Life Modelling of Critical Steam Cycle Components in Coal-Fueled **Power Plants**

DE-FE0031811

6th May 2022

PI: Mark Patterson

Southern Research - Engineering

757 Tom Martin Drive, Birmingham AL 35211 Mark Patterson mpatterson@southernresearch.org (301) 221-8699 Jim Tucker <a>jtucker@southernresearch.org (205) 582-2928 Robert Amaro ramaro.ctr@southernresearch.org (678) 428-7717 Zach Hagan zhagan@southernresearch.org (205) 581-2998 Chris Looney chris.looney@advancedmtt.com Kathryn Wedge kwedge.ctr@southernresearch.org Madison Parks wparks@southernresearch.org

This material is based upon work supported by the Department of Energy Award Number DE-FE0031811

Outline

- Big Picture
- Last Stage Bucket Project Update and Accomplishments
- Wye-Block Project Update and Accomplishments
- Questions

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Big Picture

Calibrate life prediction as well as Maintenance & Operation scheduling models to enhance the performance and cost-effectiveness of existing coalbased power generation in the U.S.

- TODAY: Update on life modelling of two primary challenges facing existing coal-fueled power plants
- L-O Last Stage Bucket (Power Generation Turbine Blade) Water Droplet Erosion life estimation (and M&O) model calibration is complete.
- P22 main steam piping materials (forged pipe, forged fittings (Wye Block), and their welds) life prediction. LCF testing and constitutive modeling substantially complete. Creep testing expanded and under way.

L-O Last Stage Bucket (Turbine Blade) Water Droplet Erosion is a somewhat common, and a very severe issue facing steam turbine operators

- Most remaining coal-fired plants are operating under conditions not considered during initial design and engineering
 - Original design: HCF with stable mechanical and thermal loads
 - Current and future operational paradigm: HCF over LCF

Can LSB failures be predicted/mitigated by use of operational data and inspection findings?

This work:	
Calibrate life prediction and M&O scheduling	models
to enhance the performance and cost-effecti	iveness
of existing coal-based power generation in t	he U.S. ⁴

SR

- L-0 Last Stage Bucket (Turbine Blade) Water Droplet Erosion
 - Calibrate M&O scheduling and life model for L-O buckets experiencing water droplet erosion by use of:
 - Operational data for four turbines over a 15-year period
 - Erosion inspection data for same four turbines over same 15-year period
 - Virgin material characterization
 - Bucket(s) pulled from service (for modelling and testing purposes)

• L-0 Last Stage Bucket (Turbine Blade) Water Droplet Erosion

Last Stage Bucket Leading Edge Erosion is a serious concern for plant operations

Failures Linked to Water Droplet Erosion (Bucket Tip Liberation)

- Several failures occurred in the early 2000's on GE "self-shielded" Jethete buckets.
- In 2005, GE released information indicating that selfshielded rows' 25-year failure rate was 1.4%
- <u>Cracks initiated at erosion crevices</u> near the bucket tip.

Material of Interest: Jethete M-152 Stainless Steel

Failure Mechanism of Interest: Cracks emanating from erosion pits

• L-0 Last Stage Bucket (Turbine Blade) Water Droplet Erosion

Coal fleet challenges related to LSB erosion:

- LSB failure could result in retirement of an older coal unit
 - Must reduce risk of failure
- Budget impact
 - Monitor/predict LSB life to prevent catastrophic failure AND/OR premature replacement

- Southern Company has supplied six 33.5" GE self-shielded LSBs for this research.
- Model V&V will incorporate these blades (late 2022)

00

SR

LSB Material Data

SoCo-supplied Jethete, LSB pulled from service

Jethete Pulled from Service					
Orientation	d (µm)				
Longitudinal	132.4				
Transverse	129.6				

* d represents average grain diameter and not Martinsite packet size

Wrought Jethete, virgin

Wrought Jeth	ete
Orientaiton	d (µm)
Longitudinal	52.7
Transverse	50.2
Through Thickness	51.2

LSB Erosion Inspection Data

Analysis of 18 years of erosion

- inspection data for four
- ^{2.5}" facilities indicates:
 - Single location of dominant
- ^{3.5"} erosion kinetics (~3" from
 ^{4"} tip of LSB)
- ^{4.5}" Clear correlation between
 - " turbine "starts" and erosion
 - rate at location of interest

(Correlation also exists between hours of operation and erosion rate at location of interest).

LSB Modelling + Operations Data

- 3D solid model of LSB created by use of laser scan data
- **Boundary conditions:**
 - Fixed at "fir tree"
 - Circumferentially fixed/dampened at tip
 - Circumferentially fixed/dampened at mid-blade connection
- Loading Conditions:
 - Centrifugal acceleration resulting from operational rotational speeds S, Mises

~3"

Step-1 7: Step Time .000 ment ary Var: S, Mises med Var: U_Deformation Scale I

LSB Modelling + Operations Data

Cracks emanating from leading edge of LSB may be modeled as simple "Through Crack at Edge of Finite Plate"

• ABAQUS model utilized crack having 5 µm radius and 0.5 µm mesh

S, Mises (Avg: 75%) +4.072e+05 +3.732e+05 +3.393e+05 +3.054e+05 +2.715e+05 +2.375e+05 +2.036e+05 +1.697e+05 +1.357e+05

Imperial Units, 28.3 in center of rotation
 ODB: Imperial_28_3centroid_03mesh_

Step: Step-1 Increment 7: Step Time = 1.000 Primary Var: S, Mises Deformed Var: U Deformation Scale F

2

LSB Experimental Data

R

(-)

Δσ0

(Mpa)

			0.05	674.9	4.7
			0.55	397.9	3.4
			0.80	189.5	3.2
Specimn	Temp		Test	ΔK_{th}	R
(#)	(deg C)	C	ontrol	MPa-√m	(-)
FTO-5	93	cons	stant K _{max}	3.4	0.56
FTO-6	93	constant K _{max}		3.5	0.54
FTO-7	93	K decreasing		4.7	0.05
FTO-8	93	K de	ecreasing	3.2	0.8

Specimn	Temp	Test	ΔK_{th}	R
(#)	(deg C)	Control	MPa-√m	(-)
FTO-5	93	constant K _{max}	3.4	0.56
FTO-6	93	constant K _{max}	3.5	0.54
FTO-7	93	K decreasing	4.7	0.05
FTO-8	93	K decreasing	3.2	0.8

Specimen	Temp	Mean	Alt	Min	Max	Max/UTS	$\Delta\sigma_0$	R	Nf
(#)	(deg C)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(%)	(Mpa)	(-)	(10 ⁶ cycles)
JH03L	93	676.5	75.0	601.5	751.5	77%	150.0	0.80	>10
JHC2L	93	852.6	94.7	757.8	947.3	97%	189.5	0.80	>2.5
N/A*	93	685.2	198.9	486.3	884.1	90%	397.9	0.55	N/A
N/A*	93	373.0	337.5	35.5	710.5	73%	674.9	0.05	N/A
JHC15/1/20	22 93	734.0	213.0	521	947	97%	426.0	0.55	341,768
JHD1	93	748.5	217.5	531	966	99%	435.0	0.55	476,694
JHB1	93	734.0	213.0	521	947	97%	426.0	0.55	345,230

ΔK_{th}	Specimn	Temp	Test	R	С	m
MPa-√m	(#)	(deg C)	Control	(-)		
4.7	FTO-5	93	Load- increasing ∆K	0.56	1.11 x 10 ⁻⁸	2.73
3.4	FTO-6	93	Load- increasing ∆K	0.54	1.21 x 10 ⁻⁸	2.73
3.2	FTO-7	93	Load- increasing ∆K	0.05	8.89 x 10 ⁻⁹	2.62
	FTO-8	93	Load- increasing ΔK	0.8	N/A	N/A
R	FTO-1	27	Load- increasing ∆K	0.1	1.44 x 10 ⁻⁸	2.84
(-)	FTO-2	27	Load- increasing ∆K	0.1	1.15 x 10 ⁻⁸	2.94

LSB Modelling + Experimental Data

SR

LSB Life Modelling

- An edge crack can be up to 800 μm (0.031") long prior to extending during steady state (S.S.) operating conditions (R=0.8).
- An edge crack at 60 μm (0.002") in size will extend as a function of "start-up" procedure (R=0.05)

One would like to be capable of detecting a crack having length of a = 0.002"

One MUST be capable of detecting a crack having length of a = 0.031"

LSB Life Modelling

Life remaining when crack exists of known size:

Starts Remaining Prior to Growth During S.S. Operation

One would like to be capable of detecting a crack having length a = 0.002"

One MUST be capable of detecting a crack having length a = 0.031''

SR

LSB Future Work and Program Impact

Future work:

• Model Verification and Validation by use of LSB's pulled from service

Outcomes:

 Calibrated model to predict remaining life of LSB's experiencing water droplet erosion given inspection findings

Impacts:

- Reduction in the M&O costs as a result of
 - data-driven inspection and repair scheduling
 - "retirement for a cause" replacement protocol
- Extension of the useful life of coal-fueled power plants

Questions

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This material is based upon work supported by the Department of Energy Award Number DE-FE0031811

WYE Block Background and Objectives

- P22 pipe-to-WYE Block welds often require field-repairs resulting from creepfatigue damage interactions
- Most remaining coal-fired plants are operating under conditions not considered during initial design and engineering
 - Original design: HCF with stable mechanical and thermal loads (creep)
 - Current and future operational paradigm: HCF over LCF (creep-fatigue)
- Can the remaining life to crack initiation be predicted by use of past, present, and future operational conditions?

This work: Calibrate life prediction and M&O scheduling models to enhance the performance and cost-effectiveness of existing coal-based power generation in the U.S.

WYE Block Background and Objectives

- Main Steam Wye-Block Life Modelling
 - Create a life prediction model for P22 welds experiencing creep and/or fatigue-creep by use of:
 - Operational AND Inspection Data from "Unit A" over an 18-year period
 - Drawings and schematics of main steam piping and facility interactions from "Unit A"
 - Representative (aged) P22 Wye-block material with shop and field (repair) welds removed from "Unit B"

WYE Block Background and Objectives

WYE Block Material Data

220

210

200

190

180

170

160

150

140

HV0.5

- 624 individual hardness measurements
- Pipe BM, weld HAZs, and weld fusion zone manifest as relatively homogeneous material (180 HV0.5)
- WYE Block forging and weld cover pass slightly harder
- Post-weld P22 between 160Hv and 215 Hv (biased towards 160 Hv) depending upon PWHT cooling rate experienced

5/1/2022

WYE-Block Modelling + Operations Data

WYE-Block Modelling + Operations Data

SR

WYE-Block Modelling + Operations Data

- BC's:
 - Vertical fixity at top-most pipe header
 - Full fixity at turbine connections
- LC's
 - 3500 psi internal
 - 1000°F saturated
- Constitutive Model
 - Initial P22 BM with temperature-dependent yield stress

Initial constitutive model calibrated for monotonic loading only. Not capturing material evolution.

25

SR

WYE-Block Experimental Data

Specimen	Material	Location	Orientation	E (Gpa)	Sig_Y (Mpa)	UTS (Mpa)	E_f (-)
BML02	P22	Base Metal	Longitudinal	204.6	239.0	489.5	48.9
BMT02	P22	Base Metal	Transverse	199.2	241.0	489.8	50.0
BMR03	P22	Base Metal	Radial/Out	170.4	194.0	391.2	43.8
WMR01	P22	Weld HAZ	Radial/Out	200.0	188.0	476.1	32.0
WMR02	P22	Weld HAZ	Radial/Out	212.3	228.9	481.5	50.0
WMR12	P22	WELD	Radial/Out	212.0	222.7	455.8	48.1
WMR13	P22	WELD	Radial/Out	210.2	223.9	457.5	48.1

- RT monotonic testing complete
- Base Material (BM) and Weld Material (WM) exceptionally ductile (material removed from service is overaged (behaves as annealed)).
- BM is exhibiting transversely isotropic monotonic response (Radial orientation weaker).
- WM exhibiting considerable scatter in elongation to failure.

WYE-Block LCF Experimental Data

- **RT LCF testing complete** \bullet
 - Fully reversed testing (R = -1) found to be \bullet problematic due to (extreme) material ductility
 - Fully reversed test data typically required to create constitutive model which incorporates material evolution

Symbol	Tempe °C	rature °F	Cycling Rate (cpm)	Hold Time in Maximum Strain Position (minutes)	Elapsed Time (minutes)				
0	RT	RT	1	0	1				
•	600 1100		600 1100		600 1100		1	0	1
Δ	600	1100	1	30	31				
▲	600	1100	1	300	30t				

Figure 5-18 Test Results for 2-1/4Cr-1Mo Steel Showing That Holding at High Temperature Significantly Reduced the Number of Cycles to Failure [18]

Strain Amplitude (-) 0.01 0.001

0.1

Cycles to Failure (-)

WYE-Block LCF Experimental Data

- HT LCF testing notes
 - HT LCF testing is required for calibration of cyclic constitutive model which captures history-dependent material evolution
 - Difficulty collecting RT data indicated that HT testing not possible at R = -1

Test Results for 2-1/4Cr-1Mo Steel Showing That Holding at High

[18]

Temperature Significantly Reduced the Number of Cycles to Failure

WYE-Block LCF Experimental Data

31

WYE-Block Creep Experimental Data

5/1/2022

SR

WYE Block Future Work and Program Impact

Future work:

- Creep testing 75%+ complete relative to test matrix, 50% complete relative to testing hours.
 Experimental data collected to date has indicated that creep testing is more valuable that certain LCF tests that were planned. Creep testing to continue throughout 2022
- HT LCF testing of base material, weld material, and heat affected zone complete. Cross-weld testing to begin in May 2022
- Calibrate material constitutive model
- Calibrate life model
- Verify and Validate combined life model

Outcomes:

 Calibrated life prediction model which accurately predicts creep-fatigue crack initiation in P22 and its welds as a function of operating conditions

Impacts:

- Reduction in the M&O costs as a result of
 - data-driven inspection and repair scheduling and
 - "retirement for a cause" replacement protocol
- Extension of the useful life of coal-fueled power plants

Questions

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This material is based upon work supported by the Department of Energy Award Number DE-FE0031811

LSB Updates and Accomplishments

LSB operational temperature above 150°F

Characterization to be performed at 200°F

WYE-Block Material Tracking

Specimen Sectioning

WYE-Block Weld Specimen Details

Specimen Sectioning

WYE-Block Updates and Accomplishments

Qualified Weld Procedure and Weld Microscopy

Reconstructed	WPS				Wye	Block	
Welding Proces	ses:	GTAW/S	AW .		Types:	Manual/Machine	
loints							
Joint Design:	Double	Angle V (Cor	npo und V)	Single Groove			
Root Spacing:	0.1875"	1.1.812 \$ (001	inpo and vy	Single Groote			
Backing:	VES						
Backing Materia	al: Backing	Ring					
	Metal						
Base Metal							
	ASTM A	355 Low-All	oy Steel GF	P22 (UNS K91560))		
	to				-		
	ASTM A	355 Low-All	oy Steel GF	P22 (UNS K91560))		
Thickness Rang	e: Base me	etal:	3.375"		-		
Maximum Pass	Thickness < 0.	500":	YES				
Filler Metals							
		Root (GT	AW)		Fill (SAW)		
Spec. No.:		Arcos (br	and) Chror	nenar 521	EB3	SFA 5.23	
AWS No.:		sim. To E	, R90S-B3			AWS A5.23	
F-No.:							
Gas							
005				% Composition			
		Gas(es)		Mixtures	Flow Rate	<.	
Shielding		005(05)		matures	now nate		
Trailing:							
Backing:							
Other							
Preheat							
Preheat Tempe	rature, Minimu	ım:	500F				
Interpass Temp	erature, Maxin	num					
Preheat Mainte	nance						
Other:			Rate of I	neating not to exc	eed 600F per hou	ir 🛛	
PostWeld Heat	Treatment						
Cemperature Range:		1325F +/	-25F				
Time Range:		7 hours					
Other: Rate of heating not to exceed 600F per hour.			ır.				
			Cooling rate shall be controlled at a rate of 200F per hour				
			until a te	mperature of 600	F is reached.		

WYE-Block Testing

Test Matrices

		Total Speci	men Counts					S	ecimens Per	Test						
		Total Blanks	Total Machined	Monotonic RT	Monotonic HT	LCF RT	LCF 1000F (A)	LCF 1000F R=0.5	CF 1000F Long dwell (B)	CF 1270F long dwell (B)	CF 1270F med dwell (B)	CF 1270F Short dwell (C)	CR 1000F (A)	CR 1100F (A)	CR 1270 (A)	IS waveform
	Longitudinal (OD)	4	2		*		1			0	0		1			
Base	Longitudinal (Mid)	4	4	1	*	1 (2ND LONG	61							1	1	
	Longitudinal (ID)	4	2		*		1	1				0				1
	Transverse (OD)	10	6	1	*	5										
iviati.	Transverse (Mid)	10	6		*							0	1	1	2	1
	Transverse (ID)	10	5		*		1		1	1	1					
	Radial	14	4	1	*				1	1	1					1
	Longitudinal OD (Cross Weld)	7	7		*											
	Longitudinal Mid (Cross Weld)	7	7		*											
Primary	Longitudinal ID (Cross Weld)	7	7		*											
Weld	Radial HAZ (Pipe Side)	10	10	2	*											
	Radial HAZ (Wye Side)	10	1		*											
	Radial Fusion	10	10	2	*											

WYE-Block Modelling

HT LCF Modelling to enable testing at R = 0.05 (not fully reversed at R = -1)

- Modelling results indicate that calibration of an elevated temperature constitutive model for P22 steel by use of not-fully reversed experimental data is sufficiently able to capture elevated temperature material evolution at R=-1
- Program will reconfigure test matrices to perform HT testing at R=0.05 (specimens will never be loaded by use of negative mechanical strain)

WYE-Block Testing

Stress

Representative 2 year period captured by approximately 5 hour test "cycle"

Туре	Operational Plant	Test hold time at	Operational	Test Max	%Difference in
	On Time (days) temperature (s)		Max Temp (F)	Temp (F)	Operational v. Test LMP
А	1.5	35.5			1.09
В	30	710	1000	1270	.03
С	60	1420			.27

2 183.7 h (333MPa)

7 835.4 h (294MPa)

31 663.4 h (245MPa)

97 009 5 h (216MPa)

090 3 h (360MPa)

Pressure 🛛 💳 💳 Temperature

Kushima et al Metallographic Atlas for 2.25Cr-1Mo... 2005