

Additively Manufactured Graded Composite Transition Joints (AM-GCTJ) for Dissimilar Metal Weldments in Advanced Ultra-Supercritical Power Plant

<u>Xingbo Liu¹</u>, Wenyuan Li¹, Kostas Sierros¹, Bai Cui², Zhili Feng³, Yanli Wang³, Changjie Sun⁴, Haiyang Qian⁵

¹West Virginia University; ²University of Nebraska – Lincoln; ³Oak Ridge National Laboratory; ⁴GE Research; ⁵GE Power,

May 9, 2022

DMWs in A-USC and HRSG

740H, H282, HR6W & A617/A625 for boiler outlet headers, piping and ST inlet are the material enablers

DMW:

- 1. Grade 91 Austenitic Stainless Steel
- 2. Ni based alloy Austenitic Stainless Steel

GE Steam: A-USC Mock Header

Program on Technology Innovation: Guidelines and Specifications for High Reliability Fossil Power Plants—Best Practice Guideline for Manufacturing and Construction of Grade 91 Steel to Austenitic Stainless Steel Dissimilar Metal Welds 3002007221 Final Report, December 2017

Mismatch of coefficient of thermal expansion and thermal cycling:

DMW with sharp material transition

- Mismatch of coefficient of thermal expansion between different materials lead to high strain range along the interface during thermal transients.
- Increasing demand in industry for flexible operation of steam boilers and more cycling capability of HRSGs.

Higher cycling requirements in power industry:

 Steam Boilers: A sample required number of cycles for a new unit

	Total # of cycles of 25 years
Cold Start	455
Warm Start	910
Hot Start	4550

 HRSGs: Typical required number of cycles for a cyclic operating CCPP

	Total # of cycles of 25 years
Cold Start	250
Warm Start	1250
Hot Start	4250

Current Dissimilar Metal Welds (DMWs)

Failures in DMWs @ the fusion boundary between Grade 91 and nickel based filler metal, often accompanied with considerable damages in the HAZ of Grade 91

HT exposure during PWHT or service causes carbon diffusion from the ferritic matrix toward the austenitic matrix. Leads to the formation of a carbon-depleted soft zone on the ferritic side and nucleation/growth of carbides on the ASS side that have very high hardness.

Under imposed residual, external, and thermal stresses caused by the CTE mismatch between different alloys of the DMW, creep and/or creep fatigue cracks can occur along the fusion boundary and HAZ.

AM-Graded Transition Joints (GTJs)

- "Conventional" AM (wire or powder) approach melts alloys A&B completely together
 - A critical issue is the continuous transition in composition creates complex and often undesired microstructure

Advantages of AM-GCTJ

 Solid-state Process, composites material" transition with constituents of known chemistry (such as P91, SS304, A282) mixed in controlled proportion

> •Solved the critical drawbacks of undesired/unpredictable phases/microstructure in conventional AM approach to fabricate the transition joint

- 100% smooth transitions
- Welding happens at A-A, and B-B, no DMWs
- Minimize scale-up issues expected to manufacture large quantity of joints

HRSG configuration highlighting potential DMW locations (1: tubing internal to the HRSG setting; 2: link piping; 3: outlet piping.)

Illustration of DM weld in power plants

* U.S. Patent Appl. No. 62/704,965 – Method to Produce an Additively Manufactured-Graded Composite Transition Joint

PROJECT OBJECTIVES – PHASE I

- (1) To develop and demonstrate at the lab-scale the additively manufactured graded composite transition joints (AM-GCTJ) for dissimilar metal weldments (DMW) in next generation advanced ultra-supercritical (A-USC) coal-fired power plants, that can significantly improve the microstructural stability, creep and thermal-mechanical fatigue resistance, as compared with their conventional counterparts;
- (2) To manufacture and test the components with AM-GCTJ, to advance the technology readiness level to TRL-7, and manufacturing readiness level to MRL 6-7, for targeted commercial applications identified by GE Steam Power, the primary industry partner of the project team

ICWE Model Guided Design - Creep

Dimensions of test specimens (unit: inch)

	L	W	Т	LT
DMW	5	0.5	1.0	
AM-GCTJ	5	0.5	1.0	1.0

Prediction of Creep Strain Accumulation and Rupture Life of SS 304 - 282 joints at 700 °C and 120 MPa

ICWE Model Guided Design - Thermal Fatigue

0.15 0.022 Accumulated strain, Strain increament per cycle 0.020 <u>a</u> Accumulated inelastic strain (no sign) -- -- DMW DMW 0.018 ටි AM-GCHAZ be 0.016 0.10 nent 0.014 ea 0.012 0.010 . 0.05 strain 0.008 stic 200.0 0.004 g Pe 0.00 0.002 0.000 50 100 150 0 Time (h)

- With the transition design, the net strain accumulation per cycle and the accumulated strain was effectively reduced
- Critical location of DMW is located at the joining interface of 304, while that of AM-GCTJ is located at 304 region surrounding the tips of 282 alloy

Strain at 25th thermal cycle, temperature at 700°C Thermal fatigue load:

Temperature ranges between room T and 700 $^{\circ}$ C, with 2 hours of loading, holding, and unloading

Prediction of Prediction of Thermal Fatigue Deformation of 304-282 Plate Joints

ICWE Model Guided Design - Thermal Fatigue

Prediction of 304-282 Pipe Joints under Thermal Fatigue Test

ICWE Model Guided Design - Transients

- DMW: strain mainly accumulates at the joining interface on ID of P91 under cold start transient, while in hot start condition, the accumulated strain decreases as the thermal stress is reduced due to the small range of temperature variation
- AM-GCTJ: the accumulated strain is effectively reduced since the thermal stress is suppressed by the composite design of material distribution induced the continuous variation of thermal expansion and strong constraint on the softer material in the transition region

Creep Fatigue Deformation of P91-304 Joints under Cold and Hot Start Transients

ICWE Model Guided Design - Transition Length

Effects of Transition Length by ICWE Simulations & Evaluation of the Dimensional Scalability of AM-GCTJs

ICWE Model Guided Design - Summary

- ICWE simulations demonstrate that AM-GCTJs possess better deformation resistance than the conventional DMWs under high temperature creep, thermal fatigue, as well as operational hot/cold start transient conditions
- The root cause for the localized deformation and premature failure of dissimilar metal joints has been identified as the high thermal stress induced by the thermal expansion mismatch
- The composite design of material distribution leads to the effective reduction of thermal stress as the materials in the transition area result in the smooth variation of thermal expansion between the two materials and strong mechanical constraint on the 'softer' material enforced by the 'stronger' material
- The dimensional scalability and potential of AM-GCTJs' application for large pipe components have been demonstrated by the ICWE simulations
- The transition joint design will be continuously refined and improved to diminish the accumulated deformation and enhance the service life

DMW and AM-GCTJ

AM-GCTJ

Conventional DM Weld

Fabricated 2 types of welds using either SS309 or A182 weld wire

AM-GCTJ

Both 304 and P91 are totally dense, and the adhesion between 304 and P91 is good without any visible gaps

AM-GCTJ

1040 °C 1h (AC), 760 °C 2h (AC) was adopted as the heat treatment for P91&304 to minimize the growth of grain size

AM-GCTJ

> No Cr depletion along the grain boundary of 304 was observed after heat treatment

Hot Corrosion in Coal Ash - DMW

The corrosion product of P91 in DMW is mainly composed of iron oxides and iron sulfides.

Temperature - 650 °C Time – 30 days Coal Ash - 10% Na_2SO_4 , 10% K_2SO_4 , 10% Fe_2O_3 , 35% Al_2O_3 and 35% SiO_2 Gas - 1 vol. % SO₂, 4 vol. % O₂, 15 vol. % CO₂ & 80 vol.% N_2

Hot Corrosion in Coal Ash – AM-GCTJ

- The thickness of the corrosion products on P91 is about 150 um which is about three times larger than that on 304, i.e., 40 um.
- The corrosion product is divided by two layers: outer layer composed of iron oxides; inner layer consisted of chromium oxides dispersed with some chromium sulfides.

National Laboratory

Hot Corrosion in Coal Ash – AM-GCTJ

→ the corrosion product is composed of Fe_2O_3 , Fe_3O_4 . The absence of Cr_2O_3 is ascribed the shielding effect of iron oxides in the outer layer.

Creep of DMW & AM-GTCJ – Model vs. Experiments

650C, 90MPa	Conventional DM	AM-GCTJ
Model Prediction	230 hrs, at G91 interface	1815 hrs, in G91 base metal (near interface)
Actual Test	214 hrs, at G91 interface	1259 hrs, near G91/Transition Joint interface

Experimental Measurement of Strain Evolution during Thermal Cyclic Test

- Initial observations from in-situ DIC measurement:
 - Considerable reduction of thermal cyclic strain range with AM-GCTJ

AM-GCTJ: averaged over the transition region Conventional DMW: averaged over P91/SS304 interface region

Thermal Fatigue Test of AM-GCTJ and DMW

Some microcracks have been found along the 304H&ER309 interfaces after thermal fatigue test

Preliminary TEA – Case of HRSG

Economic Data Inputs

Sensitivity Analysis Ranges

Economic Data Inputs	Base	Low Value	High Value
Year \$	2021		
Discount Rate	8%	6	10
Escalation Rate	0%	0	3
HRSG Lifetime	25	20	30
Labor Rate \$/hr	100	50	150

Preliminary TEA – Design & Cost Parameters

Sensitivity Analysis Ranges

Conventional DMW Cost for New HRSG (based on Hsinta)	Base	Low Value	High Value
Total Number of DMW spools (per HRSG)	462		
Average Cost per DMW spool - material & labor (\$)	1,716	cost varies with labor rate	
Time Period between replacements (Years)	5	5	10
% of DMW spools to replace	50%	50%	100%

AM-GCTJ Cost for New HRSG (Same Diameter)	Base	Low Value	High Value
Total Number of AM-GCTJ spools (per HRSG)	462		
Average Cost per AM-GCTJ spool - material & labor (\$)	1,984	cost varies with labor rate	
Time Period between replacements (Years)	25	10	25
% of AM-GCTJ spools to replace	25%	0%	25%

AM-GCTJ Cost for New HRSG (Larger Diameter)	Base	Low Value	High Value
Total Number of AM-GCTJ spools (per HRSG)	150		
Average Cost per AM-GCTJ spool - material & labor (\$)	3,417	cost varies with labor rate	
Time Period between replacements (Years)	25	10	25
% of AM-GCTJ spools to replace	25%	0%	25%

Net Present Value Costs for DMW Spools Installation and Replacements

DMW Case (for 1 HRSG)	
	NPV (\$)
HRSG DMW Cost	792,612
Spool Repair Cost - 50% replacement	663,245
Spool Repair Cost - 100% replacement	1,326,489
NPV Costs per HRSG	
50% DMW Replacement per Outage	1,455,857
100% DMW Replacement per Outage	2,119,102

Preliminary TEA

Net Present Value Costs of AM-GCTJ Spool Installation and Replacements

AM-GCTJ Case (for 1 HRSG)	
	NPV (\$)
Small Spool Sizing	
HRSG AM-GCTJ Cost (small spool sizing)	916,682
Spool Repair Costs - 25% every 10 years	310,637
Larger Spool Sizing	
HRSG AM-GCTJ Cost (large spool sizing)	512,494
Spool Repair Costs - 25% after 10 years	173,669
NPV Costs per HRSG	Small Tube
25 year life	916,682
10 year life - 25% replacement	1,227,319
	Large Tube
25 year life	512,494
10 year life - 25% replacement	686,164

Preliminary TEA - Sensitivity Analysis

Discount Rate	6%	8%	10%
ΔNPV (DMW vs. AM-GCTJ)	682,303	539,175	428,579
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)	1,086,491	943,363	832,767
Escalation Rate	0%	2%	4%
ΔNPV (DMW vs. AM-GCTJ)	539,175	552,440	565,705
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)	943,363	956,627	969,892
Plant Life	20 Yr	25 Yr	30 Yr
ΔNPV (DMW vs. AM-GCTJ)	454,148	539,175	597,043
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)	858,336	943,363	1,001,230
Labor Rate (\$/hr)	50	100	150
ΔNPV (DMW vs. AM-GCTJ)	271,948	539,175	806,402
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)	551,500	943,363	1,335,225
Time Period Between DMW Replacements (Years)		5 Yr	10 Yr
ΔNPV (DMW vs. AM-GCTJ)		539,175	173,357
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)		943,363	577,545
% of DMW spools to Replace Each Outage		50%	100%
ΔNPV (DMW vs. AM-GCTJ)		539,175	1,202,420
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)		943,363	1,606,607
Time Period Between AM-GCTJ Replacements (Years)		10 Yr	25 Yr
ΔNPV (DMW vs. AM-GCTJ)		228,538	539,175
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)		721,202	943,363
% of AM-GCTJ spools to Replace Each 10 Yr Outage	0%	25%	50%
ΔNPV (DMW vs. AM-GCTJ)	539,175	383,856	228,538
ΔNPV (DMW vs. AM-GCTJ, Larger Diameter)	943,363	739,553	632,726

Summary

- We designed and fabricated a new class of AM-GCTJ
 - Avoid unknown & often undesired complex composition in the conventional AM-GTJ
 - Shows similar corrosion performance in coal ash as conventional DMW
 - Reduce the maximum strain & strain range, and (can) improve thermal mechanical fatigue life of DMW during cyclic operation of thermal-electric power plants
 - Significantly improve creep properties, as compared with convention DMW
- AM-GCTJ has broad applications in various energy systems, AUSC, Gas, CSP, NE, etc.

Phase II Plan

- Investigate the interfacial diffusion between P91 and 304, 282 and 304
- Optimize the heat treatment process of AM-GCTJ for 304&282
- Continue the characterization of thermal-fatigue and creep test of the AM-GCTJ and optimize the design of AM-GCTJ
- To manufacture and test the components with AM-GCTJ, to advance the technology readiness level to TRL-7, and manufacturing readiness level to MRL 6-7
- Work on detailed TEA and start code case

Acknowledgements

- This material is based upon work supported by the Department of Energy Award Number Award No. DE-FE31819
- DoE-HQ: Regis Conrad, Robert Schrecengost
- NETL: Briggs White, Michael Fasouletus, Anthony Zinn, Robie Lewis
- All Collaborators and Team Members

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

