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 Background

« SuUMmMary of the previous review meeting.

« Room temperature tensile testing on transition joints.
e Burst testing on transition joints.

e Cracking issues in 34/7H stainless steel.

* Design of non-linear transition joints.
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Background

Creep properties of high temperature
__metals , e Multi-material system is used in fossil-fueled power plants
Nicks! based afloys increases the need for dissimilar metal joining.

Minimum
qdesired

v e Challenges with dissimilar metal welding:

application
temperature

/ — Abrupt transition in thermo-physical properties can lead to pre-
mature failure if a proper filler metal/buttering layer is not used.

— Costs associated with pre-mature failure $250,000-$850,000 per
day.

— Long term exposure results in C migration and weakening of the
joint resulting in pre-mature failure.

500

Advanced austenitic
ys (super 304 H,

Sl
C, NF709, etc)

100,000 hr creep-rupture stress (Mpa)

4o}

550 500 50 700 750 800 - C migration needs o be < 10% during service condifions.
Average temperature for rupture in 100,000 hours (°C)
Multi-material structures in fossil « Adopting a gradual transition between dissimilar metals can

fueled power plants overcome the problem.

« Additive manufacturing (AM) using blown powder-directed
Pipe-nozzle energy deposition (DED) opens up the development of
DMWJ graded transition joints (GTJ) for dissimilar metal welds.

Safe end « Grade 91 steel and 347H steel investigated in the current work
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I ¥0akRIDGE  SymMmMary of previous review meeting

: e Fabrication of graded transition Characterization of graded
Design of graded transition joints e T

Cracking observed on 347H side.

Used a CALPHAD approach coupled with stress Blown powder directed energy deposition of 50-50
analysis to identify the fransition zone. transition joint and 80-60-50-40-20 fransition joinfts. o . .

The transition zone has a flner sfrucfpre than either of
Proposed 80-60-50-40-20 transition with a shallower C Transition zone has higher hardness 1 [9e5E MEiENSlE, &pIeIning, e el e e ess
potential

Texture changes from <001> in G?1 and fransition

CALPHAD zone to <011>in 347H

Carbon chemical potential

80-60-50-40-20 transition
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Room temperature tensile testing on transifion jo
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1PF Coloring || X0
Tron fcc
Iron bee (old)
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« The properties of the transition joints lie in between the specified yield strength, ultimate tensile strength, and elongation to failure as per ASTM A182 for grade

91 and UNS S34700 for 347H.

» Failure occurred in the 100% 347H side of the transition joint.
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Effect of heat treatment on the tensile properties

Tensile tests were conducted after heat treatment (760 °C for 2h).

Reduction in strength and elongation after heat tfreatment.

Failure location predominantly in FCC (347H). One sample failed in the grade 91 side
(heeds further investigation).

Transition zone (TZ) is not the location of failure.
_ - BCC [fle

— Heat treated
ol — As-fabricated
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Burst testing on transition joints

e 50/50 and 100G921-80-60-50-40-20-100347H transition joints were burst tested in accordance with
the ASME Boiler and Pressure Vessel Code, Section IX: Welding and Brazing

« A rupture time of 500 h at 650 °C was targeted.
o Internally pressurized with a pressure of 46.25 MPa.

« Change in diameter of the tube at various locations measured over time (D1-D9).

« Axial change in length and axial strain estimated over time (L1 - L5)
GTAW GTAW

[———— |3 —— |2 f—m—— L1
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Burst testing on 100G9%1-50G91-100347H transition joint

e Burst sample failed at 22 hours. Tangential displacement Tangential strain
O _— TN39901, dplot.m b - TN39901, dplot.m
« Failure in the base metal grade 91 region. == " =
« Base metal grade 91 has the highest tangential strain. ose —or . ——or
« Axial strain variations at the beginning of the test — 8 0w > E 6
stabilizes as the fest progresses. ) )
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Burst testing on 100G91-80G921-60G91-50G921-40G91-20G921-100347H
transition joint

%

Burst testing at three different temperature-time
conditions, namely 650 °C, 46.25 MPa (6,710 psi) for 1 h,
600 °C, 44.06 MPa (6,680 psi) for 23 h, and 400 °C, 44.06
MPa for 376 h corresponding to a total creep time of
400h.

Lower tangential and axial strain compared to the 50/50
transition joint.

Creep rate in the first hour of exposure is lower compared
to the 50/50 transition joint.

650 °C -1 hour 600 °C - 24 hours

400 °C - 400 hours
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Tangential displacement

Tangential strain
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rocess parameter studies on 34/7H to eliminate cracking

o Effect of scan strategy (1-step vs 3-step) and power
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o« 254 W, 1 step has the lowest porosity and cracking.

» Effect of powder flow rate on 254 W, 1 step was further analyzed.
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Process parameter studies on 347H to eliminate cracking

T4

B e w2 vt vl

6 GPM |, 254W

« Higher power with 1 step scan strategy and lower powder flow rate seems to provide microstructure with a
relatively lower number of cracks.

 Why does 347H crack?
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Powder composition renders 34/7H susceptible to cracking

347H
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Considering working with powder vendors to alter the composition to reduce cracking. eq” "eq
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Non-linear transition zone configurations studied for
diffusion simulations

T1 12
T3 T4
347H 347H 347H 347H
ixmm, 10% G91 xmm,20% G?1 X, mm,20% G91
xmm, 20% G?1 x mm,40% G91 Xs mm,20% G91 X MM, 40% G971
X mm,50% G9 1 Xa mm.o0% 00,
: X ram, 60% G9 x, mm,40% G91 e
“— 4 x mm, 80% G91 X; mm,40% GI91 xs MM, 80% G91
ixmm,‘?O% G91 $ xmm, 80% G91 X2 mm 805 Go1
G91 G91 G91 G91

e Linear transition in terms of composition and width in the transition zone (T1).
« Non-linear transition in terms of composition linear in terms of width in the transition zone (T2).

« Non-linear variation in both composition and width in the fransition zone (T3 and T4).
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ldentifying optimum fransition zone length using kinetic
simulations
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* The non-linear transition zone has a shallower chemical potential gradient and lower C depletion at grade 91/transition zone interface.

+ Optimum transition zone length for the non-linear case is lower compared to the linear case.
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Stress Evolution by Thermal Expansion Mismatch
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» The non-linear transition zone (T4) has the lowest maximum principal stress compared to other transition zone configurations.
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Next steps

Radial lattice parameter fluctuations

Peak Position de%.F Peak Position |de%.F

104.2 105.6 94.2 94.9

Neutron diffraction measurements data analysis (on-going).

High-temperature tensile testing on the transition joints.

600

Transition » Characterization of burst tested transition joint samples.
G9] e Fabrication and testing of non-linear transition joints.
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