20 5.18 5.10 4.98 4.86 4.81 4.83 4.62

Mn 5.17 5.17 5.07 4.92 4.82 4.76 4.71 4.57

Fe 5.15 5.05 4.92 4.82 4.77 4.73 4.57

Cr 4.84 4.86 4.70 4.64 4.73 4.48

Al 4.73 4.63 4.59 4.53 4.42

Ti 4.55 4.51 4.41 4.34

Mo 4.45 4.41 4.29

Si 4.31 4.17

Nb 4.16

(Pure Ni36: 5.10 GPa)
Strengthening elements Softening elements

Ternary Ni-X-Z (Ni34XZ) Ideal Shear Stress
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𝜏𝑖𝑑
𝑙𝑖𝑛𝑒𝑎𝑟 𝑁𝑖34XZ = 0.5 ∗ 𝜏𝑖𝑑 𝑁𝑖34𝑋2 + 0.5 ∗ 𝜏𝑖𝑑 𝑁𝑖34𝑍2

Deviation from fit above indicates 

nonlinear effects not captured in 

equation below:

Alias shear deformation
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Ni34XZ Correlational Study
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Fit details:

R2 = 0.773

m = -0.112

Index Ftest Regression Relief Algorithm Coefficient of Determination Maximal Information 
Coefficient

1 Volume Volume Volume Volume

2 B_DFT Van der Waals atomic radius G/B_DFT B_DFT

3 G/B_DFT Boiling Temperature Cohesive energy Cohesive energy

4 Heat of Fusion The third ionization potential B_DFT G/B_DFT

5 Cohesive energy Elastic constant C12_DFT Vaporization heat Heat of Sublimation

6 Mass Heat of Sublimation Elastic constant C44_DFT Poisson ratio

7 Heat of Sublimation Cohesive energy Heat of Sublimation Mass

8 Number of valence electron The first ionization potential Poisson ratio Heat of Fusion

9 Van der Waals atomic radius Elastic constant C13_DFT Number of valence electron Square root of B/G

10 Vaporization heat Heat of Fusion Square root of B/G Vaporization heat

• 45 Ni-based ternary alloys, 80 physical features
• Several features in common:

• Volume (agree with Ni-X study)
• Ratio between shear modulus and bulk modulus
• Cohesive energy
• Bulk modulus
• Vaporization heat



Extension of PAN-CPFEM to Polycrystals
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1. Simplified polycrystal microstructures: 2. Automated parameter optimization:

3. Grain size dependence shows power 

law behavior for all hardening 

parameters.

Exponent varies with material, may 

correlate with material properties such as 

stacking fault energy (shown to right).

4. Slow performance 

and unclear physical 

interpretations 

motivates move from 

CPFEM using PAN to 

FFT using dislocation 

density hardening law



Crystal plasticity fast Fourier transform (CPFFT)

CPFFT explicitly models the microstructure, individual grains, slip systems and 

their interactions to capture the micromechanical anisotropy of polycrystals
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Flow response 

Full-field

Microstructure 

Tensile test

High-performance CPFFT 
~400x speed up on 10 Tesla V100 GPUs

Orders of magnitude faster than CPFEM



Original dislocation density (DD) hardening  

15

0

s s s

c for deb   = + +

0, 0,

s s

HP for + 0.9 1.05 .s s

for for

s s

b  




+ 
1

0.086 logdeb

deb

b 


 
 
 
 

2
deb

deb for

s

q b k


 


  
=    

1 2

s

for s s

for fork k


 



= −



HP

grain

mfp

H b

d



( )

2 2 2

2

2

ˆ ˆ ˆs s s

x y z

grain

b b b

d

+ +

0|s

for t =

2 1 3

0

0.9 1 lnBK Tb
k k

g Db





  
= −   

  

: [ ]s

for forest dislocations mobile

: [ ]s

deb debris dislocations sessile

:S slip system

:b Burgers vector

: Shear modulus

: .graind Gr size Normalized activation energy

DFT-informed DD hardening  

112 112

USFE ISFESFEg
b b 

 −
= =

112

316

F

VaH
q

b g
=

:USFE unstable stacking fault energy

:ISFE intrisntic stacking fault energy

:F

VaH vacancy formation energy

𝜏0
𝑠

𝑘1

𝑔, 𝐷, 𝑞

Rate of dislocation debris 

Calibration

𝜏0
𝑠, 𝑘1, 𝐷, 𝑔, 𝑞

Calibration DFT

𝜏0
𝑠, 𝑘1, 𝐷 𝑔, 𝑞



DFT-Informed CPFFT
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A schematic of the DFT-informed full-field spectral crystal plasticity multiscale model.



Simulation of flow response in polycrystalline Ni as a 
function of grain size 
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(c) 



Correlating calibrated DD parameters with grain size
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Identification of micromechanical hotspots
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• Full-field CPFFT model offers quantification of micromechanical fields

• Assist with microstructure sensitive design for performance optimization  

• Provide insights into micromechanical micro-crack incubation zones 
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Hotspot identification

Descriptors 

m´ Misorientation 

Schmid factor Grain morphology

Orientation
Grain boundary 

morphology

Fields

Equivalent stress Stress triaxiality

Equivalent plastic 
strain 

Dislocation density

Correlation of microstructural descriptors with full-field hotspots



Microstructural descriptors   
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Local misorientation and m´ at grain boundary (GB)
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m´ indicates the slip transmissibility at GBs
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Grain Morphology 

(a) (b)

(d)(c)

(e)

(a) equiaxed

(b) elongated

(c) equiaxed grains with contrast in size.

(d) mix of equiaxed and elongated 

(e) mix of equiaxed and elongated with contrast in size and shape. 



Estimating microstructural feature importance on stress 
hotspots using machine learning: Random forest and 

SHapley Additive explanation (SHAP)
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(a)

Hotspots in Ni microstructure 

after uniaxial deformation to 

2.5% strain

SHAP value
(b)

Feature importance   



Summary

Multiscale approach from electron, atoms, to phase, and applications

▪ High-throughput calculations and modeling for efficient data generation
• DFT-based first-principles calculations of thermodynamic/mechanical properties

• Machine learning models to predict and analyze properties

• CALPHAD modeling to develop the databases

• Python-based open-source codes: SIPFENN, DFTTK, PyCalphad and ESPEI

▪ A combined DFT/CP approach to study tensile stress-stain behaviors
• Crystal plasticity finite element method (CPFEM) for single crystals with a 

phenomenological hardening law (PAN)

• Ideal shear strength of alloys, Ni11X and Ni34XZ, by DFT calculations and machine 

learning models

• DFT-informed hardening model based on dislocation densities, efficiently 

implemented through FFT for larger scale polycrystal calculations
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K-fold cross-validation (KCV)

Cross-validation is a statistical technique used to evaluate the suitability of a model type.

Errors for models tested on each fold are averaged and compared across models.


