

# FEAA133-Low Cost High Performance Austenitic Stainless Steels for A-USC

<u>Xiang (Frank) Chen</u><sup>1</sup>, Peter Tortorelli<sup>2</sup>, Michael Santella<sup>2</sup>, Timothy Lach<sup>1</sup>, Roger Miller<sup>1</sup>, Hong Wang<sup>1</sup>, Bruce Pint<sup>1</sup>, Edgar Lara-Curzio<sup>1</sup>

<sup>1</sup>Materials Science and Technology Division, <sup>2</sup>ORNL Retiree Subcontractor Oak Ridge National Laboratory

<u>Daniel Purdy</u> Electric Power Research Institute

Dennis Rahoi & Fay Mannon CCM 2000

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

FY22 FECM Spring R&D Project Review Meeting Crosscutting (High Performance Materials) Virtual Session May 9, 2022



#### Acknowledgment

- This work is sponsored by the Department of Energy Office of Fossil Energy and Carbon Management Award Number **DE-FEAA133**
- NETL: Sarah Nathan for the programmatic support
- ORNL: Eric Manneschmidt, Jeremy Moser, Shane Hawkins, Kelsey Hedrick, Doug Kyle, and Doug Stringfield for their technical assistance
- EPRI: Scott Bailey for welding support

## Background (1/3)

 CF8C-Plus is a heat- and corrosion-resistant cast austenitic stainless steel developed by the Oak Ridge National Laboratory and the Caterpillar Technical Center (US Patent 7,153,373 B2)

|           | С    | Si  | Mn      | Cr   | Мо  | Ni   | Nb   | Ν    | Fe  |
|-----------|------|-----|---------|------|-----|------|------|------|-----|
| CF8C-Plus | 0.08 | 0.5 | 4.0     | 19.0 | 0.3 | 12.5 | 0.80 | 0.25 | Bal |
| CF8C      | 0.1  | 1.0 | 1.0 max | 19.0 | 0.3 | 10   | 0.80 | -    | Bal |

Composition (wt%)



As-cast microstructure: CF8C (left) & CF8C-Plus (right)



Nanoscale NbC precipitates in CF8C-Plus (courtesy of EPRI)

Shingledecker et al., Energy Materials 2006

Background (2/3)

- CF8C-Plus shows unique combination of high temperature mechanical properties, corrosion resistance, castability, and weldability
- Moreover, the strength advantages are found in the <u>as-cast condition</u> without additional heat-treatment





Cross-section view of SMAW of CF8C-Plus

## Background (3/3)

 CF8C-Plus offers impressive economic advantage over other AUSC candidate materials for the temperature range of 600-700°C



Material price per foot to withstand 24MPa steam pressure at designated temperatures

X. Chen, E. Lara-Curzio, Reanalysis of Cost and Moist Air Oxidation Performance for CF8C-Plus and Other Alloys for AUSC Applications, ORNL/TM-2021/1943, https://www.osti.gov/biblio/1782110

### **Objective**: create <u>cast (ORNL lead)</u> and <u>wrought (EPRI lead)</u> CF8C-Plus data packages and pursue ASME code case approvals

- Major tasks:
  - Perform welding of cast CF8C-Plus and obtain tensile and creep data from the weld
  - Complete the ASME code case data package for the cast CF8C-Plus
  - Produce a 5th heat of wrought CF8C-Plus; evaluate the microstructure induced by processing and how it affects the creep rupture strength; conduct tensile, creep rupture, and welding necessary to support a code case data package



Caterpillar regeneration system housing exhaust component using CF8C-Plus, 550 tons cast made from 2006 - 2011



A 6,700 lbs gas-turbine end-cover component made with cast CF8C-Plus (Maziasz et al., J PRESS VESS-T ASME, 2009)

#### **Milestone Status**

| Milestones                                                                                                        | 2019         | 2020         | 2021                    | 2022         |  |
|-------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------------|--------------|--|
|                                                                                                                   | JFMAMJJASOND | JFMAMJJASOND | J F M A M J J A S O N D | JFMAMJJASOND |  |
| Award                                                                                                             | •            |              |                         |              |  |
| M1: Complete welding of cast CF8C-Plus and conduct bend test                                                      |              |              |                         |              |  |
| M2: Begin creep and tensile testing of welded specimens to complete the ASME Code Case for CF8C-Plus steel        |              |              |                         |              |  |
| M3: Produce a large, commercial heat of wrought CF8C-Plus for microstructure and mechanical properties evaluation |              |              |                         |              |  |
| M4: Begin interfacing with the ASME code case committee for the code case approval of cast CF8C-Plus              |              |              |                         |              |  |
| M5: Conduct welding on the wrought CF8C-Plus                                                                      |              |              |                         |              |  |
| M6: Complete creep testing to ~8,000 hours on 3rd heat of wrought CF8C-Plus and estimate performance              |              |              | _                       |              |  |
| M7: Complete preliminary data package for cast CF8C-Plus by<br>ORNL                                               |              |              |                         |              |  |
| M8: Begin interfacing with the ASME code case committee for the code case approval of wrought CF8C-Plus           |              |              |                         |              |  |
| M9: Complete preliminary data package for wrought CF8C-Plus<br>by EPRI                                            |              |              |                         |              |  |

Completed milestones Ongoing milestones Today



### Cast CF8C-Plus Code Case Application\*



\*95% of the code case data completed with funds from the American Recovery and Reinvestment Act

As-Cast Microstructure and Heat-to-Heat Variation

- Dendritic features and interdendritic regions are well defined
- Large heat-to-heat variation of grain sizes were observed without affecting the tensile and creep properties
- No ferromagnetic readings were found using a ferrite meter for all four heats used in ASME code case testing



Optical metallography of cast CF8C-Plus, heat T038





50 micro



Heat T039, GS: 1,430 µm

Heat DA20, GS: 837 µm

### Yield and Tensile Strength Values



- 51 tensile tests have been performed from 22 to 871°C for three heats of materials
- ASME Sec. II Part D subpart 1 yield and tensile strength values have been determined

#### Maximum Allowable Stress Values



 103 creep tests previously performed from 482 to 871°C for three heats of materials accumulating 457,403 hrs (~52 yrs) were used to calculate the ASME maximum allowable stress values

## Weld Procedure Qualification and Creep Testing

- Two welding procedures have been qualified for cast CF8C-Plus
  - 1. Shield Metal Arc Welding (SMAW) with alloy 117 filler metal
  - 2. Gas Metal Arc Welding (GMAW) with alloy 617 filler metal
- Creep tests on GMAW showed similar Larson Miller Parameter (LMP) as the cast base metal (BM) indicating no weld strength reduction.
- Creep tests on SMAW are still ongoing



Weld tensile and guided bend tests



#### **Code Case Application Process**

 Code cases for cast CF8C-Plus have been pursued for ASME BPVC Sec I Power Boiler and ASME B31.1 Power Piping



ASME Section I code case application process for CF8C-Plus

#### Cast CF8C-Plus Code Case Status

- <u>ASME BPVC Sec I code case has been approved</u> with the final code case document undergoing editing by ASME editorial staff
- <u>ASME B31.1 code case</u> is balloting at the B31 standard committee level and expected to be approved in this FY
- Once the creep welding on cast CF8C-Plus SMAW is completed, the maximum allowable stress values in the code case for the weld will be re-evaluated
- Additional code case applications of the material are also being evaluated

SC I RN 20-978 (V8) 1/6/2022 In Response to LB 21-3328

Code Case xxx

ASTM A351/A351M-14 Grade HG10MnN (UNS J92604)

Section I

*Inquiry:* May austenitic stainless steel castings conforming to A351/A351M-14 Grade HG10MnN (UNS J92604) be used in welded and non-welded construction under Section I?

*Reply*: It is the opinion of the committee that austenitic stainless steel castings conforming to A351/A351M-18 Grade HG10MnN (UNS J92604) may be used in welded and non-welded construction under Section I, provided the following additional requirements are met:

a. The physical properties for UNS J92604 are found in ASME Section II Part D as follows:

- 1) Thermal Expansion properties shall be taken from Group 3 austenitic stainless steel in Table TE-1;
- 2) Thermal Conductivity and Thermal Diffusivity shall be taken from Material Group K in Table TCD;
- 3) Elastic Moduli shall be taken from Material Group G in Table TM-1
- 4) Poisson's Ratio and density values shall be the same as shown for 300-Series austenitic stainless steels in Table PRD
- b. The maximum allowable stress values for the material shall be those given in Tables 1 and 1M. The maximum design temperature shall be 1500°F (816°C). A casting quality factor in accordance with PG-25 shall be applied to these allowable stresses.
- c. The yield strength and tensile strength values for use in design shall be as shown in Tables 2 and 2M.
- ${\rm d.} \quad {\rm The \ chemical \ composition \ shall \ be \ as \ shown \ in \ Table \ 3.}$
- The casting shall be inspected in accordance with the requirements of Supplementary Requirements S5 of A351/A351M-14 (Radiographic Inspection).
- f. With respect to heat treatment, castings shall be used in the as-cast condition. After weld repair, post weld heat treatment is neither required nor prohibited.
- g. Welding procedure and performance qualifications shall be conducted in accordance with Section IX. Separate welding procedure qualification is required for this material. For performance qualifications, this material shall be considered P-No. 8.
- h. Weld repairs to castings shall be made with the following welding process and consumable:

#### Approved Sec I code case proposal



#### CF8C-Plus Wrought Product Development

Dan Purdy, EPRI



## Wrought CF8C-Plus for Power Piping

- Power generation industry has interest in advanced austenitic stainless steels for boiler components
  - Qualified alloy options support economic, flexible, and high efficiency piping in all extreme environments: Gen IV Nuclear, advanced HRSGs, AUSC conditions, sCO2 plants, concentrated solar, etc.
  - Alloys like: NF709, Super 304H, Sanicro 25, and now a derivative of CF8C-Plus
- EPRI is leading product development and commercial-scale demonstration of wrought/extruded CF8C-Plus alloy chemistry: alloy design, manufacturing, metallurgical and mechanical evaluation, and ASME approval
  - To-date, five heats have been produced and tested including forged, extruded, and powder metallurgy components
  - This project's scope of work is the largest commercial heat (12,600kg), ingot size (760mm Ø), and extrusion

## Timeline of Previous EPRI Work on Wrought CF8C-Plus



EPRI Report 3002009212

## Alloy Design and Chemistry Targets

- Characterization of early heats showed scatter in rupture life
  - Significant deviation from cast material in the powder metallurgy heat
- Led to more work to understand the impact of processing on microstructure
  - Detailed thermodynamic predictions looking at carbide/nitride stability
  - Quantified TEM/STEM work on precipitates from several heats
  - Optimized chemistry targets from cast formulation:



|         | Cr   | Ni   | Mn  | Nb  | С    | Ν    | Cu   | W     | Si  |
|---------|------|------|-----|-----|------|------|------|-------|-----|
| Cast    | 19.5 | 12.5 | 4.0 | 0.9 | 0.09 | 0.25 | <0.3 | <0.01 | 0.7 |
| Wrought | 20.0 | 13.0 | 4.0 | 0.7 | 0.07 | 0.25 | <0.3 | <0.01 | 0.7 |
| PM-HIP  | 20.0 | 13.0 | 4.0 | 0.4 | 0.04 | 0.25 | <0.3 | <0.01 | 0.7 |

#### 5<sup>th</sup> Heat: Ingot Production

- Carpenter manufactured two 760-mm ingots, total weight of 12,600 kg
- Electric arc furnace + argon-oxygen decarburization melted initial total weight
- Poured into two molds for electro-slag remelting
- Ingots supplied in fully homogenized condition for further processing



|        | Cr   | Ni   | Mn  | Nb  | С    | Ν    | Cu   | W      | Si  |
|--------|------|------|-----|-----|------|------|------|--------|-----|
| Min    | 19.5 | 12.5 | 3.7 | 0.6 | 0.05 | 0.23 |      |        | 0.5 |
| Max    | 20.5 | 13.5 | 4.5 | 0.8 | 0.1  | 0.28 | <0.3 | < 0.01 | 1   |
| 589832 | 19.9 | 12.8 | 4.0 | 0.7 | 0.08 | 0.26 | 0.05 | 0.02   | 0.9 |

#### **Gleeble-based Study for Thermomechanical Properties**

- Gleeble used for optimal solutionizing heat treatment and modeling high temperature extrusion
  - Effect of increased solutionizing temperature on NbC precipitates
  - Impact of high temperature deformation (50% stretch)
  - Elevated temperature iso-stress test ("mock-creep test")
- Key microstructural parameters to monitor across these tests
  - All solutionizing (15 min) dissolved fine (<50 nm) NbC precipitates with no impact to larger precipitates
  - The mock-creep test showed precipitation of fine precipitates in all samples
    - No significant differences across samples with different solutionizing temperature
  - High temperature deformation appears to instigate nonuniform precipitation, or increases the driving force such that precipitation occurs on cool-down (<5 minutes)</li>







#### 5<sup>th</sup> Heat: Extrusion

- 3,500 kg segment (900 mm length) of ESR ingot 589832-1A extruded by Wyman Gordon Pipes and Fittings
  - 400 mm OD x 44 mm wall thickness
- First ~1 m of extrusion provided to EPRI for heat treatment study
  - This material provided in as-extruded condition
  - Some tearing observed over this region of extrusion
  - Microstructural and creep rupture characterization will determine heat treatment instructions for remainder of the extrusion



#### Present Work: Microstructure Evaluation and Heat Treatment Study

- Microstructure evaluated after several heat treatment conditions
  - Solution heat treating at 1220, 1170, and 1120°C (1170°C is practical limit for supply chain)
  - Condition examined in unaged and aged condition (750 ° C for 8 hours)
- Conclusion 1: Grain Size
  - As-extruded, the microstructure is completely recrystallized with a small degree of residual strain
  - Solution heat treatment has insignificant impact on grain size; grains are 50 to 100 µm (ASTM 4-5)



#### Present Work: Microstructure Evaluation and Heat Treatment Study

#### Conclusion 2: Carbide Precipitation

- Overall: oxalic etching reveals fine NbC at the detriment of grain-boundary precipitation  $(M_{23}C_6)$
- As-extruded: grain boundary  $M_{23}C_6$  and fine NbC present; residual strain fields surround particles
- Solutionized: blocky Nb-rich particles remain, suspect that intragranular sub-nano-scale NbC remain
- Aged: significant discontinuous grain boundary  $M_{23}C_6$  precipitation and fine intragranular NbC (5-10 nm)



Unetched

Etched, electrolytic oxalic

#### Next Steps for Further Evaluation

- Hardness measured for heat treatment conditions
  - Average Solutionized: 181 HV
  - Average Aged Condition: 191 HV
- Full heat treatment matrix being tested for:
  - RT and elevated temperature tensile properties
  - Benchmark creep testing, limited moderate-time testing for now
  - Hardness evolution over time
- Mechanical evaluation of HT matrix informs quality heat treatment of remaining extruded pipe (~6 m length)
  - Production-scale heat treated component to receive more extensive testing as part of ASME BPVC code case data package

| ID  | Average<br>(HV) | Solution<br>Temp (C) | Solution<br>Time (h) | Ageing<br>Temp (C) | Ageing<br>Time (h) |
|-----|-----------------|----------------------|----------------------|--------------------|--------------------|
| AR0 | 176             | As-Receiv            | ed                   |                    |                    |
| AR1 | 182             | As-Receiv            | ed                   | 750C               | 8                  |
| A1  | 177             | 1220                 | 2                    |                    |                    |
| A2  | 190             | 1220                 | 2                    | 750C               | 8                  |
| A3  | 183             | 1220                 | 6                    |                    |                    |
| A4  | 192             | 1220                 | 6                    | 750C               | 8                  |
| BO  | 175             | 1170                 | 2                    | Air cool           |                    |
| B1  | 184             | 1170                 | 2                    |                    |                    |
| B2  | 188             | 1170                 | 2                    | 750C               | 8                  |
| B3  | 185             | 1170                 | 6                    |                    |                    |
| C1  | 177             | 1120                 | 2                    |                    |                    |
| C2  | 193             | 1120                 | 2                    | 750C               | 8                  |
| C3  | 182             | 1120                 | 6                    |                    |                    |
| C4  | 191             | 1120                 | 6                    | 750C               | 8                  |

#### Conclusions

- Cast CF8C-Plus Code Case
  - As-cast CF8C-Plus exhibited dendritic features and interdendritic regions with large heat-toheat variation of grain size
  - Tensile, creep, and weld qualification tests have been performed to support ASME code case application
  - ASME BPVC Sec I code case has been approved and ASME B31.1 code case is balloting at the B31 standard committee level
- Extruded Pipe and Wrought CF8C-Plus Code Case
  - Manufacturing of extruded pipe 400 mm OD x 44 mm wall thickness complete
    - Both ingot processing and mechanical extrusion show the alloy is manufacturable
  - Heat treatment optimization testing underway
    - Solutionizing is relatively insensitive and robust
  - ASME BPVC code case data package under development, supplemented by 5<sup>th</sup> heat in 2022/23